Download citation
Download citation
link to html
In the title complex, [Cu(C3H6NS2)I(C12H8N2)], each CuII atom is coordinated by one iodide ion, two N atoms from a phenanthroline ligand and two S atoms from a dimethyl­dithio­carbamate ligand in a distorted square-pyramidal environment. There are two molecules in the asymmetric unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025093/ww2086sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025093/ww2086Isup2.hkl
Contains datablock I

CCDC reference: 650577

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.050
  • wR factor = 0.144
  • Data-to-parameter ratio = 20.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) I1 - Cu1 .. 26.13 su PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) I2 - Cu2 .. 20.17 su
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.77 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - S2 .. 5.22 su PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C3 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C17 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C18 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C15 H14 Cu I N3 S2
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.770 Tmax scaled 0.770 Tmin scaled 0.421 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.06 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 2.07
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). Dialkyldithiocarbamates anions, which are typical sulfur ligands, acting as monodentate, bidentate or bridging ligands, are often chosen for the preparation of a considerable structural variety of complexes (Engelhardt et al., 1998; Fernández et al., 2000; Koh, et al., 2003). We report here the crystal structure of the title copper(II) complex, (I), contanining a dimethyldithiocarbamate ligand.

The molecular structure of (I) is shown in Fig. 1. In (1), there are two crystallographically independent CuII atoms in the asymmetric unit. Both are five-coordinated in a distorted square-pyramidal environment by one I atom in the apical position, two N atoms from a phenanthroline ligand and two S atoms from a dimethyldithiocarbamate ligand in the basal plane (Table 1).

Related literature top

For related literature, see: Engelhardt et al. (1998); Fernández et al. (2000); Koh et al. (2003); Noro et al. (2000); Yaghi et al. (1998).

Experimental top

A mixture of Cu(Ac)2.H2O (0.16 g, 0.8 mmol), NaS2CNMe2.2H2O (0.09 g, 0.4 mmol), 1,10-phenanthroline (0.08 g 0.4 mmol) and NaI.2H2O (0.07 g, 0.4 mmol) was stirred in DMF (15 ml). 2-PrOH was diffused into the resulting solution, yielding single crystals of (I).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) or 0.96 Å (methyl), Uiso(H) = 1.2Ueq(C) (aromatic) or 1.5Ueq(C) (methyl).

Structure description top

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). Dialkyldithiocarbamates anions, which are typical sulfur ligands, acting as monodentate, bidentate or bridging ligands, are often chosen for the preparation of a considerable structural variety of complexes (Engelhardt et al., 1998; Fernández et al., 2000; Koh, et al., 2003). We report here the crystal structure of the title copper(II) complex, (I), contanining a dimethyldithiocarbamate ligand.

The molecular structure of (I) is shown in Fig. 1. In (1), there are two crystallographically independent CuII atoms in the asymmetric unit. Both are five-coordinated in a distorted square-pyramidal environment by one I atom in the apical position, two N atoms from a phenanthroline ligand and two S atoms from a dimethyldithiocarbamate ligand in the basal plane (Table 1).

For related literature, see: Engelhardt et al. (1998); Fernández et al. (2000); Koh et al. (2003); Noro et al. (2000); Yaghi et al. (1998).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids.
(Dimethyldithiocarbamato-κ2S,S')iodido(1,10-phenanthroline- κ2N,N')copper(II) top
Crystal data top
[Cu(C3H6NS2)I(C12H8N2)]F(000) = 1912
Mr = 490.85Dx = 1.871 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8049 reflections
a = 14.2931 (13) Åθ = 3.1–27.5°
b = 17.4948 (13) ŵ = 3.26 mm1
c = 14.6359 (16) ÅT = 293 K
β = 107.790 (4)°Prism, black
V = 3484.8 (6) Å30.30 × 0.20 × 0.08 mm
Z = 8
Data collection top
Rigaku Mercury CCD
diffractometer
7942 independent reflections
Radiation source: Sealed Tube6762 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.034
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
h = 1818
Tmin = 0.547, Tmax = 1.000k = 2221
25019 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0836P)2 + 1.0573P]
where P = (Fo2 + 2Fc2)/3
7942 reflections(Δ/σ)max = 0.002
397 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu(C3H6NS2)I(C12H8N2)]V = 3484.8 (6) Å3
Mr = 490.85Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.2931 (13) ŵ = 3.26 mm1
b = 17.4948 (13) ÅT = 293 K
c = 14.6359 (16) Å0.30 × 0.20 × 0.08 mm
β = 107.790 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
7942 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
6762 reflections with I > 2σ(I)
Tmin = 0.547, Tmax = 1.000Rint = 0.034
25019 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.07Δρmax = 0.82 e Å3
7942 reflectionsΔρmin = 0.60 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.54618 (5)0.55197 (3)0.86587 (5)0.04700 (17)
Cu21.00225 (5)0.61593 (4)1.33013 (5)0.04827 (17)
S10.42686 (10)0.63047 (8)0.89036 (11)0.0543 (3)
S20.62636 (10)0.66705 (8)0.90659 (12)0.0591 (4)
S30.93575 (10)0.73224 (8)1.35167 (11)0.0558 (3)
S41.13164 (10)0.69918 (8)1.34873 (12)0.0579 (4)
I10.51765 (3)0.54788 (2)0.65876 (2)0.05071 (12)
I20.90939 (2)0.60430 (2)1.12905 (2)0.05199 (12)
N10.5001 (3)0.7725 (2)0.9289 (3)0.0521 (10)
N20.4799 (3)0.4479 (2)0.8607 (3)0.0465 (10)
N30.6662 (3)0.4841 (2)0.8832 (3)0.0416 (9)
N41.0712 (3)0.8404 (3)1.3710 (3)0.0510 (10)
N50.9043 (3)0.5482 (2)1.3688 (3)0.0473 (10)
N61.0793 (3)0.5152 (2)1.3508 (3)0.0469 (9)
C10.5151 (4)0.7001 (3)0.9117 (3)0.0472 (11)
C20.4034 (5)0.7993 (4)0.9317 (5)0.0711 (17)
H2A0.35830.75710.91980.107*
H2B0.37910.83770.88340.107*
H2C0.40960.82070.99370.107*
C30.5778 (5)0.8294 (3)0.9439 (5)0.0749 (18)
H3A0.63700.80520.94050.112*
H3B0.58950.85251.00580.112*
H3C0.55830.86800.89510.112*
C40.3883 (4)0.4299 (4)0.8548 (4)0.0570 (13)
H4A0.34670.46860.86230.068*
C50.3513 (4)0.3560 (4)0.8379 (5)0.0671 (16)
H5A0.28690.34570.83590.081*
C60.4106 (4)0.2989 (4)0.8242 (4)0.0610 (14)
H6A0.38600.24970.80990.073*
C70.5091 (4)0.3148 (3)0.8317 (3)0.0462 (11)
C80.5770 (4)0.2601 (3)0.8185 (4)0.0554 (13)
H8A0.55620.20990.80380.066*
C90.6703 (4)0.2786 (3)0.8267 (4)0.0535 (13)
H9A0.71250.24120.81690.064*
C100.7056 (3)0.3541 (3)0.8500 (3)0.0418 (10)
C110.8032 (4)0.3790 (3)0.8621 (4)0.0535 (13)
H11A0.84980.34480.85370.064*
C120.8281 (4)0.4522 (3)0.8859 (4)0.0541 (13)
H12A0.89260.46810.89610.065*
C130.7583 (4)0.5039 (3)0.8952 (4)0.0493 (12)
H13A0.77700.55440.91040.059*
C140.6403 (3)0.4106 (3)0.8620 (3)0.0403 (10)
C150.5401 (3)0.3899 (3)0.8508 (3)0.0399 (10)
C161.0494 (4)0.7674 (3)1.3596 (4)0.0472 (11)
C170.9991 (4)0.8958 (3)1.3836 (5)0.0611 (15)
H17A0.93930.86971.38120.092*
H17B0.98610.93321.33320.092*
H17C1.02480.92071.44460.092*
C181.1674 (5)0.8703 (4)1.3727 (4)0.0644 (15)
H18A1.20800.82911.36360.097*
H18B1.19810.89441.43340.097*
H18C1.15920.90701.32210.097*
C190.8178 (4)0.5667 (3)1.3776 (4)0.0552 (13)
H19A0.79890.61771.37180.066*
C200.7540 (4)0.5129 (4)1.3954 (4)0.0632 (15)
H20A0.69300.52761.39970.076*
C210.7825 (4)0.4377 (4)1.4065 (4)0.0639 (15)
H21A0.74070.40121.41890.077*
C220.8737 (4)0.4156 (3)1.3991 (4)0.0526 (12)
C230.9109 (5)0.3398 (3)1.4089 (4)0.0621 (15)
H23A0.87310.30081.42300.075*
C240.9981 (5)0.3224 (3)1.3988 (4)0.0632 (15)
H24A1.01890.27181.40450.076*
C251.0607 (4)0.3806 (3)1.3791 (4)0.0545 (13)
C261.1541 (5)0.3669 (4)1.3700 (4)0.0632 (15)
H26A1.17960.31761.37620.076*
C271.2073 (4)0.4269 (4)1.3520 (5)0.0658 (16)
H27A1.26920.41881.34520.079*
C281.1676 (4)0.5006 (4)1.3439 (4)0.0566 (13)
H28A1.20500.54111.33310.068*
C291.0272 (4)0.4564 (3)1.3691 (3)0.0428 (10)
C300.9323 (4)0.4743 (3)1.3794 (3)0.0445 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0428 (3)0.0411 (3)0.0588 (4)0.0056 (3)0.0181 (3)0.0003 (2)
Cu20.0419 (3)0.0429 (3)0.0619 (4)0.0020 (3)0.0187 (3)0.0001 (3)
S10.0478 (7)0.0519 (8)0.0675 (9)0.0064 (6)0.0240 (7)0.0016 (6)
S20.0477 (7)0.0509 (8)0.0796 (10)0.0029 (6)0.0205 (7)0.0107 (7)
S30.0461 (7)0.0467 (7)0.0772 (10)0.0027 (6)0.0227 (7)0.0037 (6)
S40.0466 (7)0.0477 (8)0.0833 (10)0.0005 (6)0.0256 (7)0.0080 (6)
I10.0524 (2)0.0530 (2)0.0486 (2)0.00187 (15)0.01823 (16)0.00498 (13)
I20.0470 (2)0.0554 (2)0.0538 (2)0.00504 (15)0.01572 (16)0.00251 (14)
N10.057 (3)0.048 (2)0.050 (2)0.009 (2)0.015 (2)0.0111 (18)
N20.040 (2)0.054 (3)0.047 (2)0.0056 (18)0.0154 (18)0.0077 (17)
N30.037 (2)0.041 (2)0.046 (2)0.0029 (17)0.0121 (17)0.0036 (16)
N40.054 (3)0.046 (2)0.054 (3)0.000 (2)0.018 (2)0.0049 (18)
N50.040 (2)0.051 (2)0.051 (2)0.0074 (18)0.0141 (18)0.0005 (18)
N60.042 (2)0.047 (2)0.051 (2)0.0045 (19)0.0133 (19)0.0004 (18)
C10.048 (3)0.051 (3)0.042 (3)0.009 (2)0.012 (2)0.003 (2)
C20.070 (4)0.071 (4)0.073 (4)0.022 (3)0.024 (3)0.017 (3)
C30.081 (4)0.051 (4)0.087 (5)0.003 (3)0.016 (4)0.017 (3)
C40.047 (3)0.064 (4)0.065 (4)0.003 (3)0.024 (3)0.008 (3)
C50.049 (3)0.074 (4)0.083 (4)0.010 (3)0.026 (3)0.011 (3)
C60.056 (3)0.057 (3)0.070 (4)0.015 (3)0.021 (3)0.007 (3)
C70.052 (3)0.043 (3)0.043 (3)0.004 (2)0.015 (2)0.0082 (19)
C80.067 (4)0.045 (3)0.055 (3)0.006 (3)0.019 (3)0.002 (2)
C90.063 (3)0.042 (3)0.053 (3)0.010 (2)0.015 (3)0.000 (2)
C100.042 (3)0.044 (3)0.038 (2)0.006 (2)0.010 (2)0.0034 (18)
C110.049 (3)0.060 (3)0.054 (3)0.013 (3)0.019 (2)0.008 (2)
C120.037 (3)0.057 (3)0.068 (4)0.002 (2)0.016 (2)0.003 (2)
C130.041 (3)0.047 (3)0.056 (3)0.004 (2)0.010 (2)0.002 (2)
C140.041 (2)0.041 (2)0.039 (2)0.005 (2)0.011 (2)0.0055 (17)
C150.040 (2)0.045 (3)0.035 (2)0.002 (2)0.0122 (19)0.0066 (17)
C160.050 (3)0.048 (3)0.043 (3)0.005 (2)0.013 (2)0.002 (2)
C170.061 (4)0.049 (3)0.075 (4)0.005 (3)0.023 (3)0.007 (3)
C180.065 (4)0.061 (4)0.072 (4)0.015 (3)0.028 (3)0.011 (3)
C190.047 (3)0.056 (3)0.065 (3)0.001 (2)0.019 (3)0.003 (2)
C200.043 (3)0.075 (4)0.075 (4)0.004 (3)0.023 (3)0.010 (3)
C210.053 (3)0.069 (4)0.073 (4)0.018 (3)0.023 (3)0.006 (3)
C220.057 (3)0.052 (3)0.047 (3)0.006 (3)0.013 (2)0.001 (2)
C230.072 (4)0.049 (3)0.064 (4)0.007 (3)0.019 (3)0.002 (2)
C240.078 (4)0.045 (3)0.062 (4)0.004 (3)0.015 (3)0.001 (2)
C250.057 (3)0.050 (3)0.052 (3)0.010 (3)0.011 (3)0.004 (2)
C260.061 (4)0.067 (4)0.056 (3)0.021 (3)0.010 (3)0.002 (3)
C270.051 (3)0.075 (4)0.073 (4)0.018 (3)0.022 (3)0.003 (3)
C280.048 (3)0.066 (4)0.059 (3)0.006 (3)0.021 (3)0.004 (3)
C290.045 (3)0.046 (3)0.035 (2)0.003 (2)0.010 (2)0.0011 (18)
C300.041 (3)0.047 (3)0.044 (3)0.002 (2)0.009 (2)0.004 (2)
Geometric parameters (Å, º) top
Cu1—N32.037 (4)C7—C151.388 (7)
Cu1—N22.043 (4)C7—C81.417 (8)
Cu1—S12.3015 (14)C8—C91.342 (8)
Cu1—S22.3032 (16)C8—H8A0.9300
Cu1—I12.9334 (8)C9—C101.419 (7)
Cu2—N52.042 (4)C9—H9A0.9300
Cu2—N62.051 (4)C10—C141.405 (6)
Cu2—S42.3040 (15)C10—C111.420 (7)
Cu2—S32.3078 (15)C11—C121.346 (8)
Cu2—I22.8421 (8)C11—H11A0.9300
S1—C11.712 (6)C12—C131.384 (7)
S2—C11.714 (5)C12—H12A0.9300
S3—C161.708 (6)C13—H13A0.9300
S4—C161.716 (5)C14—C151.437 (7)
N1—C11.323 (6)C17—H17A0.9600
N1—C31.458 (8)C17—H17B0.9600
N1—C21.472 (7)C17—H17C0.9600
N2—C41.322 (6)C18—H18A0.9600
N2—C151.368 (6)C18—H18B0.9600
N3—C131.321 (6)C18—H18C0.9600
N3—C141.349 (6)C19—C201.388 (8)
N4—C161.312 (7)C19—H19A0.9300
N4—C181.464 (7)C20—C211.372 (9)
N4—C171.467 (7)C20—H20A0.9300
N5—C191.322 (7)C21—C221.395 (8)
N5—C301.348 (6)C21—H21A0.9300
N6—C281.322 (6)C22—C301.411 (7)
N6—C291.344 (6)C22—C231.419 (8)
C2—H2A0.9600C23—C241.335 (8)
C2—H2B0.9600C23—H23A0.9300
C2—H2C0.9600C24—C251.441 (9)
C3—H3A0.9600C24—H24A0.9300
C3—H3B0.9600C25—C261.402 (8)
C3—H3C0.9600C25—C291.403 (7)
C4—C51.391 (9)C26—C271.368 (9)
C4—H4A0.9300C26—H26A0.9300
C5—C61.364 (9)C27—C281.399 (8)
C5—H5A0.9300C27—H27A0.9300
C6—C71.406 (7)C28—H28A0.9300
C6—H6A0.9300C29—C301.443 (7)
N3—Cu1—N281.32 (16)C8—C9—C10121.1 (5)
N3—Cu1—S1164.60 (12)C8—C9—H9A119.4
N2—Cu1—S1100.36 (12)C10—C9—H9A119.4
N3—Cu1—S298.25 (12)C14—C10—C9118.9 (5)
N2—Cu1—S2167.68 (13)C14—C10—C11115.7 (5)
S1—Cu1—S276.82 (5)C9—C10—C11125.4 (5)
N3—Cu1—I187.74 (11)C12—C11—C10119.7 (5)
N2—Cu1—I191.36 (12)C12—C11—H11A120.2
S1—Cu1—I1107.45 (4)C10—C11—H11A120.2
S2—Cu1—I1100.94 (5)C11—C12—C13120.4 (5)
N5—Cu2—N681.00 (17)C11—C12—H12A119.8
N5—Cu2—S4158.11 (13)C13—C12—H12A119.8
N6—Cu2—S498.62 (13)N3—C13—C12122.3 (5)
N5—Cu2—S397.36 (12)N3—C13—H13A118.9
N6—Cu2—S3164.24 (13)C12—C13—H13A118.9
S4—Cu2—S377.04 (5)N3—C14—C10123.6 (4)
N5—Cu2—I295.88 (12)N3—C14—C15117.4 (4)
N6—Cu2—I298.70 (12)C10—C14—C15119.0 (4)
S4—Cu2—I2105.76 (5)N2—C15—C7123.5 (4)
S3—Cu2—I297.07 (5)N2—C15—C14116.0 (4)
C1—S1—Cu185.00 (17)C7—C15—C14120.5 (4)
C1—S2—Cu184.90 (19)N4—C16—S3122.9 (4)
C16—S3—Cu284.50 (18)N4—C16—S4123.1 (4)
C16—S4—Cu284.44 (19)S3—C16—S4114.0 (3)
C1—N1—C3121.5 (5)N4—C17—H17A109.5
C1—N1—C2121.3 (5)N4—C17—H17B109.5
C3—N1—C2117.2 (5)H17A—C17—H17B109.5
C4—N2—C15117.3 (5)N4—C17—H17C109.5
C4—N2—Cu1130.8 (4)H17A—C17—H17C109.5
C15—N2—Cu1111.4 (3)H17B—C17—H17C109.5
C13—N3—C14118.2 (4)N4—C18—H18A109.5
C13—N3—Cu1129.1 (4)N4—C18—H18B109.5
C14—N3—Cu1111.5 (3)H18A—C18—H18B109.5
C16—N4—C18122.4 (5)N4—C18—H18C109.5
C16—N4—C17120.7 (5)H18A—C18—H18C109.5
C18—N4—C17117.0 (5)H18B—C18—H18C109.5
C19—N5—C30118.5 (5)N5—C19—C20122.7 (5)
C19—N5—Cu2128.8 (4)N5—C19—H19A118.7
C30—N5—Cu2112.5 (3)C20—C19—H19A118.7
C28—N6—C29117.9 (5)C21—C20—C19118.9 (5)
C28—N6—Cu2129.6 (4)C21—C20—H20A120.5
C29—N6—Cu2112.4 (3)C19—C20—H20A120.5
N1—C1—S1124.2 (4)C20—C21—C22120.5 (5)
N1—C1—S2122.6 (4)C20—C21—H21A119.8
S1—C1—S2113.2 (3)C22—C21—H21A119.8
N1—C2—H2A109.5C21—C22—C30116.2 (5)
N1—C2—H2B109.5C21—C22—C23125.5 (5)
H2A—C2—H2B109.5C30—C22—C23118.3 (5)
N1—C2—H2C109.5C24—C23—C22122.3 (6)
H2A—C2—H2C109.5C24—C23—H23A118.8
H2B—C2—H2C109.5C22—C23—H23A118.8
N1—C3—H3A109.5C23—C24—C25121.3 (6)
N1—C3—H3B109.5C23—C24—H24A119.4
H3A—C3—H3B109.5C25—C24—H24A119.4
N1—C3—H3C109.5C26—C25—C29117.1 (6)
H3A—C3—H3C109.5C26—C25—C24124.5 (5)
H3B—C3—H3C109.5C29—C25—C24118.4 (5)
N2—C4—C5123.3 (6)C27—C26—C25119.3 (6)
N2—C4—H4A118.4C27—C26—H26A120.4
C5—C4—H4A118.4C25—C26—H26A120.4
C6—C5—C4119.1 (5)C26—C27—C28119.2 (6)
C6—C5—H5A120.4C26—C27—H27A120.4
C4—C5—H5A120.4C28—C27—H27A120.4
C5—C6—C7119.8 (5)N6—C28—C27123.0 (6)
C5—C6—H6A120.1N6—C28—H28A118.5
C7—C6—H6A120.1C27—C28—H28A118.5
C15—C7—C6116.9 (5)N6—C29—C25123.5 (5)
C15—C7—C8118.5 (5)N6—C29—C30116.8 (4)
C6—C7—C8124.5 (5)C25—C29—C30119.7 (5)
C9—C8—C7121.9 (5)N5—C30—C22123.2 (5)
C9—C8—H8A119.1N5—C30—C29116.9 (4)
C7—C8—H8A119.1C22—C30—C29119.9 (5)

Experimental details

Crystal data
Chemical formula[Cu(C3H6NS2)I(C12H8N2)]
Mr490.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.2931 (13), 17.4948 (13), 14.6359 (16)
β (°) 107.790 (4)
V3)3484.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)3.26
Crystal size (mm)0.30 × 0.20 × 0.08
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.547, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25019, 7942, 6762
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.144, 1.07
No. of reflections7942
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 0.60

Computer programs: CrystalClear (Rigaku, 2000), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N32.037 (4)Cu2—N52.042 (4)
Cu1—N22.043 (4)Cu2—N62.051 (4)
Cu1—S12.3015 (14)Cu2—S42.3040 (15)
Cu1—S22.3032 (16)Cu2—S32.3078 (15)
Cu1—I12.9334 (8)Cu2—I22.8421 (8)
N3—Cu1—N281.32 (16)N5—Cu2—N681.00 (17)
N3—Cu1—S1164.60 (12)N5—Cu2—S4158.11 (13)
N2—Cu1—S1100.36 (12)N6—Cu2—S498.62 (13)
N3—Cu1—S298.25 (12)N5—Cu2—S397.36 (12)
N2—Cu1—S2167.68 (13)N6—Cu2—S3164.24 (13)
S1—Cu1—S276.82 (5)S4—Cu2—S377.04 (5)
N3—Cu1—I187.74 (11)N5—Cu2—I295.88 (12)
N2—Cu1—I191.36 (12)N6—Cu2—I298.70 (12)
S1—Cu1—I1107.45 (4)S4—Cu2—I2105.76 (5)
S2—Cu1—I1100.94 (5)S3—Cu2—I297.07 (5)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds