Download citation
Download citation
link to html
The title compound, [Cu(C11H13Cl2N2O)(N3)]n, is an azide-bridged polymeric copper(II) complex. The Cu atom is penta­coordinated by one O and two N atoms of the Schiff base ligand and two bridging N atoms from two azide groups, forming a trigonal–bipyramidal geometry. The structure is further stabilized by an N—H...O hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026591/bt2379sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026591/bt2379Isup2.hkl
Contains datablock I

CCDC reference: 654708

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.038
  • wR factor = 0.089
  • Data-to-parameter ratio = 17.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ?
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 1.96 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Metal-organic compounds play an important role in the development of coordination chemistry related to magnetism and molecular architectures (Eshel et al., 2000; Jiang et al., 2005; Escuer et al., 2000; El-Behairy et al., 1997; Manhas et al., 2005). We have recently reported a few transition metal complexes (Diao, 2007a,b). As an extension of the work on the crystal structures of such complexes, we report herein the crystal structure of the title complex.

The title compound is an azide-bridged polynuclear copper(II) complex. Each copper atom is pentacoordinated by one O and two N atoms of the Schiff base ligand and two bridging N atoms from two azide groups, forming a trigonal bipyramidal geometry. The structure is further stabilized by an N—H···O hydrogen bond.

Related literature top

For related literature, see: Diao (2007a, 2007b); El-Behairy et al. (1997); Escuer et al. (2000); Eshel et al. (2000); Jiang et al. (2005); Manhas et al. (2005).

Experimental top

3,5-Dichlorosalicylaldehyde (0.1 mmol, 19.0 mg), N-ethylethane-1,2-diamine (0.1 mmol, 8.8 mg), sodium azide (0.1 mmol, 6.5 mg), and copper acetate (0.1 mmol, 20.0 mg) were dissolved in a methanol solution (20 ml). The mixture was stirred for half an hour at room temperature, giving a blue solution. After allowing the solution to stand in air for a week, blue needle-like crystals were formed.

Refinement top

The amino H atom was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The remaining H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C–H = 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Structure description top

Metal-organic compounds play an important role in the development of coordination chemistry related to magnetism and molecular architectures (Eshel et al., 2000; Jiang et al., 2005; Escuer et al., 2000; El-Behairy et al., 1997; Manhas et al., 2005). We have recently reported a few transition metal complexes (Diao, 2007a,b). As an extension of the work on the crystal structures of such complexes, we report herein the crystal structure of the title complex.

The title compound is an azide-bridged polynuclear copper(II) complex. Each copper atom is pentacoordinated by one O and two N atoms of the Schiff base ligand and two bridging N atoms from two azide groups, forming a trigonal bipyramidal geometry. The structure is further stabilized by an N—H···O hydrogen bond.

For related literature, see: Diao (2007a, 2007b); El-Behairy et al. (1997); Escuer et al. (2000); Eshel et al. (2000); Jiang et al. (2005); Manhas et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
catena-Poly[[{2,4-dichloro-6-[2- (ethylamino)ethyliminomethyl]phenolato}copper(II)]-µ-azido] top
Crystal data top
[Cu(C11H13Cl2N2O)(N3)]F(000) = 740
Mr = 365.70Dx = 1.612 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0767 (18) ÅCell parameters from 2549 reflections
b = 22.897 (4) Åθ = 2.4–25.1°
c = 7.2953 (14) ŵ = 1.81 mm1
β = 96.448 (3)°T = 298 K
V = 1506.6 (5) Å3Needle, blue
Z = 40.34 × 0.10 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3287 independent reflections
Radiation source: fine-focus sealed tube2564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.579, Tmax = 0.884k = 2729
12541 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0367P)2 + 0.4196P]
where P = (Fo2 + 2Fc2)/3
3287 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.33 e Å3
1 restraintΔρmin = 0.39 e Å3
Crystal data top
[Cu(C11H13Cl2N2O)(N3)]V = 1506.6 (5) Å3
Mr = 365.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0767 (18) ŵ = 1.81 mm1
b = 22.897 (4) ÅT = 298 K
c = 7.2953 (14) Å0.34 × 0.10 × 0.07 mm
β = 96.448 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3287 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2564 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 0.884Rint = 0.045
12541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.33 e Å3
3287 reflectionsΔρmin = 0.39 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.09615 (4)0.257917 (13)0.30458 (4)0.03101 (12)
Cl10.09232 (11)0.04857 (4)0.36375 (15)0.0727 (3)
Cl20.65892 (15)0.03398 (6)0.2224 (2)0.1229 (5)
O10.1433 (2)0.17315 (8)0.3618 (3)0.0414 (5)
N10.3197 (3)0.27140 (10)0.3065 (3)0.0410 (6)
N20.0927 (3)0.35075 (11)0.2526 (3)0.0474 (6)
N30.0139 (3)0.26061 (10)0.5403 (3)0.0374 (5)
N40.1446 (3)0.26976 (12)0.5340 (3)0.0500 (6)
N50.2703 (4)0.27769 (19)0.5282 (5)0.0922 (12)
C10.2593 (3)0.14407 (12)0.3292 (4)0.0379 (6)
C20.2569 (4)0.08268 (13)0.3269 (4)0.0486 (8)
C30.3771 (4)0.04916 (15)0.2956 (5)0.0647 (10)
H30.37040.00860.29530.078*
C40.5069 (4)0.07609 (17)0.2650 (5)0.0664 (10)
C50.5183 (4)0.13493 (16)0.2671 (4)0.0568 (9)
H50.60780.15240.24810.068*
C60.3963 (3)0.17011 (13)0.2977 (4)0.0431 (7)
C70.4186 (3)0.23208 (14)0.2918 (4)0.0443 (7)
H70.51350.24500.27580.053*
C80.3617 (4)0.33280 (14)0.2894 (4)0.0521 (8)
H8A0.38200.34070.16400.062*
H8B0.45100.34090.37150.062*
C90.2379 (4)0.37133 (14)0.3377 (4)0.0575 (9)
H9A0.23800.37220.47070.069*
H9B0.25430.41080.29650.069*
C100.0293 (5)0.38750 (15)0.3046 (6)0.0739 (11)
H10A0.00440.42830.28950.089*
H10B0.04080.38110.43360.089*
C110.1735 (5)0.3744 (2)0.1897 (7)0.0940 (14)
H11A0.16380.38220.06240.141*
H11B0.25030.39850.22950.141*
H11C0.19840.33400.20390.141*
H20.096 (4)0.3509 (15)0.1300 (16)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0379 (2)0.02888 (18)0.02698 (18)0.00013 (14)0.00675 (13)0.00008 (13)
Cl10.0856 (7)0.0403 (5)0.0954 (7)0.0123 (4)0.0246 (6)0.0038 (4)
Cl20.0975 (9)0.1071 (10)0.1697 (14)0.0592 (8)0.0405 (9)0.0002 (9)
O10.0449 (11)0.0359 (11)0.0453 (12)0.0020 (9)0.0131 (9)0.0008 (9)
N10.0477 (15)0.0430 (14)0.0318 (13)0.0116 (11)0.0026 (11)0.0025 (10)
N20.0741 (19)0.0333 (13)0.0351 (13)0.0037 (12)0.0076 (13)0.0022 (11)
N30.0378 (13)0.0441 (14)0.0309 (12)0.0041 (11)0.0059 (10)0.0006 (10)
N40.0478 (17)0.0660 (18)0.0370 (15)0.0028 (13)0.0084 (12)0.0010 (12)
N50.048 (2)0.158 (4)0.071 (2)0.014 (2)0.0125 (17)0.010 (2)
C10.0446 (17)0.0406 (16)0.0283 (14)0.0012 (13)0.0028 (12)0.0002 (11)
C20.062 (2)0.0419 (18)0.0428 (18)0.0077 (15)0.0109 (15)0.0007 (13)
C30.085 (3)0.046 (2)0.063 (2)0.0216 (19)0.009 (2)0.0015 (17)
C40.068 (2)0.063 (2)0.070 (2)0.0281 (19)0.0153 (19)0.0048 (19)
C50.0442 (19)0.074 (3)0.053 (2)0.0082 (17)0.0066 (15)0.0076 (17)
C60.0472 (17)0.0504 (18)0.0317 (16)0.0031 (14)0.0039 (13)0.0021 (13)
C70.0381 (17)0.061 (2)0.0341 (16)0.0048 (14)0.0043 (13)0.0023 (14)
C80.068 (2)0.0487 (19)0.0376 (17)0.0207 (16)0.0047 (15)0.0057 (14)
C90.095 (3)0.0362 (17)0.0384 (17)0.0140 (17)0.0072 (17)0.0004 (13)
C100.103 (3)0.0378 (19)0.085 (3)0.016 (2)0.029 (2)0.0015 (18)
C110.087 (3)0.078 (3)0.120 (4)0.031 (3)0.024 (3)0.020 (3)
Geometric parameters (Å, º) top
Cu1—O12.0209 (19)C3—C41.371 (5)
Cu1—N12.051 (2)C3—H30.9300
Cu1—N32.085 (2)C4—C51.351 (5)
Cu1—N3i2.112 (2)C5—C61.408 (4)
Cu1—N22.159 (2)C5—H50.9300
Cl1—C21.733 (3)C6—C71.435 (4)
Cl2—C41.740 (3)C7—H70.9300
O1—C11.290 (3)C8—C91.502 (5)
N1—C71.284 (4)C8—H8A0.9700
N1—C81.466 (4)C8—H8B0.9700
N2—C91.469 (4)C9—H9A0.9700
N2—C101.474 (4)C9—H9B0.9700
N2—H20.899 (10)C10—C111.503 (6)
N3—N41.201 (3)C10—H10A0.9700
N3—Cu1ii2.112 (2)C10—H10B0.9700
N4—N51.151 (4)C11—H11A0.9600
C1—C21.406 (4)C11—H11B0.9600
C1—C61.421 (4)C11—H11C0.9600
C2—C31.373 (4)
O1—Cu1—N187.52 (9)C3—C4—Cl2119.6 (3)
O1—Cu1—N388.17 (8)C4—C5—C6120.8 (3)
N1—Cu1—N3123.73 (9)C4—C5—H5119.6
O1—Cu1—N3i93.61 (8)C6—C5—H5119.6
N1—Cu1—N3i113.73 (9)C5—C6—C1120.3 (3)
N3—Cu1—N3i122.53 (11)C5—C6—C7116.4 (3)
O1—Cu1—N2168.65 (9)C1—C6—C7123.3 (3)
N1—Cu1—N281.24 (10)N1—C7—C6126.0 (3)
N3—Cu1—N296.73 (9)N1—C7—H7117.0
N3i—Cu1—N292.37 (9)C6—C7—H7117.0
C1—O1—Cu1128.01 (17)N1—C8—C9109.5 (3)
C7—N1—C8118.3 (3)N1—C8—H8A109.8
C7—N1—Cu1126.5 (2)C9—C8—H8A109.8
C8—N1—Cu1114.2 (2)N1—C8—H8B109.8
C9—N2—C10111.8 (3)C9—C8—H8B109.8
C9—N2—Cu1104.29 (18)H8A—C8—H8B108.2
C10—N2—Cu1120.9 (2)N2—C9—C8111.8 (2)
C9—N2—H2107 (2)N2—C9—H9A109.3
C10—N2—H2111 (2)C8—C9—H9A109.3
Cu1—N2—H2100 (2)N2—C9—H9B109.3
N4—N3—Cu1122.42 (19)C8—C9—H9B109.3
N4—N3—Cu1ii115.75 (19)H9A—C9—H9B107.9
Cu1—N3—Cu1ii121.73 (11)N2—C10—C11112.0 (3)
N5—N4—N3179.0 (4)N2—C10—H10A109.2
O1—C1—C2120.4 (3)C11—C10—H10A109.2
O1—C1—C6124.1 (3)N2—C10—H10B109.2
C2—C1—C6115.5 (3)C11—C10—H10B109.2
C3—C2—C1123.3 (3)H10A—C10—H10B107.9
C3—C2—Cl1119.2 (3)C10—C11—H11A109.5
C1—C2—Cl1117.4 (2)C10—C11—H11B109.5
C4—C3—C2119.3 (3)H11A—C11—H11B109.5
C4—C3—H3120.4C10—C11—H11C109.5
C2—C3—H3120.4H11A—C11—H11C109.5
C5—C4—C3120.8 (3)H11B—C11—H11C109.5
C5—C4—Cl2119.6 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.90 (1)2.12 (2)2.989 (3)162 (3)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C11H13Cl2N2O)(N3)]
Mr365.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.0767 (18), 22.897 (4), 7.2953 (14)
β (°) 96.448 (3)
V3)1506.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.81
Crystal size (mm)0.34 × 0.10 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.579, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
12541, 3287, 2564
Rint0.045
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.02
No. of reflections3287
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.39

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.899 (10)2.121 (15)2.989 (3)162 (3)
Symmetry code: (i) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds