Download citation
Download citation
link to html
In the title compound, poly[μ2-2,3,5,6-tetra-2-pyridyl-1,4-dihydro­pyrazine-μ-hexa­cosa­oxidoocta­molybdato-dicopper(II)], [Cu2Mo8O26(C24H16N6)], the organic linker 2,3,5,6-tetra-2-pyridyl-1,4-dihydro­pyrazine (tpyprz) brings together four [Mo8O26]4− clusters through the cationic bridge [Cu2(tpyprz)]4+ to from a two-dimensional layer. The copper(II) cation is five-coordinate in a distorted square-pyramidal configuration, bonding to three N atoms from the tpyprz ligand and two terminal O atoms from the molybdenum cluster. The [Mo8O26]4− cluster shows bonding only through the terminal O atoms attached to the octa­hedrally coordinated Mo atom along the central axis of the cluster.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027390/br2040sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027390/br2040Isup2.hkl
Contains datablock I

CCDC reference: 654773

Key indicators

  • Single-crystal X-ray study
  • T = 90 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.027
  • wR factor = 0.062
  • Data-to-parameter ratio = 16.4

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT761_ALERT_1_A CIF Contains no X-H Bonds ...................... ? PLAT762_ALERT_1_A CIF Contains no X-Y-H or H-Y-H Angles .......... ?
Alert level B PLAT220_ALERT_2_B Large Non-Solvent O Ueq(max)/Ueq(min) ... 3.90 Ratio
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.95 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.68 Ratio PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.11 Ratio
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo1 (6) 5.92 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo2 (6) 5.75 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo3 (6) 5.99 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo4 (6) 5.85 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.27
2 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 5 ALERT type 5 Informative message, check

Comment top

Organic–inorganic hybrid materials represent an expanding class of materials characterized by broad compositional range and structural versatility (Greenwood & Earnshaw, 1984). Inorganic oxides possess properties that are useful in the design of materials including but not limited to optical, electronic, magnetic, and mechanical. However, rational synthesis of these materials still remains an elusive goal (Cockayne & Jones, 1972). The molecular building block approach is an established method for synthesis of these materials (Ferey, 2000).

In an ongoing research investigation of such hybrid materials compound 1, [{Cu2(tpyprz)}Mo8O26] was synthesized under mild hydrothermal conditions. This synthetic approach favors the formation of the {Mo5O15(RPO3)2}4- clusters; however, in this reaction the phosphonate does not incorporate, leaving only a molybdenum oxide cluster to act as the oxide building block. The ligand of choice, tetra-2-pyridylpyrazine (tpyprz), along with the appropriate transition metal, act as a bridge between two or more of these molybdenum clusters.

Compound 1 is a two-dimensional layer formed from {Mo8O26}4- clusters and {Cu2(tpyprz)}4+ bridging cationic units. The copper-tpyprz moiety is attached to four different molybdenum clusters creating stacked sheets of this continuous layer. Copper is five coordinate in a distorted square pyramidal configuration, bonding to three N atoms from one side of the tpyprz ligand and two terminal O atoms from the molybdenum cluster. A weak bond exsits between copper and the axial oxygen, Cu—O9 at 2.37 A, provides a good valence bond sum for the copper cation. The terminal O atoms on the molybdenum cluster, O9 and O10, are responsible for the expansion of the structure. The equatorial oxygen, O10, extends the structure into a one-dimensional chain. The axial oxygen, O9, lies perpendicular to the chain, connecting adjacent chains. It is interesting to note that O9 aligns above the tpyprz plane on one side and below on the other side; this alternating up-down positioning allows the expansion of the structure into a layer.

Related literature top

More information relating to the theory behind the building block approach can be found in an article published by Ferey (2000). Additional information related to the synthesis and structual details can be found in Zubieta & Rarig (2002). For related literature, see: Cockayne & Jones (1972); Greenwood & Earnshaw (1984).

Experimental top

Synthesis of [{Cu2(tpyprz)}Mo8O26] (1). A mixture of MoO3 (0.160 g, 1.11 mmol), Co(OCOCH3)2 (0.088 g, 0.441 mmol), tpypyz (0.086 g, 0.221 mmol), and H2O (10 g, 555 mmol) in the mole ratio 5.02:2.00:1.00:2511 was stirred briefly before heating to 453 K for 120 h. Light green plate like crystals of 1 were isolated in 45% yield: initial pH, 6; final pH, 3. IR (KBr pellet, cm-1): 3072(m, br), 2999(s), 1593(w), 1479(w), 1401(m), 1168(m), 1090(m), 1062(s), 952(s), 907(s), 739(s), 658(m).

Refinement top

H atoms were implemented geometrically using a riding constraint with a C—H fixed distance of 0.93 A and a Uiso of 1.2Ueq(C).

Structure description top

Organic–inorganic hybrid materials represent an expanding class of materials characterized by broad compositional range and structural versatility (Greenwood & Earnshaw, 1984). Inorganic oxides possess properties that are useful in the design of materials including but not limited to optical, electronic, magnetic, and mechanical. However, rational synthesis of these materials still remains an elusive goal (Cockayne & Jones, 1972). The molecular building block approach is an established method for synthesis of these materials (Ferey, 2000).

In an ongoing research investigation of such hybrid materials compound 1, [{Cu2(tpyprz)}Mo8O26] was synthesized under mild hydrothermal conditions. This synthetic approach favors the formation of the {Mo5O15(RPO3)2}4- clusters; however, in this reaction the phosphonate does not incorporate, leaving only a molybdenum oxide cluster to act as the oxide building block. The ligand of choice, tetra-2-pyridylpyrazine (tpyprz), along with the appropriate transition metal, act as a bridge between two or more of these molybdenum clusters.

Compound 1 is a two-dimensional layer formed from {Mo8O26}4- clusters and {Cu2(tpyprz)}4+ bridging cationic units. The copper-tpyprz moiety is attached to four different molybdenum clusters creating stacked sheets of this continuous layer. Copper is five coordinate in a distorted square pyramidal configuration, bonding to three N atoms from one side of the tpyprz ligand and two terminal O atoms from the molybdenum cluster. A weak bond exsits between copper and the axial oxygen, Cu—O9 at 2.37 A, provides a good valence bond sum for the copper cation. The terminal O atoms on the molybdenum cluster, O9 and O10, are responsible for the expansion of the structure. The equatorial oxygen, O10, extends the structure into a one-dimensional chain. The axial oxygen, O9, lies perpendicular to the chain, connecting adjacent chains. It is interesting to note that O9 aligns above the tpyprz plane on one side and below on the other side; this alternating up-down positioning allows the expansion of the structure into a layer.

More information relating to the theory behind the building block approach can be found in an article published by Ferey (2000). Additional information related to the synthesis and structual details can be found in Zubieta & Rarig (2002). For related literature, see: Cockayne & Jones (1972); Greenwood & Earnshaw (1984).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b) and CrystalMaker (CrystalMaker Software 2007); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. - ORTEP drawing of anionic molybdenum cluster [Mo8O26]4- and the cationic [Cu2(tpyprz)]4+ unit of the title compound (1), showing 50% probability displacement ellipsoids. H atoms omitted for clarity.
[Figure 2] Fig. 2. - Polyhedral representation of a single layer for compound 1. Cu atoms represented by dark blue polyhedra, Mo by green polyhedra, N by light blue, and C by black. H atoms ommitted for clarity.
[Figure 3] Fig. 3. - Polyhedral representation of three stacking layers of 1, forming a two-dimensional layer structure.
poly[µ2-2,3,5,6-tetra-2-pyridyl-1,4-dihydropyrazine-µ- hexacosaoxidooctamolybdato-dicopper(II)] top
Crystal data top
[Cu2Mo8O26(C24H16N6)]Z = 2
Mr = 849.51F(000) = 804
Triclinic, P1Dx = 2.851 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9920 (7) ÅCell parameters from 4896 reflections
b = 10.0882 (7) Åθ = 1.9–28.3°
c = 11.1708 (8) ŵ = 3.60 mm1
α = 78.380 (8)°T = 90 K
β = 76.815 (9)°Plate, green
γ = 65.419 (5)°0.24 × 0.16 × 0.14 mm
V = 989.75 (12) Å3
Data collection top
Bruker APEX CCD detector
diffractometer
4896 independent reflections
Radiation source: fine-focus sealed tube4307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 512 pixels mm-1θmax = 28.3°, θmin = 1.9°
φ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.479, Tmax = 0.633l = 1414
10578 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0291P)2 + 2.178P]
where P = (Fo2 + 2Fc2)/3
4896 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Cu2Mo8O26(C24H16N6)]γ = 65.419 (5)°
Mr = 849.51V = 989.75 (12) Å3
Triclinic, P1Z = 2
a = 9.9920 (7) ÅMo Kα radiation
b = 10.0882 (7) ŵ = 3.60 mm1
c = 11.1708 (8) ÅT = 90 K
α = 78.380 (8)°0.24 × 0.16 × 0.14 mm
β = 76.815 (9)°
Data collection top
Bruker APEX CCD detector
diffractometer
4896 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4307 reflections with I > 2σ(I)
Tmin = 0.479, Tmax = 0.633Rint = 0.025
10578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 0.94Δρmax = 0.80 e Å3
4896 reflectionsΔρmin = 0.89 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.77935 (3)0.61288 (3)0.79284 (3)0.01016 (7)
Mo20.88214 (3)0.41297 (3)0.55817 (3)0.00797 (7)
Mo30.73644 (3)0.77007 (3)0.46269 (3)0.00746 (7)
Mo40.92292 (3)0.68237 (3)0.17919 (3)0.01363 (8)
Cu10.36121 (4)0.82861 (5)0.45710 (4)0.00889 (9)
O10.6347 (3)0.5844 (3)0.8909 (2)0.0187 (6)
O20.7496 (4)0.7901 (3)0.7984 (3)0.0280 (7)
O30.9513 (3)0.5148 (3)0.8652 (2)0.0153 (5)
O40.8896 (3)0.3842 (3)0.7297 (2)0.0101 (5)
O50.7276 (3)0.3837 (3)0.5533 (2)0.0126 (5)
O60.7559 (3)0.6323 (2)0.6213 (2)0.0094 (5)
O71.0337 (3)0.2564 (3)0.5070 (2)0.0104 (5)
O80.8961 (3)0.5515 (3)0.4189 (2)0.0104 (5)
O90.6673 (3)0.9306 (3)0.5254 (2)0.0121 (5)
O100.5772 (3)0.7536 (3)0.4371 (2)0.0103 (5)
O110.8197 (3)0.8207 (3)0.3041 (2)0.0103 (5)
O130.9652 (3)0.7952 (3)0.0572 (3)0.0260 (7)
N10.3303 (3)0.8814 (3)0.2808 (3)0.0100 (6)
N20.1442 (3)0.9181 (3)0.4810 (3)0.0076 (5)
N30.3167 (3)0.7618 (3)0.6371 (3)0.0097 (6)
C10.4353 (4)0.8375 (4)0.1833 (3)0.0169 (8)
H10.53490.79820.19350.020*
C20.4015 (5)0.8481 (5)0.0670 (4)0.0230 (9)
H20.47700.81960.00040.028*
C30.2537 (5)0.9018 (4)0.0535 (4)0.0203 (8)
H30.22830.90480.02240.024*
C40.1424 (4)0.9517 (4)0.1543 (3)0.0133 (7)
H40.04210.98930.14660.016*
C50.1848 (4)0.9439 (3)0.2650 (3)0.0095 (6)
C60.0799 (4)0.9875 (4)0.3812 (3)0.0086 (6)
C70.0729 (4)0.9208 (4)0.5985 (3)0.0086 (6)
C80.1688 (4)0.8103 (4)0.6846 (3)0.0094 (6)
C90.1152 (4)0.7432 (4)0.7943 (3)0.0109 (7)
H90.01350.77570.82440.013*
C100.2172 (4)0.6257 (4)0.8587 (3)0.0130 (7)
H100.18390.57870.93250.016*
C110.3657 (4)0.5803 (4)0.8129 (3)0.0151 (7)
H110.43490.50370.85600.018*
C120.4123 (4)0.6499 (4)0.7008 (3)0.0139 (7)
H120.51360.61750.66900.017*
O120.7658 (3)0.6700 (4)0.1582 (3)0.0368 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01090 (15)0.01001 (14)0.00936 (14)0.00350 (11)0.00285 (11)0.00054 (11)
Mo20.00654 (14)0.00650 (13)0.01088 (14)0.00218 (11)0.00178 (11)0.00146 (10)
Mo30.00551 (13)0.00683 (13)0.00904 (14)0.00141 (11)0.00132 (10)0.00081 (10)
Mo40.00738 (14)0.01504 (16)0.01633 (16)0.00004 (12)0.00278 (12)0.00587 (12)
Cu10.00514 (19)0.0108 (2)0.0090 (2)0.00178 (16)0.00113 (16)0.00028 (15)
O10.0112 (13)0.0305 (16)0.0132 (13)0.0066 (11)0.0002 (10)0.0051 (11)
O20.048 (2)0.0129 (14)0.0300 (17)0.0112 (13)0.0254 (15)0.0020 (12)
O30.0087 (12)0.0176 (13)0.0192 (14)0.0011 (10)0.0030 (10)0.0093 (11)
O40.0099 (12)0.0106 (12)0.0093 (12)0.0034 (9)0.0017 (9)0.0006 (9)
O50.0097 (12)0.0122 (12)0.0155 (13)0.0035 (10)0.0032 (10)0.0016 (10)
O60.0093 (12)0.0081 (11)0.0089 (11)0.0020 (9)0.0020 (9)0.0005 (9)
O70.0079 (11)0.0087 (11)0.0148 (12)0.0033 (9)0.0012 (10)0.0024 (9)
O80.0079 (11)0.0094 (11)0.0132 (12)0.0023 (9)0.0023 (10)0.0013 (9)
O90.0107 (12)0.0090 (12)0.0158 (13)0.0024 (10)0.0026 (10)0.0020 (10)
O100.0079 (11)0.0113 (12)0.0113 (12)0.0035 (9)0.0029 (9)0.0007 (9)
O110.0088 (12)0.0073 (11)0.0115 (12)0.0014 (9)0.0004 (10)0.0008 (9)
O130.0285 (16)0.0223 (15)0.0112 (13)0.0046 (12)0.0027 (12)0.0002 (11)
N10.0091 (14)0.0087 (14)0.0108 (14)0.0026 (11)0.0004 (11)0.0009 (11)
N20.0065 (13)0.0065 (13)0.0116 (14)0.0043 (10)0.0011 (11)0.0012 (11)
N30.0094 (14)0.0112 (14)0.0090 (14)0.0049 (11)0.0017 (11)0.0002 (11)
C10.0086 (17)0.0187 (19)0.0147 (18)0.0018 (14)0.0006 (14)0.0014 (15)
C20.016 (2)0.026 (2)0.0154 (19)0.0017 (16)0.0005 (16)0.0039 (16)
C30.024 (2)0.021 (2)0.0107 (18)0.0005 (16)0.0056 (16)0.0048 (15)
C40.0117 (17)0.0105 (16)0.0159 (18)0.0015 (13)0.0046 (14)0.0010 (13)
C50.0085 (16)0.0043 (14)0.0133 (17)0.0010 (12)0.0013 (13)0.0005 (12)
C60.0070 (15)0.0086 (15)0.0106 (16)0.0031 (12)0.0019 (13)0.0009 (12)
C70.0089 (16)0.0072 (15)0.0131 (16)0.0054 (13)0.0039 (13)0.0015 (12)
C80.0073 (16)0.0109 (16)0.0122 (16)0.0048 (13)0.0026 (13)0.0023 (13)
C90.0091 (16)0.0122 (16)0.0111 (16)0.0040 (13)0.0014 (13)0.0017 (13)
C100.0144 (18)0.0127 (17)0.0118 (17)0.0049 (14)0.0032 (14)0.0008 (13)
C110.0138 (18)0.0121 (17)0.0169 (18)0.0028 (14)0.0069 (15)0.0040 (14)
C120.0061 (16)0.0132 (17)0.0211 (19)0.0027 (13)0.0035 (14)0.0003 (14)
O120.0107 (14)0.0404 (19)0.063 (2)0.0013 (13)0.0092 (15)0.0364 (18)
Geometric parameters (Å, º) top
Mo1—O11.694 (3)Cu1—N31.998 (3)
Mo1—O21.698 (3)Cu1—O9ii2.368 (2)
Mo1—O31.866 (3)O3—Mo4i1.954 (3)
Mo1—O61.944 (2)O4—Mo4i2.132 (2)
Mo1—O42.285 (2)O7—Mo3i2.296 (2)
Mo2—O51.703 (2)O8—Mo2i2.462 (2)
Mo2—O71.759 (2)O9—Cu1ii2.368 (2)
Mo2—O81.892 (2)N1—C11.330 (5)
Mo2—O41.893 (2)N1—C51.361 (4)
Mo2—O62.210 (2)N2—C61.335 (4)
Mo2—O8i2.462 (2)N2—C71.343 (4)
Mo3—O91.702 (2)N3—C121.335 (4)
Mo3—O101.757 (2)N3—C81.360 (4)
Mo3—O111.846 (2)C1—C21.389 (5)
Mo3—O62.012 (2)C2—C31.379 (6)
Mo3—O82.190 (2)C3—C41.396 (5)
Mo3—O7i2.296 (2)C4—C51.374 (5)
Mo4—O131.686 (3)C5—C61.485 (5)
Mo4—O121.696 (3)C6—C7iii1.411 (5)
Mo4—O3i1.954 (3)C7—C6iii1.411 (5)
Mo4—O111.972 (2)C7—C81.478 (5)
Mo4—O4i2.132 (2)C8—C91.384 (5)
Cu1—O101.942 (2)C9—C101.395 (5)
Cu1—N21.948 (3)C10—C111.363 (5)
Cu1—N11.994 (3)C11—C121.389 (5)
O1—Mo1—O2105.33 (15)N2—Cu1—N180.29 (12)
O1—Mo1—O3108.95 (12)O10—Cu1—N399.31 (11)
O2—Mo1—O3100.57 (13)N2—Cu1—N380.51 (12)
O1—Mo1—O6110.97 (11)N1—Cu1—N3156.47 (12)
O2—Mo1—O697.97 (12)O10—Cu1—O9ii93.15 (9)
O3—Mo1—O6129.13 (11)N2—Cu1—O9ii82.34 (10)
O1—Mo1—O496.02 (11)N1—Cu1—O9ii92.50 (10)
O2—Mo1—O4158.56 (13)N3—Cu1—O9ii98.29 (10)
O3—Mo1—O473.73 (10)Mo1—O3—Mo4i116.04 (13)
O6—Mo1—O471.98 (9)Mo2—O4—Mo4i129.26 (12)
O5—Mo2—O7105.04 (11)Mo2—O4—Mo1105.88 (10)
O5—Mo2—O8105.02 (11)Mo4i—O4—Mo194.31 (9)
O7—Mo2—O899.35 (11)Mo1—O6—Mo3143.27 (13)
O5—Mo2—O4103.33 (11)Mo1—O6—Mo2106.96 (10)
O7—Mo2—O4101.78 (11)Mo3—O6—Mo2103.63 (10)
O8—Mo2—O4138.54 (10)Mo2—O7—Mo3i115.98 (12)
O5—Mo2—O694.74 (10)Mo2—O8—Mo3108.69 (11)
O7—Mo2—O6160.16 (10)Mo2—O8—Mo2i101.18 (10)
O8—Mo2—O673.47 (9)Mo3—O8—Mo2i95.55 (9)
O4—Mo2—O674.62 (9)Mo3—O9—Cu1ii156.88 (14)
O5—Mo2—O8i175.91 (10)Mo3—O10—Cu1148.28 (15)
O7—Mo2—O8i75.43 (9)Mo3—O11—Mo4123.85 (12)
O8—Mo2—O8i78.82 (10)C1—N1—C5118.8 (3)
O4—Mo2—O8i72.65 (9)C1—N1—Cu1125.4 (2)
O6—Mo2—O8i84.96 (8)C5—N1—Cu1114.5 (2)
O9—Mo3—O10103.92 (12)C6—N2—C7125.2 (3)
O9—Mo3—O11102.31 (11)C6—N2—Cu1117.5 (2)
O10—Mo3—O11102.10 (11)C7—N2—Cu1116.7 (2)
O9—Mo3—O698.04 (11)C12—N3—C8118.8 (3)
O10—Mo3—O695.09 (10)C12—N3—Cu1124.7 (2)
O11—Mo3—O6149.19 (10)C8—N3—Cu1114.2 (2)
O9—Mo3—O8157.58 (11)N1—C1—C2122.3 (3)
O10—Mo3—O896.96 (10)C3—C2—C1118.5 (4)
O11—Mo3—O880.86 (10)C2—C3—C4119.7 (4)
O6—Mo3—O871.74 (9)C5—C4—C3118.3 (3)
O9—Mo3—O7i86.65 (10)N1—C5—C4122.1 (3)
O10—Mo3—O7i168.87 (10)N1—C5—C6113.1 (3)
O11—Mo3—O7i78.61 (10)C4—C5—C6124.6 (3)
O6—Mo3—O7i79.76 (9)N2—C6—C7iii117.3 (3)
O8—Mo3—O7i72.10 (9)N2—C6—C5111.5 (3)
O13—Mo4—O12106.36 (17)C7iii—C6—C5131.0 (3)
O13—Mo4—O3i104.35 (13)N2—C7—C6iii117.3 (3)
O12—Mo4—O3i92.74 (13)N2—C7—C8111.7 (3)
O13—Mo4—O11100.43 (12)C6iii—C7—C8130.6 (3)
O12—Mo4—O1194.88 (12)N3—C8—C9121.6 (3)
O3i—Mo4—O11150.80 (10)N3—C8—C7113.6 (3)
O13—Mo4—O4i100.53 (13)C9—C8—C7124.0 (3)
O12—Mo4—O4i152.68 (15)C8—C9—C10118.5 (3)
O3i—Mo4—O4i75.76 (10)C11—C10—C9119.7 (3)
O11—Mo4—O4i84.80 (10)C10—C11—C12119.1 (3)
O10—Cu1—N2175.40 (11)N3—C12—C11122.3 (3)
O10—Cu1—N1100.91 (11)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Mo8O26(C24H16N6)]
Mr849.51
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)9.9920 (7), 10.0882 (7), 11.1708 (8)
α, β, γ (°)78.380 (8), 76.815 (9), 65.419 (5)
V3)989.75 (12)
Z2
Radiation typeMo Kα
µ (mm1)3.60
Crystal size (mm)0.24 × 0.16 × 0.14
Data collection
DiffractometerBruker APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.479, 0.633
No. of measured, independent and
observed [I > 2σ(I)] reflections
10578, 4896, 4307
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.062, 0.94
No. of reflections4896
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.89

Computer programs: SMART (Bruker, 2001), SMART, SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b) and CrystalMaker (CrystalMaker Software 2007), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds