Download citation
Download citation
link to html
The title compound, C10H7NO2, crystallizes with three mol­ecules in the asymmetric unit; these are linked by O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702658X/bt2386sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702658X/bt2386Isup2.hkl
Contains datablock I

CCDC reference: 654875

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.050
  • wR factor = 0.134
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.07 Ratio PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.08 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.38 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Non-covalent interactions, such as hydrogen bonding, π-π stacking and C—H···π interactions, play a dominant role in supramolecular self-assembly (Casnati et al., 2003; Ghosh & Bharadwaj, 2004; Glidewell et al., 2005; Jennings et al., 2001). In order to further understand supramolecular self-assembly through non-covalent interactions, we have synthesized the title compound following a published procedure (Padbury and Lindwall, 1945). It is used as a material in the synthesis of organic metal compounds (You & Park, 2005; Kwon et al., 2005; Carlton & Molapisi, 2000; Smith et al., 1995).

Bond lengths and angles in (I) are normal. Compound (I) crystallizes in the triclinic space group P-1 with Z'=3. In (I), the three isoquinoline rings in the asymmetric unit are approximately planar, with maximum deviations of -0.014 (7) Å for atom C1 in N1/C1—C9 ring, 0.017 (6) Å for atom C2A in N1A/C1A—C9A ring and 0.022 (6) Å for atom C6B in N1B/C1B—C9B ring (Fig. 1). The torsion angles between the pyridine rings and carboxyl groups of three molecules in asymmetric unit are different. The N1—C1—C10—O1 torsion angle is -13.3 (2)°. However, the N1A—C1A—C10A—O1A and N1B—C1B—C10B—O1B are 36.17 (19) and -34.1 (2)°, respectively. The crystal packing is stabilized by O—H···N hydrogen bonds (Table 1).

Related literature top

For related literature, see: Carlton & Molapisi (2000); Casnati et al. (2003); Ghosh & Bharadwaj (2004); Glidewell et al. (2005); Jennings et al. (2001); Kwon et al. (2005); Padbury & Lindwall (1945); Smith et al. (1995); You & Park (2005).

Experimental top

The title compound was prepared following a published procedure (Padbury and Lindwall, 1945). Colorless single crystals suitable for X-ray diffraction were obtained by recrystallization from dimethylsulfoxide.

Refinement top

O-bound H atoms were located in a difference Fourier map and refined isotropically. The C-bound H atoms were placed in calculated positions, with C—H = 0.95 Å, and refined using a riding model, and with Uiso(H) value of 1.2Ueq(C).

Structure description top

Non-covalent interactions, such as hydrogen bonding, π-π stacking and C—H···π interactions, play a dominant role in supramolecular self-assembly (Casnati et al., 2003; Ghosh & Bharadwaj, 2004; Glidewell et al., 2005; Jennings et al., 2001). In order to further understand supramolecular self-assembly through non-covalent interactions, we have synthesized the title compound following a published procedure (Padbury and Lindwall, 1945). It is used as a material in the synthesis of organic metal compounds (You & Park, 2005; Kwon et al., 2005; Carlton & Molapisi, 2000; Smith et al., 1995).

Bond lengths and angles in (I) are normal. Compound (I) crystallizes in the triclinic space group P-1 with Z'=3. In (I), the three isoquinoline rings in the asymmetric unit are approximately planar, with maximum deviations of -0.014 (7) Å for atom C1 in N1/C1—C9 ring, 0.017 (6) Å for atom C2A in N1A/C1A—C9A ring and 0.022 (6) Å for atom C6B in N1B/C1B—C9B ring (Fig. 1). The torsion angles between the pyridine rings and carboxyl groups of three molecules in asymmetric unit are different. The N1—C1—C10—O1 torsion angle is -13.3 (2)°. However, the N1A—C1A—C10A—O1A and N1B—C1B—C10B—O1B are 36.17 (19) and -34.1 (2)°, respectively. The crystal packing is stabilized by O—H···N hydrogen bonds (Table 1).

For related literature, see: Carlton & Molapisi (2000); Casnati et al. (2003); Ghosh & Bharadwaj (2004); Glidewell et al. (2005); Jennings et al. (2001); Kwon et al. (2005); Padbury & Lindwall (1945); Smith et al. (1995); You & Park (2005).

Computing details top

Data collection: RAPID-AUTO (Rigaku/MSC, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Isoquinoline-1-carboxylic acid top
Crystal data top
C10H7NO2Z = 6
Mr = 173.17F(000) = 540
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3707 (6) ÅCell parameters from 9042 reflections
b = 11.4278 (7) Åθ = 3.1–27.6°
c = 13.2044 (10) ŵ = 0.11 mm1
α = 108.957 (2)°T = 153 K
β = 100.674 (2)°Block, colorless
γ = 91.447 (2)°0.58 × 0.52 × 0.34 mm
V = 1168.97 (14) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4016 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.037
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
ω scansh = 1010
11161 measured reflectionsk = 1414
5223 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.33P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5223 reflectionsΔρmax = 0.52 e Å3
365 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (3)
Crystal data top
C10H7NO2γ = 91.447 (2)°
Mr = 173.17V = 1168.97 (14) Å3
Triclinic, P1Z = 6
a = 8.3707 (6) ÅMo Kα radiation
b = 11.4278 (7) ŵ = 0.11 mm1
c = 13.2044 (10) ÅT = 153 K
α = 108.957 (2)°0.58 × 0.52 × 0.34 mm
β = 100.674 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4016 reflections with I > 2σ(I)
11161 measured reflectionsRint = 0.037
5223 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.52 e Å3
5223 reflectionsΔρmin = 0.31 e Å3
365 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55014 (15)0.22987 (10)0.47803 (9)0.0308 (3)
O20.44813 (17)0.08212 (11)0.31984 (9)0.0403 (3)
N10.32740 (16)0.37701 (11)0.44770 (10)0.0228 (3)
C10.33565 (18)0.27907 (13)0.36107 (11)0.0197 (3)
C20.2212 (2)0.46223 (14)0.43699 (13)0.0279 (4)
H20.21780.53220.49950.034*
C30.1195 (2)0.45160 (14)0.34056 (13)0.0272 (3)
H30.04600.51270.33660.033*
C40.0189 (2)0.33229 (15)0.14450 (13)0.0278 (3)
H40.05740.39100.13850.033*
C50.0266 (2)0.23220 (15)0.05484 (12)0.0297 (4)
H50.04420.22180.01320.036*
C60.1387 (2)0.14449 (14)0.06288 (12)0.0271 (3)
H60.14330.07570.00030.033*
C70.24126 (19)0.15637 (14)0.15988 (12)0.0236 (3)
H70.31610.09600.16360.028*
C80.23623 (18)0.25916 (13)0.25556 (11)0.0195 (3)
C90.12432 (19)0.34902 (14)0.24652 (12)0.0224 (3)
C100.45201 (18)0.18691 (13)0.38325 (11)0.0206 (3)
O1A0.67121 (14)0.22924 (10)0.70186 (9)0.0300 (3)
O2A0.93960 (16)0.25229 (11)0.76675 (11)0.0482 (4)
C1A0.82048 (18)0.06951 (13)0.61722 (11)0.0205 (3)
N1A0.71612 (15)0.05087 (11)0.52356 (10)0.0208 (3)
C2A0.70952 (19)0.05813 (14)0.43994 (12)0.0238 (3)
H2A0.63280.07140.37360.029*
C3A0.80874 (19)0.14899 (13)0.44770 (12)0.0240 (3)
H3A0.80110.22360.38740.029*
C4A1.0295 (2)0.22249 (14)0.55853 (12)0.0264 (3)
H4A1.02710.29720.49910.032*
C5A1.1356 (2)0.20353 (15)0.65542 (13)0.0285 (4)
H5A1.20680.26480.66320.034*
C6A1.1395 (2)0.09298 (15)0.74413 (13)0.0280 (3)
H6A1.21320.08100.81140.034*
C7A1.03937 (19)0.00292 (14)0.73495 (12)0.0249 (3)
H7A1.04350.07070.79570.030*
C8A0.92890 (18)0.01916 (13)0.63473 (11)0.0198 (3)
C9A0.92297 (18)0.13159 (13)0.54586 (12)0.0213 (3)
C10A0.81768 (19)0.19380 (14)0.70422 (12)0.0237 (3)
O1B0.50385 (15)0.43664 (11)0.65072 (9)0.0333 (3)
O2B0.28869 (16)0.51262 (15)0.71761 (10)0.0535 (4)
N1B0.65308 (16)0.44696 (11)0.84876 (10)0.0223 (3)
C1B0.54342 (18)0.52634 (13)0.83991 (11)0.0207 (3)
C2B0.75794 (19)0.46784 (14)0.94605 (12)0.0244 (3)
H2B0.83600.41010.95130.029*
C3B0.75569 (19)0.56808 (14)1.03629 (12)0.0245 (3)
H3B0.83030.57901.10300.029*
C4B0.6351 (2)0.76283 (14)1.12033 (12)0.0278 (3)
H4B0.70780.77641.18830.033*
C5B0.5253 (2)0.84668 (14)1.11053 (13)0.0322 (4)
H5B0.52050.91761.17190.039*
C6B0.4187 (2)0.82810 (15)1.00929 (14)0.0320 (4)
H6B0.34430.88801.00290.038*
C7B0.4205 (2)0.72551 (14)0.92027 (13)0.0268 (3)
H7B0.34740.71450.85300.032*
C8B0.53150 (18)0.63544 (13)0.92817 (11)0.0203 (3)
C9B0.64159 (19)0.65562 (13)1.02982 (12)0.0217 (3)
C10B0.43012 (19)0.49211 (13)0.72890 (12)0.0244 (3)
H1O0.608 (4)0.170 (3)0.493 (2)0.086 (9)*
H1OA0.674 (3)0.312 (3)0.755 (2)0.074 (8)*
H1OB0.431 (3)0.413 (3)0.580 (2)0.080 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (7)0.0281 (6)0.0188 (5)0.0141 (5)0.0048 (5)0.0020 (4)
O20.0531 (8)0.0296 (6)0.0243 (6)0.0214 (6)0.0087 (5)0.0019 (5)
N10.0252 (7)0.0221 (6)0.0172 (6)0.0071 (5)0.0017 (5)0.0026 (5)
C10.0207 (7)0.0207 (6)0.0165 (7)0.0039 (6)0.0032 (5)0.0046 (5)
C20.0332 (9)0.0239 (7)0.0210 (7)0.0095 (6)0.0025 (6)0.0011 (6)
C30.0293 (8)0.0235 (7)0.0266 (8)0.0115 (6)0.0026 (6)0.0066 (6)
C40.0298 (8)0.0303 (8)0.0236 (8)0.0086 (7)0.0006 (6)0.0117 (6)
C50.0326 (9)0.0376 (9)0.0163 (7)0.0038 (7)0.0023 (6)0.0096 (6)
C60.0343 (9)0.0281 (7)0.0158 (7)0.0039 (7)0.0040 (6)0.0036 (6)
C70.0282 (8)0.0241 (7)0.0173 (7)0.0063 (6)0.0043 (6)0.0051 (6)
C80.0210 (7)0.0202 (7)0.0165 (7)0.0026 (6)0.0037 (5)0.0053 (5)
C90.0233 (7)0.0242 (7)0.0188 (7)0.0038 (6)0.0025 (6)0.0068 (6)
C100.0231 (7)0.0224 (7)0.0153 (7)0.0058 (6)0.0028 (5)0.0055 (5)
O1A0.0294 (6)0.0263 (6)0.0252 (6)0.0099 (5)0.0014 (5)0.0019 (4)
O2A0.0341 (7)0.0336 (6)0.0495 (8)0.0101 (6)0.0102 (6)0.0128 (6)
C1A0.0216 (7)0.0222 (7)0.0163 (7)0.0033 (6)0.0031 (5)0.0050 (5)
N1A0.0230 (6)0.0218 (6)0.0163 (6)0.0056 (5)0.0028 (5)0.0051 (5)
C2A0.0265 (8)0.0263 (7)0.0152 (7)0.0041 (6)0.0020 (6)0.0035 (6)
C3A0.0302 (8)0.0220 (7)0.0157 (7)0.0042 (6)0.0046 (6)0.0007 (5)
C4A0.0338 (9)0.0240 (7)0.0221 (7)0.0092 (7)0.0093 (6)0.0063 (6)
C5A0.0298 (8)0.0318 (8)0.0300 (8)0.0133 (7)0.0088 (6)0.0162 (7)
C6A0.0286 (8)0.0347 (8)0.0214 (8)0.0059 (7)0.0011 (6)0.0124 (6)
C7A0.0280 (8)0.0275 (7)0.0174 (7)0.0045 (6)0.0021 (6)0.0063 (6)
C8A0.0220 (7)0.0208 (6)0.0167 (7)0.0044 (6)0.0050 (5)0.0058 (5)
C9A0.0241 (8)0.0224 (7)0.0190 (7)0.0060 (6)0.0075 (6)0.0072 (6)
C10A0.0264 (8)0.0230 (7)0.0188 (7)0.0079 (6)0.0007 (6)0.0047 (6)
O1B0.0325 (6)0.0445 (7)0.0147 (5)0.0103 (5)0.0023 (5)0.0003 (5)
O2B0.0323 (7)0.0808 (11)0.0255 (7)0.0235 (7)0.0029 (5)0.0080 (7)
N1B0.0263 (7)0.0217 (6)0.0162 (6)0.0054 (5)0.0040 (5)0.0028 (5)
C1B0.0230 (7)0.0216 (7)0.0150 (7)0.0032 (6)0.0041 (5)0.0027 (5)
C2B0.0270 (8)0.0245 (7)0.0205 (7)0.0075 (6)0.0021 (6)0.0072 (6)
C3B0.0290 (8)0.0256 (7)0.0154 (7)0.0032 (6)0.0006 (6)0.0052 (6)
C4B0.0342 (9)0.0270 (7)0.0161 (7)0.0028 (7)0.0022 (6)0.0005 (6)
C5B0.0414 (10)0.0245 (7)0.0227 (8)0.0064 (7)0.0080 (7)0.0040 (6)
C6B0.0356 (9)0.0265 (8)0.0305 (9)0.0134 (7)0.0072 (7)0.0038 (6)
C7B0.0289 (8)0.0264 (7)0.0214 (7)0.0082 (6)0.0031 (6)0.0036 (6)
C8B0.0231 (7)0.0204 (6)0.0151 (7)0.0037 (6)0.0038 (5)0.0027 (5)
C9B0.0250 (8)0.0216 (7)0.0161 (7)0.0019 (6)0.0041 (6)0.0032 (5)
C10B0.0286 (8)0.0231 (7)0.0159 (7)0.0059 (6)0.0014 (6)0.0003 (5)
Geometric parameters (Å, º) top
O1—C101.2967 (17)C4A—C5A1.364 (2)
O1—H1O0.90 (3)C4A—C9A1.417 (2)
O2—C101.2136 (17)C4A—H4A0.9500
N1—C11.3293 (18)C5A—C6A1.411 (2)
N1—C21.3583 (19)C5A—H5A0.9500
C1—C81.4284 (19)C6A—C7A1.365 (2)
C1—C101.5133 (19)C6A—H6A0.9500
C2—C31.361 (2)C7A—C8A1.4210 (19)
C2—H20.9500C7A—H7A0.9500
C3—C91.412 (2)C8A—C9A1.4233 (19)
C3—H30.9500O1B—C10B1.2957 (18)
C4—C51.366 (2)O1B—H1OB0.97 (3)
C4—C91.419 (2)O2B—C10B1.204 (2)
C4—H40.9500N1B—C1B1.3230 (19)
C5—C61.406 (2)N1B—C2B1.3602 (18)
C5—H50.9500C1B—C8B1.4241 (18)
C6—C71.367 (2)C1B—C10B1.5149 (19)
C6—H60.9500C2B—C3B1.362 (2)
C7—C81.4268 (19)C2B—H2B0.9500
C7—H70.9500C3B—C9B1.412 (2)
C8—C91.426 (2)C3B—H3B0.9500
O1A—C10A1.2990 (18)C4B—C5B1.364 (2)
O1A—H1OA0.97 (3)C4B—C9B1.4171 (19)
O2A—C10A1.2103 (19)C4B—H4B0.9500
C1A—N1A1.3256 (18)C5B—C6B1.411 (2)
C1A—C8A1.423 (2)C5B—H5B0.9500
C1A—C10A1.5131 (19)C6B—C7B1.367 (2)
N1A—C2A1.3617 (18)C6B—H6B0.9500
C2A—C3A1.364 (2)C7B—C8B1.420 (2)
C2A—H2A0.9500C7B—H7B0.9500
C3A—C9A1.413 (2)C8B—C9B1.4261 (19)
C3A—H3A0.9500
C10—O1—H1O111.1 (19)C6A—C5A—H5A119.9
C1—N1—C2119.62 (12)C7A—C6A—C5A121.17 (14)
N1—C1—C8122.42 (13)C7A—C6A—H6A119.4
N1—C1—C10115.25 (12)C5A—C6A—H6A119.4
C8—C1—C10122.27 (12)C6A—C7A—C8A120.13 (14)
N1—C2—C3122.81 (13)C6A—C7A—H7A119.9
N1—C2—H2118.6C8A—C7A—H7A119.9
C3—C2—H2118.6C7A—C8A—C1A124.19 (13)
C2—C3—C9119.41 (13)C7A—C8A—C9A118.68 (13)
C2—C3—H3120.3C1A—C8A—C9A117.12 (13)
C9—C3—H3120.3C3A—C9A—C4A122.19 (13)
C5—C4—C9120.37 (14)C3A—C9A—C8A118.37 (13)
C5—C4—H4119.8C4A—C9A—C8A119.43 (13)
C9—C4—H4119.8O2A—C10A—O1A125.12 (13)
C4—C5—C6120.28 (14)O2A—C10A—C1A122.87 (13)
C4—C5—H5119.9O1A—C10A—C1A112.00 (13)
C6—C5—H5119.9C10B—O1B—H1OB111.6 (16)
C7—C6—C5121.24 (14)C1B—N1B—C2B119.50 (12)
C7—C6—H6119.4N1B—C1B—C8B122.68 (13)
C5—C6—H6119.4N1B—C1B—C10B115.00 (12)
C6—C7—C8120.18 (14)C8B—C1B—C10B122.31 (12)
C6—C7—H7119.9N1B—C2B—C3B122.76 (13)
C8—C7—H7119.9N1B—C2B—H2B118.6
C9—C8—C7118.35 (13)C3B—C2B—H2B118.6
C9—C8—C1116.99 (12)C2B—C3B—C9B119.44 (13)
C7—C8—C1124.66 (13)C2B—C3B—H3B120.3
C3—C9—C4121.69 (13)C9B—C3B—H3B120.3
C3—C9—C8118.74 (13)C5B—C4B—C9B120.47 (14)
C4—C9—C8119.56 (13)C5B—C4B—H4B119.8
O2—C10—O1124.09 (13)C9B—C4B—H4B119.8
O2—C10—C1122.74 (13)C4B—C5B—C6B120.07 (14)
O1—C10—C1113.12 (12)C4B—C5B—H5B120.0
C10A—O1A—H1OA110.1 (16)C6B—C5B—H5B120.0
N1A—C1A—C8A122.96 (13)C7B—C6B—C5B121.20 (14)
N1A—C1A—C10A114.79 (12)C7B—C6B—H6B119.4
C8A—C1A—C10A122.25 (12)C5B—C6B—H6B119.4
C1A—N1A—C2A119.29 (12)C6B—C7B—C8B120.16 (14)
C3A—C2A—N1A122.55 (13)C6B—C7B—H7B119.9
C3A—C2A—H2A118.7C8B—C7B—H7B119.9
N1A—C2A—H2A118.7C7B—C8B—C1B124.23 (13)
C2A—C3A—C9A119.68 (13)C7B—C8B—C9B118.61 (13)
C2A—C3A—H3A120.2C1B—C8B—C9B117.14 (12)
C9A—C3A—H3A120.2C3B—C9B—C4B122.06 (14)
C5A—C4A—C9A120.47 (14)C3B—C9B—C8B118.46 (13)
C5A—C4A—H4A119.8C4B—C9B—C8B119.47 (13)
C9A—C4A—H4A119.8O2B—C10B—O1B125.65 (14)
C4A—C5A—C6A120.10 (14)O2B—C10B—C1B122.81 (14)
C4A—C5A—H5A119.9O1B—C10B—C1B111.52 (13)
C2—N1—C1—C80.0 (2)C2A—C3A—C9A—C4A179.77 (14)
C2—N1—C1—C10177.20 (14)C2A—C3A—C9A—C8A0.9 (2)
C1—N1—C2—C30.8 (3)C5A—C4A—C9A—C3A178.48 (15)
N1—C2—C3—C90.8 (3)C5A—C4A—C9A—C8A0.9 (2)
C9—C4—C5—C60.2 (3)C7A—C8A—C9A—C3A177.78 (14)
C4—C5—C6—C70.5 (3)C1A—C8A—C9A—C3A1.3 (2)
C5—C6—C7—C80.1 (2)C7A—C8A—C9A—C4A1.6 (2)
C6—C7—C8—C91.0 (2)C1A—C8A—C9A—C4A179.34 (14)
C6—C7—C8—C1178.80 (15)N1A—C1A—C10A—O2A142.98 (17)
N1—C1—C8—C90.7 (2)C8A—C1A—C10A—O2A36.1 (2)
C10—C1—C8—C9176.28 (13)N1A—C1A—C10A—O1A36.12 (19)
N1—C1—C8—C7179.43 (14)C8A—C1A—C10A—O1A144.80 (15)
C10—C1—C8—C73.6 (2)C2B—N1B—C1B—C8B1.1 (2)
C2—C3—C9—C4178.82 (16)C2B—N1B—C1B—C10B178.41 (13)
C2—C3—C9—C80.0 (2)C1B—N1B—C2B—C3B0.0 (2)
C5—C4—C9—C3179.88 (16)N1B—C2B—C3B—C9B0.6 (2)
C5—C4—C9—C81.3 (2)C9B—C4B—C5B—C6B1.0 (3)
C7—C8—C9—C3179.45 (14)C4B—C5B—C6B—C7B1.4 (3)
C1—C8—C9—C30.7 (2)C5B—C6B—C7B—C8B0.4 (3)
C7—C8—C9—C41.7 (2)C6B—C7B—C8B—C1B179.46 (15)
C1—C8—C9—C4178.14 (14)C6B—C7B—C8B—C9B1.0 (2)
N1—C1—C10—O2163.91 (15)N1B—C1B—C8B—C7B176.98 (15)
C8—C1—C10—O213.3 (2)C10B—C1B—C8B—C7B3.5 (2)
N1—C1—C10—O113.4 (2)N1B—C1B—C8B—C9B1.5 (2)
C8—C1—C10—O1169.42 (14)C10B—C1B—C8B—C9B178.01 (14)
C8A—C1A—N1A—C2A0.8 (2)C2B—C3B—C9B—C4B178.90 (15)
C10A—C1A—N1A—C2A179.85 (13)C2B—C3B—C9B—C8B0.2 (2)
C1A—N1A—C2A—C3A1.3 (2)C5B—C4B—C9B—C3B178.75 (16)
N1A—C2A—C3A—C9A0.4 (2)C5B—C4B—C9B—C8B0.3 (2)
C9A—C4A—C5A—C6A0.2 (3)C7B—C8B—C9B—C3B177.78 (14)
C4A—C5A—C6A—C7A0.5 (3)C1B—C8B—C9B—C3B0.8 (2)
C5A—C6A—C7A—C8A0.2 (3)C7B—C8B—C9B—C4B1.3 (2)
C6A—C7A—C8A—C1A179.72 (15)C1B—C8B—C9B—C4B179.92 (14)
C6A—C7A—C8A—C9A1.3 (2)N1B—C1B—C10B—O2B144.38 (17)
N1A—C1A—C8A—C7A178.52 (14)C8B—C1B—C10B—O2B35.2 (2)
C10A—C1A—C8A—C7A2.5 (2)N1B—C1B—C10B—O1B34.05 (19)
N1A—C1A—C8A—C9A0.5 (2)C8B—C1B—C10B—O1B146.41 (15)
C10A—C1A—C8A—C9A178.52 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1A0.91 (3)1.76 (3)2.6673 (16)177 (3)
O1A—H1OA···N1B0.97 (3)1.68 (3)2.6407 (16)172 (2)
O1B—H1OB···N10.99 (3)1.69 (3)2.6715 (17)171 (3)

Experimental details

Crystal data
Chemical formulaC10H7NO2
Mr173.17
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)8.3707 (6), 11.4278 (7), 13.2044 (10)
α, β, γ (°)108.957 (2), 100.674 (2), 91.447 (2)
V3)1168.97 (14)
Z6
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.58 × 0.52 × 0.34
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11161, 5223, 4016
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.02
No. of reflections5223
No. of parameters365
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.31

Computer programs: RAPID-AUTO (Rigaku/MSC, 2004), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···N1A0.91 (3)1.76 (3)2.6673 (16)177 (3)
O1A—H1OA···N1B0.97 (3)1.68 (3)2.6407 (16)172 (2)
O1B—H1OB···N10.99 (3)1.69 (3)2.6715 (17)171 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds