Download citation
Download citation
link to html
The title coordination polymer, {[Ni3Na(OH)(C9H3O6)2(H2O)11]·1.5H2O}n, is built up from three independent NiII ions and one NaI cation bridged by benzene-2,4,6-tricarboxyl­ate (BTC) ligands and water mol­ecules. Three NiII ions are bridged by three bidentate carboxyl­ate groups of three BTC ligands, two aqua ligands and one OH unit, to form a trinuclear metal cluster. The NaI cation is bonded to the NiII cluster by two bridging water mol­ecules. One of the three BTC ligands bridges neighbouring clusters into one-dimensional chains, which are further connected through a complex hydrogen-bonding scheme, forming a three-dimensional suprastructure. The title complex is isomorphous with the previously reported CoII complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026359/bh2098sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026359/bh2098Isup2.hkl
Contains datablock I

CCDC reference: 654772

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • Disorder in solvent or counterion
  • R factor = 0.057
  • wR factor = 0.127
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT220_ALERT_2_A Large Non-Solvent O Ueq(max)/Ueq(min) ... 4.83 Ratio
Author Response: A lattice water molecule with occupancy 1/2 is disordered over two sites, each with occupancy 1/4. However, the actual disorder is probably more complex and involve more than two sites.
PLAT222_ALERT_3_A Large Non-Solvent    H     Ueq(max)/Ueq(min) ...       5.25 Ratio
Author Response: A lattice water molecule with occupancy 1/2 is disordered over two sites, each with occupancy 1/4. However, the actual disorder is probably more complex and involve more than two sites.

Alert level B PLAT417_ALERT_2_B Short Inter D-H..H-D H6WA .. H12B .. 1.39 Ang. PLAT417_ALERT_2_B Short Inter D-H..H-D H9WB .. H14B .. 2.02 Ang.
Alert level C DENSD01_ALERT_1_C The ratio of the submitted crystal density and that calculated from the formula is outside the range 0.99 <> 1.01 Crystal density given = 1.921 Calculated crystal density = 1.941 RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.133 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.13 PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 45 Perc. PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT044_ALERT_1_C Calculated and Reported Dx Differ .............. ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT046_ALERT_1_C Reported Z, MW and D(calc) are Inconsistent .... 1.94 PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 17.00 Perc. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10 PLAT417_ALERT_2_C Short Inter D-H..H-D H2WA .. H14B .. 2.13 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 16 PLAT728_ALERT_1_C D-H..A Calc 169.00, Rep 167.80 Dev... 1.20 Deg. O13W -H13A -O14 1.555 1.555 6.656
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
2 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 15 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 10 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Benzenetricarboxylate (BTC) ligands are universal bridging ligands in the construction of a number of coordination networks (Yaghi et al., 1996; Wei & Han, 2005; Guo et al., 2006; Eddaoudi et al., 2001). In this paper, we present the synthesis and structural characterization of a new coordination polymer of trinuclear NiII units bridged by BTC ligands, {[Ni3Na(OH)(C9H3O6)2(H2O)11].1.5H2O}n, (I), which was synthesized by the reaction of nickel(II) salt with H3BTC in basic conditions. The title compound is isomorphous with the CoII complex published by Cheng et al. (2004).

As shown in Fig. 1, the asymmetric unit contains three crystallographically independent NiII centers, which are all octahedrally coordinated by six O atoms, which are from two BTC carboxylate groups, one OH- unit and three aqua ligands (Table 2). The three NiII ions are bridged by three bidentate carboxylates of three BTC ligands, two aqua ligands and one OH- anion, to form a new trinuclear metal cluster. The NaI ion is coordinated by six water molecules, and the distorted octahedron is attached to the trinuclear unit though two bridging aqua ligands.

The BTC ligands exhibit two different coordination modes in (I). In the first one, the BTC ligand acts as a bidentate ligand bridging two NiII centers, while another one acts as a tetradentate ligand linking four NiII centers of neighboring trinuclear units to form a one-dimensional zigzag chain (Fig. 2). The chains are further connected into a three-dimensional framework through a complex hydrogen bonding scheme involving water molecules and carboxylate groups of BTC (Table 3 and Fig. 3). The hydrogen bonds D···A separations range from 2.597 to 3.437 Å.

Related literature top

For related literature, see: Guo et al. (2006) Yaghi et al. (1996); Wei & Han (2005); Eddaoudi et al. (2001); Cheng et al. (2004).

Experimental top

An aqueous solution (20 ml) of benzene-1,3,5-tricarboxylic acid (H3BTC) (0.96 g, 0.5 mmol) and NaOH (0.04 g, 1 mmol) was added into an aqueous solution (10 ml) of Ni(CH3CO2)2.2H2O (0.12 g, 0.5 mmol) under stirring. The resulting solution was filtered and a solution of 4,4'-bipy (0.05 g, 0.5 mmol in 15 ml e thanol) was added dropwise. After 15 days, green crystals suitable for X-ray single-crystal diffraction studies were collected by filtration and washed with ethanol. Yield: 68%.

Refinement top

A lattice water molecule with occupancy 1/2 is disordered over two sites, O13w and O14w, with 1/4 occupancy for each. The C-bonded H atoms were placed geometrically and refined with C—H bond lengths constrained to 0.93 Å and Uiso(H) = 1.2Ueq(carrier C). H atoms of water molecules and hydroxy group were clearly visible in a difference map, and were included in the refinement as riding atoms after regularizing some bond lengths [O—H in the range 0.82 to 0.97 Å] and with fixed isotropic displacement parameters: Uiso(H) = 1.2Ueq(carrier O).

Structure description top

Benzenetricarboxylate (BTC) ligands are universal bridging ligands in the construction of a number of coordination networks (Yaghi et al., 1996; Wei & Han, 2005; Guo et al., 2006; Eddaoudi et al., 2001). In this paper, we present the synthesis and structural characterization of a new coordination polymer of trinuclear NiII units bridged by BTC ligands, {[Ni3Na(OH)(C9H3O6)2(H2O)11].1.5H2O}n, (I), which was synthesized by the reaction of nickel(II) salt with H3BTC in basic conditions. The title compound is isomorphous with the CoII complex published by Cheng et al. (2004).

As shown in Fig. 1, the asymmetric unit contains three crystallographically independent NiII centers, which are all octahedrally coordinated by six O atoms, which are from two BTC carboxylate groups, one OH- unit and three aqua ligands (Table 2). The three NiII ions are bridged by three bidentate carboxylates of three BTC ligands, two aqua ligands and one OH- anion, to form a new trinuclear metal cluster. The NaI ion is coordinated by six water molecules, and the distorted octahedron is attached to the trinuclear unit though two bridging aqua ligands.

The BTC ligands exhibit two different coordination modes in (I). In the first one, the BTC ligand acts as a bidentate ligand bridging two NiII centers, while another one acts as a tetradentate ligand linking four NiII centers of neighboring trinuclear units to form a one-dimensional zigzag chain (Fig. 2). The chains are further connected into a three-dimensional framework through a complex hydrogen bonding scheme involving water molecules and carboxylate groups of BTC (Table 3 and Fig. 3). The hydrogen bonds D···A separations range from 2.597 to 3.437 Å.

For related literature, see: Guo et al. (2006) Yaghi et al. (1996); Wei & Han (2005); Eddaoudi et al. (2001); Cheng et al. (2004).

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SMART; data reduction: XPREP (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. ORTEPlike representation of the symmetry expanded local structure for (I) (25% probability ellipsoids).
[Figure 2] Fig. 2. The one-dimensional zigzag chain of the trinuclear NiII units bridged by the BTC ligands.
[Figure 3] Fig. 3. Crystal packing diagram of (I) viewed down the [100] axis, showing the complex hydrogen bonding.
catena-Poly[[[tetra-µ2-aqua-heptaaqua(µ2-benzene-1,3,5-tricarboxylato)- µ3-hydroxido-trinickel(II)sodium]-µ4-benzene-1,3,5-tricarboxylato] sesquihydrate] top
Crystal data top
[Ni3Na(OH)(C9H3O6)2(H2O)11]·1.5H2OF(000) = 3472
Mr = 855.56Dx = 1.921 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abθ = 3.2–27.5°
a = 18.842 (5) ŵ = 2.03 mm1
b = 14.557 (4) ÅT = 293 K
c = 21.343 (6) ÅPrism, green
V = 5854 (3) Å30.18 × 0.12 × 0.10 mm
Z = 8
Data collection top
Siemens SMART CCD area-detector
diffractometer
6693 independent reflections
Radiation source: fine-focus sealed tube2994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.133
φ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 2417
Tmin = 0.712, Tmax = 0.820k = 1818
43629 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0069P)2]
where P = (Fo2 + 2Fc2)/3
6693 reflections(Δ/σ)max = 0.003
442 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Ni3Na(OH)(C9H3O6)2(H2O)11]·1.5H2OV = 5854 (3) Å3
Mr = 855.56Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.842 (5) ŵ = 2.03 mm1
b = 14.557 (4) ÅT = 293 K
c = 21.343 (6) Å0.18 × 0.12 × 0.10 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
6693 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
2994 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.820Rint = 0.133
43629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 0.89Δρmax = 0.67 e Å3
6693 reflectionsΔρmin = 0.64 e Å3
442 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.30004 (5)0.96049 (7)0.12261 (4)0.0209 (2)
Ni20.46166 (5)0.96371 (7)0.21056 (4)0.0221 (2)
Ni30.43621 (5)0.85216 (7)0.09272 (4)0.0203 (2)
Na10.4108 (2)1.2046 (2)0.12750 (16)0.0479 (10)
O10.4066 (2)0.9715 (3)0.1299 (2)0.0177 (11)
H1A0.42401.02270.10430.021*
O1W0.4691 (3)0.8171 (3)0.1864 (2)0.0231 (12)
H1WA0.51680.79240.18900.028*
H1WB0.43560.77850.20880.028*
O2W0.5213 (3)0.9412 (4)0.2905 (2)0.0386 (16)
H2WB0.54440.98740.29870.046*
H2WA0.49470.92920.31980.046*
O3W0.4550 (3)0.7222 (3)0.0684 (2)0.0298 (13)
H3WB0.41900.69160.07370.036*
H3WA0.49610.71690.05630.036*
O4W0.2878 (3)1.1036 (3)0.1260 (2)0.0302 (14)
H4B0.26421.11760.15680.036*
H4A0.26851.12790.10190.036*
O5W0.4611 (3)1.1076 (3)0.2207 (2)0.0246 (13)
H5WA0.50161.12580.22710.030*
H5WB0.43391.12250.25790.030*
O6W0.3608 (4)1.2973 (5)0.2047 (3)0.072 (2)
H6WA0.34231.34230.18830.087*
H6WB0.38461.29410.23680.087*
O7W0.3552 (3)1.2859 (4)0.0450 (2)0.0418 (16)
H7WA0.37981.28270.01340.050*
H7WB0.31611.26300.03830.050*
O8W0.4635 (3)1.1087 (4)0.0522 (2)0.0359 (15)
H8WB0.43961.10930.02010.043*
H8WA0.50371.12680.04450.043*
O9W0.5163 (4)1.2981 (5)0.1248 (3)0.087 (3)
H9WA0.54341.28180.15270.105*
H9WB0.53591.29260.09070.105*
O10W0.9046 (4)0.5735 (5)0.3553 (3)0.081 (3)
H10A0.87380.55720.38000.097*
H10B0.87990.61140.33550.097*
O110.4002 (3)0.8816 (4)0.0019 (2)0.0244 (13)
O11W0.3286 (3)0.8147 (3)0.1170 (2)0.0216 (12)
H11A0.32480.78250.15670.026*
H11B0.30400.78170.08410.026*
O120.3000 (3)0.9568 (4)0.0280 (2)0.0255 (12)
O12W0.1917 (3)0.9377 (4)0.1137 (2)0.0382 (15)
H12B0.17800.90510.14260.046*
H12C0.18260.90740.07460.046*
O130.0850 (3)0.8013 (4)0.1728 (2)0.0396 (16)
O140.0847 (3)0.8387 (4)0.0716 (2)0.0366 (15)
O150.3123 (3)0.7961 (4)0.2849 (2)0.0501 (19)
O160.4126 (3)0.7897 (4)0.2299 (2)0.0346 (15)
O210.5430 (3)0.8863 (3)0.0806 (2)0.0200 (11)
O220.5552 (3)0.9755 (3)0.1659 (2)0.0225 (12)
O230.8758 (3)0.8365 (4)0.0208 (2)0.0412 (17)
O240.7754 (3)0.7999 (3)0.0298 (2)0.0241 (13)
O250.8776 (3)0.9416 (4)0.2330 (2)0.0346 (15)
O260.7764 (3)0.9579 (4)0.2863 (2)0.0328 (14)
C110.3022 (4)0.8840 (5)0.0699 (3)0.0214 (17)
C120.2288 (4)0.8807 (5)0.0723 (3)0.0202 (17)
H12A0.20270.90080.03790.024*
C130.1934 (4)0.8482 (5)0.1249 (3)0.0220 (17)
C140.2331 (4)0.8259 (5)0.1778 (3)0.0243 (18)
H14A0.21000.80740.21420.029*
C150.3057 (5)0.8311 (5)0.1770 (3)0.0244 (18)
C160.3418 (4)0.8565 (5)0.1224 (3)0.0231 (17)
H16A0.39110.85520.12090.028*
C170.3378 (5)0.9104 (5)0.0088 (3)0.0238 (18)
C180.1150 (5)0.8302 (6)0.1236 (4)0.030 (2)
C190.3468 (5)0.8048 (5)0.2348 (4)0.032 (2)
C210.6585 (4)0.9124 (4)0.1226 (3)0.0140 (15)
C220.6952 (4)0.8773 (5)0.0710 (3)0.0198 (17)
H22A0.67010.85920.03560.024*
C230.7686 (4)0.8689 (5)0.0717 (3)0.0173 (16)
C240.8055 (4)0.8929 (4)0.1251 (3)0.0170 (16)
H24A0.85470.88840.12550.020*
C250.7701 (4)0.9238 (5)0.1788 (3)0.0188 (17)
C260.6972 (4)0.9336 (5)0.1762 (3)0.0182 (16)
H26A0.67330.95500.21140.022*
C270.5799 (4)0.9255 (5)0.1228 (3)0.0183 (16)
C280.8090 (5)0.8336 (5)0.0160 (3)0.0253 (19)
C290.8120 (4)0.9432 (5)0.2376 (3)0.0231 (18)
O13W0.5621 (14)0.9796 (16)0.4849 (11)0.071 (7)0.25
H13A0.56280.93790.51080.086*0.25
H13B0.58500.97120.45740.086*0.25
O14W0.4786 (16)0.975 (2)0.4410 (12)0.088 (9)0.25
H14B0.47820.92930.41870.105*0.25
H14C0.51060.99970.41060.105*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0187 (6)0.0275 (5)0.0165 (5)0.0014 (5)0.0001 (4)0.0005 (4)
Ni20.0183 (6)0.0295 (6)0.0186 (5)0.0004 (5)0.0007 (4)0.0014 (4)
Ni30.0170 (5)0.0255 (5)0.0184 (5)0.0001 (5)0.0008 (4)0.0022 (4)
Na10.049 (3)0.055 (2)0.040 (2)0.015 (2)0.0016 (19)0.0046 (18)
O10.015 (3)0.023 (3)0.016 (2)0.002 (2)0.005 (2)0.000 (2)
O1W0.018 (3)0.025 (3)0.026 (3)0.002 (2)0.000 (2)0.007 (2)
O2W0.040 (4)0.053 (4)0.022 (3)0.008 (3)0.006 (3)0.000 (3)
O3W0.016 (3)0.033 (3)0.041 (3)0.004 (3)0.002 (3)0.008 (2)
O4W0.038 (4)0.027 (3)0.026 (3)0.016 (3)0.001 (3)0.001 (2)
O5W0.018 (3)0.030 (3)0.026 (3)0.004 (3)0.004 (2)0.011 (2)
O6W0.100 (7)0.070 (5)0.047 (4)0.024 (5)0.022 (4)0.013 (4)
O7W0.035 (4)0.055 (4)0.035 (3)0.002 (3)0.003 (3)0.008 (3)
O8W0.027 (4)0.053 (4)0.027 (3)0.008 (3)0.003 (3)0.007 (3)
O9W0.066 (6)0.111 (7)0.085 (5)0.013 (5)0.012 (5)0.043 (5)
O10W0.092 (7)0.067 (5)0.083 (6)0.010 (5)0.021 (5)0.011 (4)
O110.017 (3)0.041 (3)0.015 (3)0.001 (3)0.004 (2)0.003 (2)
O11W0.025 (3)0.020 (3)0.021 (3)0.002 (2)0.002 (2)0.001 (2)
O120.027 (3)0.031 (3)0.018 (3)0.009 (3)0.003 (2)0.003 (2)
O12W0.025 (4)0.056 (4)0.034 (3)0.004 (3)0.001 (3)0.009 (3)
O130.026 (4)0.066 (4)0.027 (3)0.011 (3)0.008 (3)0.014 (3)
O140.021 (3)0.050 (4)0.039 (3)0.004 (3)0.003 (3)0.002 (3)
O150.048 (5)0.081 (5)0.021 (3)0.018 (4)0.012 (3)0.014 (3)
O160.030 (4)0.045 (4)0.029 (3)0.006 (3)0.005 (3)0.013 (3)
O210.012 (3)0.027 (3)0.021 (3)0.003 (2)0.000 (2)0.004 (2)
O220.017 (3)0.029 (3)0.021 (3)0.002 (2)0.006 (2)0.007 (2)
O230.019 (3)0.068 (5)0.037 (3)0.001 (3)0.007 (3)0.024 (3)
O240.027 (3)0.029 (3)0.017 (3)0.003 (3)0.002 (2)0.007 (2)
O250.020 (3)0.064 (4)0.020 (3)0.000 (3)0.005 (3)0.004 (3)
O260.023 (3)0.059 (4)0.017 (3)0.009 (3)0.002 (2)0.003 (3)
C110.019 (4)0.027 (4)0.018 (4)0.007 (4)0.001 (3)0.005 (3)
C120.020 (5)0.027 (4)0.014 (3)0.000 (3)0.001 (3)0.000 (3)
C130.019 (4)0.023 (4)0.024 (4)0.005 (4)0.000 (4)0.004 (3)
C140.025 (5)0.022 (4)0.025 (4)0.003 (4)0.010 (4)0.001 (3)
C150.032 (5)0.026 (4)0.015 (4)0.004 (4)0.002 (4)0.004 (3)
C160.020 (5)0.026 (4)0.023 (4)0.000 (4)0.006 (3)0.001 (3)
C170.030 (5)0.021 (4)0.021 (4)0.007 (4)0.003 (4)0.001 (3)
C180.024 (5)0.041 (5)0.024 (4)0.004 (4)0.002 (4)0.008 (4)
C190.042 (6)0.026 (5)0.027 (4)0.006 (4)0.006 (4)0.003 (4)
C210.011 (4)0.016 (4)0.015 (3)0.005 (3)0.000 (3)0.002 (3)
C220.016 (4)0.024 (4)0.019 (4)0.003 (3)0.002 (3)0.003 (3)
C230.012 (4)0.023 (4)0.017 (3)0.004 (3)0.000 (3)0.005 (3)
C240.015 (4)0.020 (4)0.015 (3)0.003 (3)0.005 (3)0.004 (3)
C250.025 (5)0.019 (4)0.012 (3)0.000 (3)0.000 (3)0.000 (3)
C260.015 (4)0.026 (4)0.013 (3)0.004 (3)0.008 (3)0.001 (3)
C270.017 (4)0.025 (4)0.013 (3)0.006 (3)0.004 (3)0.004 (3)
C280.026 (5)0.031 (5)0.019 (4)0.001 (4)0.011 (4)0.001 (3)
C290.021 (5)0.022 (4)0.027 (4)0.000 (4)0.006 (4)0.001 (3)
O13W0.127 (19)0.028 (17)0.059 (16)0.004 (15)0.020 (15)0.029 (13)
O14W0.08 (3)0.03 (2)0.16 (2)0.005 (19)0.038 (18)0.035 (17)
Geometric parameters (Å, º) top
Ni1—O26i1.995 (5)O11W—H11A0.9700
Ni1—O122.021 (4)O11W—H11B0.9700
Ni1—O12.021 (5)O12—C171.257 (8)
Ni1—O12W2.077 (5)O12W—H12B0.8200
Ni1—O4W2.098 (5)O12W—H12C0.9595
Ni1—O11W2.193 (5)O13—C181.265 (9)
Ni2—O222.011 (5)O14—C181.253 (8)
Ni2—O12.013 (4)O15—C191.260 (9)
Ni2—O25i2.016 (5)O16—C191.263 (10)
Ni2—O2W2.069 (5)O21—C271.273 (8)
Ni2—O5W2.106 (5)O22—C271.262 (8)
Ni2—O1W2.200 (5)O23—C281.262 (9)
Ni3—O11.989 (5)O24—C281.265 (8)
Ni3—O3W1.993 (5)O25—C291.241 (9)
Ni3—O212.088 (5)O25—Ni2ii2.016 (5)
Ni3—O112.099 (5)O26—C291.255 (8)
Ni3—O1W2.155 (4)O26—Ni1ii1.995 (5)
Ni3—O11W2.162 (5)C11—C121.385 (10)
Na1—O6W2.329 (7)C11—C161.403 (10)
Na1—O8W2.348 (6)C11—C171.516 (10)
Na1—O7W2.367 (6)C12—C131.388 (9)
Na1—O9W2.410 (8)C12—H12A0.9300
Na1—O5W2.616 (6)C13—C141.394 (10)
Na1—O4W2.744 (7)C13—C181.500 (10)
O1—H1A0.9800C14—C151.370 (11)
O1W—H1WA0.9700C14—H14A0.9300
O1W—H1WB0.9700C15—C161.401 (9)
O2W—H2WB0.8200C15—C191.505 (10)
O2W—H2WA0.8201C16—H16A0.9300
O3W—H3WB0.8200C21—C261.392 (9)
O3W—H3WA0.8201C21—C221.397 (9)
O4W—H4B0.8200C21—C271.494 (10)
O4W—H4A0.7223C22—C231.389 (10)
O5W—H5WA0.8200C22—H22A0.9300
O5W—H5WB0.9699C23—C241.379 (9)
O6W—H6WA0.8200C23—C281.502 (9)
O6W—H6WB0.8194C24—C251.400 (9)
O7W—H7WA0.8200C24—H24A0.9300
O7W—H7WB0.8199C25—C261.382 (10)
O8W—H8WB0.8200C25—C291.510 (9)
O8W—H8WA0.8200C26—H26A0.9300
O9W—H9WA0.8200O13W—O14W1.83 (4)
O9W—H9WB0.8197O13W—H13A0.8200
O10W—H10A0.8200O13W—H13B0.7389
O10W—H10B0.8363O14W—H14B0.8200
O11—C171.267 (9)O14W—H14C0.9557
O26i—Ni1—O12166.8 (2)H5WA—O5W—H5WB106.5
O26i—Ni1—O198.6 (2)Na1—O6W—H6WA108.9
O12—Ni1—O194.5 (2)Na1—O6W—H6WB109.6
O26i—Ni1—O12W82.3 (2)H6WA—O6W—H6WB129.8
O12—Ni1—O12W84.5 (2)Na1—O7W—H7WA109.4
O1—Ni1—O12W175.3 (2)Na1—O7W—H7WB108.9
O26i—Ni1—O4W87.7 (2)H7WA—O7W—H7WB109.9
O12—Ni1—O4W93.5 (2)Na1—O8W—H8WB109.5
O1—Ni1—O4W91.6 (2)Na1—O8W—H8WA109.7
O12W—Ni1—O4W93.1 (2)H8WB—O8W—H8WA109.6
O26i—Ni1—O11W95.1 (2)Na1—O9W—H9WA109.5
O12—Ni1—O11W85.39 (19)Na1—O9W—H9WB109.8
O1—Ni1—O11W80.59 (18)H9WA—O9W—H9WB109.7
O12W—Ni1—O11W94.7 (2)H10A—O10W—H10B97.0
O4W—Ni1—O11W172.0 (2)C17—O11—Ni3122.3 (5)
O22—Ni2—O192.37 (19)Ni3—O11W—Ni189.96 (17)
O22—Ni2—O25i170.2 (2)Ni3—O11W—H11A113.7
O1—Ni2—O25i96.6 (2)Ni1—O11W—H11A113.7
O22—Ni2—O2W85.9 (2)Ni3—O11W—H11B113.6
O1—Ni2—O2W173.7 (2)Ni1—O11W—H11B113.6
O25i—Ni2—O2W84.7 (2)H11A—O11W—H11B110.9
O22—Ni2—O5W88.2 (2)C17—O12—Ni1129.7 (5)
O1—Ni2—O5W91.67 (19)Ni1—O12W—H12B109.4
O25i—Ni2—O5W95.4 (2)Ni1—O12W—H12C109.2
O2W—Ni2—O5W94.4 (2)H12B—O12W—H12C109.4
O22—Ni2—O1W85.17 (19)C27—O21—Ni3123.1 (4)
O1—Ni2—O1W83.52 (18)C27—O22—Ni2128.3 (5)
O25i—Ni2—O1W92.0 (2)C29—O25—Ni2ii137.1 (5)
O2W—Ni2—O1W90.26 (19)C29—O26—Ni1ii133.7 (5)
O5W—Ni2—O1W171.62 (18)C12—C11—C16119.5 (7)
O1—Ni3—O3W169.2 (2)C12—C11—C17118.8 (7)
O1—Ni3—O2196.40 (19)C16—C11—C17121.5 (7)
O3W—Ni3—O2191.3 (2)C11—C12—C13121.4 (7)
O1—Ni3—O1195.68 (19)C11—C12—H12A119.3
O3W—Ni3—O1190.6 (2)C13—C12—H12A119.3
O21—Ni3—O1198.54 (19)C12—C13—C14118.5 (7)
O1—Ni3—O1W85.27 (18)C12—C13—C18121.2 (7)
O3W—Ni3—O1W88.06 (18)C14—C13—C18120.1 (7)
O21—Ni3—O1W83.95 (19)C15—C14—C13120.8 (7)
O11—Ni3—O1W177.2 (2)C15—C14—H14A119.6
O1—Ni3—O11W82.07 (18)C13—C14—H14A119.6
O3W—Ni3—O11W89.4 (2)C14—C15—C16120.7 (7)
O21—Ni3—O11W173.16 (18)C14—C15—C19119.3 (7)
O11—Ni3—O11W88.26 (19)C16—C15—C19119.9 (8)
O1W—Ni3—O11W89.27 (18)C15—C16—C11118.8 (7)
O6W—Na1—O8W178.1 (3)C15—C16—H16A120.6
O6W—Na1—O7W93.3 (2)C11—C16—H16A120.6
O8W—Na1—O7W88.6 (2)O12—C17—O11126.2 (7)
O6W—Na1—O9W91.3 (3)O12—C17—C11115.0 (7)
O8W—Na1—O9W88.3 (2)O11—C17—C11118.8 (7)
O7W—Na1—O9W93.7 (3)O14—C18—O13124.3 (8)
O6W—Na1—O5W85.5 (2)O14—C18—C13116.6 (7)
O8W—Na1—O5W92.6 (2)O13—C18—C13118.9 (7)
O7W—Na1—O5W174.8 (3)O15—C19—O16124.0 (8)
O9W—Na1—O5W91.4 (3)O15—C19—C15117.1 (8)
O6W—Na1—O4W88.7 (2)O16—C19—C15118.8 (7)
O8W—Na1—O4W91.7 (2)C26—C21—C22118.1 (7)
O7W—Na1—O4W83.4 (2)C26—C21—C27119.3 (6)
O9W—Na1—O4W177.1 (3)C22—C21—C27122.6 (6)
O5W—Na1—O4W91.47 (19)C23—C22—C21121.1 (7)
Ni3—O1—Ni298.5 (2)C23—C22—H22A119.5
Ni3—O1—Ni1100.3 (2)C21—C22—H22A119.5
Ni2—O1—Ni1125.0 (2)C24—C23—C22119.3 (7)
Ni3—O1—H1A110.4C24—C23—C28119.0 (7)
Ni2—O1—H1A110.4C22—C23—C28121.7 (6)
Ni1—O1—H1A110.4C23—C24—C25121.2 (7)
Ni3—O1W—Ni288.23 (17)C23—C24—H24A119.4
Ni3—O1W—H1WA114.0C25—C24—H24A119.4
Ni2—O1W—H1WA114.0C26—C25—C24118.3 (6)
Ni3—O1W—H1WB113.9C26—C25—C29122.2 (6)
Ni2—O1W—H1WB113.9C24—C25—C29119.5 (7)
H1WA—O1W—H1WB111.1C25—C26—C21122.0 (6)
Ni2—O2W—H2WB109.5C25—C26—H26A119.0
Ni2—O2W—H2WA109.3C21—C26—H26A119.0
H2WB—O2W—H2WA109.7O22—C27—O21124.9 (7)
Ni3—O3W—H3WB109.5O22—C27—C21116.1 (6)
Ni3—O3W—H3WA109.8O21—C27—C21118.9 (6)
H3WB—O3W—H3WA140.7O23—C28—O24125.0 (7)
Ni1—O4W—Na1116.1 (2)O23—C28—C23115.5 (7)
Ni1—O4W—H4B109.4O24—C28—C23119.4 (7)
Na1—O4W—H4B108.5O25—C29—O26127.0 (7)
Ni1—O4W—H4A121.1O25—C29—C25116.8 (7)
Na1—O4W—H4A99.9O26—C29—C25116.2 (7)
H4B—O4W—H4A100.2O14W—O13W—H13A108.6
Ni2—O5W—Na1117.4 (2)O14W—O13W—H13B95.1
Ni2—O5W—H5WA109.5H13A—O13W—H13B114.0
Na1—O5W—H5WA106.9O13W—O14W—H14B109.5
Ni2—O5W—H5WB108.0O13W—O14W—H14C78.0
Na1—O5W—H5WB108.0H14B—O14W—H14C85.1
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O8W0.981.832.807 (7)173
O1W—H1WA···O13iii0.971.902.797 (8)152
O1W—H1WB···O16iv0.971.702.596 (7)152
O1W—H1WB···O15iv0.972.573.438 (8)149
O2W—H2WB···O10Wv0.821.992.752 (9)155
O2W—H2WA···O9Wvi0.822.262.848 (8)130
O3W—H3WB···O10Wi0.822.312.872 (8)126
O3W—H3WA···O14iii0.821.882.601 (8)145
O4W—H4B···O15vii0.822.283.049 (8)157
O4W—H4A···O24viii0.722.042.757 (7)174
O5W—H5WA···O16viii0.822.032.818 (8)160
O5W—H5WB···O13vii0.971.882.772 (7)151
O6W—H6WB···O13vii0.822.453.153 (9)145
O7W—H7WA···O14ix0.822.102.841 (8)150
O7W—H7WB···O24viii0.821.962.778 (8)174
O8W—H8WB···O21viii0.822.172.838 (7)138
O8W—H8WA···O11viii0.822.072.821 (8)153
O9W—H9WA···O16viii0.822.122.909 (10)162
O9W—H9WB···O23v0.822.323.062 (9)150
O10W—H10A···O12Wvi0.822.142.764 (9)133
O10W—H10B···O15iii0.842.142.981 (10)177
O11W—H11A···O15iv0.971.712.659 (7)166
O11W—H11B···O24x0.971.742.693 (6)165
O12W—H12C···O7Wxi0.962.012.795 (7)138
O13W—H13A···O14ii0.821.992.79 (2)168
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+3/2, z; (iv) x, y+3/2, z+1/2; (v) x+3/2, y+1/2, z; (vi) x+1, y1/2, z+1/2; (vii) x+1/2, y+2, z+1/2; (viii) x+1, y+2, z; (ix) x+1/2, y+1/2, z; (x) x1/2, y+3/2, z; (xi) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Ni3Na(OH)(C9H3O6)2(H2O)11]·1.5H2O
Mr855.56
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)18.842 (5), 14.557 (4), 21.343 (6)
V3)5854 (3)
Z8
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.712, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
43629, 6693, 2994
Rint0.133
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.127, 0.89
No. of reflections6693
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.64

Computer programs: SMART (Siemens, 1994), SMART, XPREP (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O8W0.981.832.807 (7)173.3
O1W—H1WA···O13i0.971.902.797 (8)151.7
O1W—H1WB···O16ii0.971.702.596 (7)152.0
O2W—H2WB···O10Wiii0.821.992.752 (9)154.5
O4W—H4B···O15iv0.822.283.049 (8)156.5
O4W—H4A···O24v0.722.042.757 (7)173.7
O5W—H5WA···O16v0.822.032.818 (8)160.3
O5W—H5WB···O13iv0.971.882.772 (7)151.0
O7W—H7WA···O14vi0.822.102.841 (8)150.4
O7W—H7WB···O24v0.821.962.778 (8)174.0
O8W—H8WA···O11v0.822.072.821 (8)152.5
O9W—H9WA···O16v0.822.122.909 (10)162.0
O9W—H9WB···O23iii0.822.323.062 (9)150.0
O10W—H10B···O15i0.842.142.981 (10)177.2
O11W—H11A···O15ii0.971.712.659 (7)166.0
O11W—H11B···O24vii0.971.742.693 (6)165.1
O13W—H13A···O14viii0.821.992.79 (2)167.8
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x, y+3/2, z+1/2; (iii) x+3/2, y+1/2, z; (iv) x+1/2, y+2, z+1/2; (v) x+1, y+2, z; (vi) x+1/2, y+1/2, z; (vii) x1/2, y+3/2, z; (viii) x+1/2, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds