Download citation
Download citation
link to html
The Diels-Alder cyclo­addition reactions between deactivated dienes and electron-deficient dienophiles are generally known to be thermodynamically disfavoured but when low solvent volumes were used for the reaction, the cyclo­addition of 4-(bromo­meth­yl)phenoxy­methyl polystyrene-bound (E)-1,3-butadiene-1-carboxylic acid with N-ethyl­maleimide gave the title compound, C11H13NO4, in good yield. The mol­ecules are connected through hydrogen bonds between the carboxyl group and one exocyclic carbonyl oxygen. The title compound is inter­esting in medicinal chemistry since related compounds are known to increase the blood platelet count in thrombocytopenia and to possess anti­convulsant activity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027900/bg2064sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027900/bg2064Isup2.hkl
Contains datablock I

CCDC reference: 654980

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.056
  • wR factor = 0.130
  • Data-to-parameter ratio = 15.8

checkCIF/PLATON results

No syntax errors found



Datablock: I


Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C6 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C7 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The Diels-Alder cycloaddition reactions between deactivated dienes and electron-deficient dienophiles are generally known to be thermodynamically disfavoured. We have recently found that when low solvent volumes (Morphy et al., 2002) were used for the reaction, the disfavoured cycloaddition of the 4-(bromomethyl)-phenoxymethyl polystyrene-bound (E)-1,3-butadiene-1-carboxylic acid with N-ethylmaleimide (PhMe, rt, 2 d) gave the endo cycloadduct in 40% yield (Kiriazis et al., 2004). The hexahydro-1,3-dioxoisoindole structure of the cycloadduct is very interesting in medicinal chemistry. For example, the related compounds are known to increase the blood platelet count in thrombocytopenia (Kanai et al., 2000) and to possess anticonvulsant activity (Bailleux et al., 1994).

Related literature top

For related literature, see: Bailleux et al. (1994); Kanai et al. (2000); Kiriazis et al. (2004); Morphy et al. (2002).

Experimental top

Polystyrene-bound 1,3-butadiene-1-carboxylic acid (1.4 mmol/g, 600 mg) was treated with N-ethylmaleimide (8.4 mmol, 1.05 g) in toluene (1.0 ml) at room temperature for 48 h. Cleavage with TFA-CH2Cl2 1:4 (8 ml) over 2 h at room temperature and purification by successive trituration with hexane, Et2O and EtOAc gave the endo cycloadduct (75 mg, 40%) as white crystals, mp 156–158 °C.

Refinement top

The H atom connected to the carboxylate oxygen was situated from the difference map and refined isotropically. Other H atoms were introduced at calculated positions and allowed to ride, with C—H = 0.95–1.00 Å, Uiso=1.2/1.5× Ueq(carrier).

Structure description top

The Diels-Alder cycloaddition reactions between deactivated dienes and electron-deficient dienophiles are generally known to be thermodynamically disfavoured. We have recently found that when low solvent volumes (Morphy et al., 2002) were used for the reaction, the disfavoured cycloaddition of the 4-(bromomethyl)-phenoxymethyl polystyrene-bound (E)-1,3-butadiene-1-carboxylic acid with N-ethylmaleimide (PhMe, rt, 2 d) gave the endo cycloadduct in 40% yield (Kiriazis et al., 2004). The hexahydro-1,3-dioxoisoindole structure of the cycloadduct is very interesting in medicinal chemistry. For example, the related compounds are known to increase the blood platelet count in thrombocytopenia (Kanai et al., 2000) and to possess anticonvulsant activity (Bailleux et al., 1994).

For related literature, see: Bailleux et al. (1994); Kanai et al. (2000); Kiriazis et al. (2004); Morphy et al. (2002).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVAL (Nonius, 2002); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecule. Thermal ellipsoids are drawn at 30% probability.
2-Ethyl-1,3-dioxo-2,3,3a,4,7,7a-hexahydro-1H-isoindole-4-carboxylic acid top
Crystal data top
C11H13NO4F(000) = 472
Mr = 223.22Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 257 reflections
a = 8.432 (1) Åθ = 2.2–17.9°
b = 8.588 (1) ŵ = 0.11 mm1
c = 14.342 (2) ÅT = 173 K
β = 94.07 (2)°Needle, colorless
V = 1035.9 (2) Å30.25 × 0.11 × 0.10 mm
Z = 4
Data collection top
Nonius Kappa CCD
diffractometer
2350 independent reflections
Radiation source: fine-focus sealed tube1345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 27.5°, θmin = 5.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.97, Tmax = 0.99k = 1111
7378 measured reflectionsl = 1812
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
2350 reflections(Δ/σ)max < 0.001
149 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C11H13NO4V = 1035.9 (2) Å3
Mr = 223.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.432 (1) ŵ = 0.11 mm1
b = 8.588 (1) ÅT = 173 K
c = 14.342 (2) Å0.25 × 0.11 × 0.10 mm
β = 94.07 (2)°
Data collection top
Nonius Kappa CCD
diffractometer
2350 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1345 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.078
7378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.41 e Å3
2350 reflectionsΔρmin = 0.25 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.20615 (19)0.12766 (19)0.18956 (12)0.0291 (5)
H1A1.305 (3)0.108 (3)0.2114 (19)0.040 (8)*
O21.20296 (19)0.1224 (2)0.14398 (13)0.0344 (5)
O31.01229 (17)0.02571 (19)0.33666 (12)0.0275 (4)
O40.48321 (17)0.0661 (2)0.28732 (12)0.0337 (5)
N10.74206 (19)0.0088 (2)0.33060 (13)0.0191 (5)
C11.1350 (3)0.0004 (3)0.15529 (17)0.0230 (6)
C20.9591 (2)0.0274 (3)0.12836 (17)0.0208 (5)
H2A0.95180.09580.07180.025*
C30.8682 (3)0.1201 (3)0.10316 (16)0.0244 (6)
H3A0.92250.21590.09650.029*
C40.7109 (3)0.1129 (3)0.09050 (17)0.0271 (6)
H4A0.65090.20480.07710.032*
C50.6282 (3)0.0415 (3)0.09743 (17)0.0272 (6)
H5A0.51270.02420.10090.033*
H5B0.64360.10390.04080.033*
C60.6941 (2)0.1316 (3)0.18465 (16)0.0208 (5)
H6A0.66700.24450.17720.025*
C70.8756 (2)0.1135 (3)0.20590 (15)0.0184 (5)
H7A0.92440.21900.21540.022*
C80.8919 (2)0.0247 (3)0.29702 (16)0.0187 (5)
C90.6239 (2)0.0690 (3)0.27090 (16)0.0216 (5)
C100.7154 (3)0.0611 (3)0.42150 (17)0.0251 (6)
H10A0.80340.13380.43960.030*
H10B0.61510.12140.41640.030*
C110.7061 (3)0.0629 (3)0.49656 (18)0.0313 (6)
H11A0.68840.01300.55640.047*
H11B0.61800.13400.47930.047*
H11C0.80610.12150.50240.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (8)0.0271 (9)0.0400 (12)0.0019 (8)0.0004 (7)0.0025 (9)
O20.0329 (9)0.0281 (10)0.0428 (12)0.0084 (8)0.0069 (8)0.0017 (9)
O30.0229 (8)0.0337 (10)0.0256 (10)0.0041 (7)0.0020 (7)0.0018 (8)
O40.0199 (8)0.0499 (12)0.0315 (11)0.0012 (8)0.0033 (7)0.0026 (9)
N10.0222 (9)0.0199 (11)0.0154 (11)0.0004 (8)0.0033 (8)0.0012 (8)
C10.0276 (12)0.0247 (13)0.0173 (13)0.0012 (11)0.0065 (10)0.0037 (11)
C20.0249 (11)0.0215 (13)0.0165 (13)0.0021 (10)0.0035 (9)0.0024 (10)
C30.0329 (13)0.0208 (12)0.0195 (14)0.0024 (11)0.0011 (10)0.0047 (11)
C40.0347 (13)0.0241 (13)0.0221 (14)0.0067 (11)0.0004 (10)0.0058 (11)
C50.0259 (12)0.0341 (15)0.0210 (14)0.0010 (11)0.0028 (10)0.0003 (12)
C60.0215 (11)0.0191 (11)0.0214 (13)0.0027 (10)0.0017 (9)0.0013 (11)
C70.0201 (11)0.0158 (11)0.0192 (13)0.0024 (9)0.0011 (9)0.0010 (10)
C80.0203 (11)0.0162 (12)0.0191 (13)0.0006 (10)0.0013 (9)0.0054 (10)
C90.0216 (11)0.0220 (13)0.0209 (14)0.0018 (10)0.0006 (10)0.0041 (11)
C100.0307 (12)0.0260 (13)0.0193 (14)0.0005 (11)0.0057 (10)0.0025 (11)
C110.0345 (13)0.0380 (15)0.0215 (15)0.0024 (12)0.0020 (11)0.0011 (12)
Geometric parameters (Å, º) top
O1—C11.325 (3)C4—H4A0.9500
O1—H1A0.89 (3)C5—C61.541 (3)
O2—C11.217 (3)C5—H5A0.9900
O3—C81.208 (3)C5—H5B0.9900
O4—C91.226 (2)C6—C91.508 (3)
N1—C91.368 (3)C6—C71.547 (3)
N1—C81.391 (3)C6—H6A1.0000
N1—C101.467 (3)C7—C81.511 (3)
C1—C21.523 (3)C7—H7A1.0000
C2—C31.511 (3)C10—C111.520 (3)
C2—C71.546 (3)C10—H10A0.9900
C2—H2A1.0000C10—H10B0.9900
C3—C41.327 (3)C11—H11A0.9800
C3—H3A0.9500C11—H11B0.9800
C4—C51.505 (3)C11—H11C0.9800
C1—O1—H1A111.1 (18)C9—C6—H6A109.5
C9—N1—C8112.67 (19)C5—C6—H6A109.5
C9—N1—C10124.08 (17)C7—C6—H6A109.5
C8—N1—C10123.24 (18)C8—C7—C2111.26 (18)
O2—C1—O1124.0 (2)C8—C7—C6104.42 (17)
O2—C1—C2123.9 (2)C2—C7—C6113.64 (18)
O1—C1—C2112.1 (2)C8—C7—H7A109.1
C3—C2—C1113.65 (19)C2—C7—H7A109.1
C3—C2—C7108.91 (17)C6—C7—H7A109.1
C1—C2—C7112.04 (18)O3—C8—N1123.7 (2)
C3—C2—H2A107.3O3—C8—C7127.59 (19)
C1—C2—H2A107.3N1—C8—C7108.66 (18)
C7—C2—H2A107.3O4—C9—N1122.9 (2)
C4—C3—C2118.6 (2)O4—C9—C6127.3 (2)
C4—C3—H3A120.7N1—C9—C6109.74 (17)
C2—C3—H3A120.7N1—C10—C11111.22 (19)
C3—C4—C5119.7 (2)N1—C10—H10A109.4
C3—C4—H4A120.2C11—C10—H10A109.4
C5—C4—H4A120.2N1—C10—H10B109.4
C4—C5—C6110.73 (19)C11—C10—H10B109.4
C4—C5—H5A109.5H10A—C10—H10B108.0
C6—C5—H5A109.5C10—C11—H11A109.5
C4—C5—H5B109.5C10—C11—H11B109.5
C6—C5—H5B109.5H11A—C11—H11B109.5
H5A—C5—H5B108.1C10—C11—H11C109.5
C9—C6—C5110.30 (18)H11A—C11—H11C109.5
C9—C6—C7104.05 (18)H11B—C11—H11C109.5
C5—C6—C7113.84 (17)
O2—C1—C2—C311.0 (3)C9—N1—C8—O3176.9 (2)
O1—C1—C2—C3171.04 (19)C10—N1—C8—O34.7 (3)
O2—C1—C2—C7135.0 (2)C9—N1—C8—C73.2 (3)
O1—C1—C2—C747.1 (2)C10—N1—C8—C7175.14 (19)
C1—C2—C3—C4171.3 (2)C2—C7—C8—O351.0 (3)
C7—C2—C3—C445.7 (3)C6—C7—C8—O3174.0 (2)
C2—C3—C4—C52.6 (3)C2—C7—C8—N1129.13 (18)
C3—C4—C5—C646.2 (3)C6—C7—C8—N16.2 (2)
C4—C5—C6—C978.7 (2)C8—N1—C9—O4179.7 (2)
C4—C5—C6—C737.8 (3)C10—N1—C9—O42.0 (3)
C3—C2—C7—C868.7 (2)C8—N1—C9—C61.3 (3)
C1—C2—C7—C857.9 (2)C10—N1—C9—C6179.67 (19)
C3—C2—C7—C648.8 (2)C5—C6—C9—O460.9 (3)
C1—C2—C7—C6175.39 (19)C7—C6—C9—O4176.6 (2)
C9—C6—C7—C86.6 (2)C5—C6—C9—N1117.4 (2)
C5—C6—C7—C8113.5 (2)C7—C6—C9—N15.1 (2)
C9—C6—C7—C2128.0 (2)C9—N1—C10—C1182.9 (3)
C5—C6—C7—C27.9 (3)C8—N1—C10—C1195.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.89 (3)1.83 (3)2.690 (2)164 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H13NO4
Mr223.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.432 (1), 8.588 (1), 14.342 (2)
β (°) 94.07 (2)
V3)1035.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.11 × 0.10
Data collection
DiffractometerNonius Kappa CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.97, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
7378, 2350, 1345
Rint0.078
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.130, 1.00
No. of reflections2350
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.25

Computer programs: COLLECT (Nonius, 2002), DIRAX (Duisenberg, 1992), EVAL (Nonius, 2002), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.89 (3)1.83 (3)2.690 (2)164 (2)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds