Download citation
Download citation
link to html
In the title compound, C18H15OP·C10H12N4OS, the triazole ring makes a dihedral angle of 51.24 (7)° with the attached benzene ring. The triazole ring and its thione substituent are delocalized. There are inter­molecular N—H...O and N—H...S hydrogen bonds, which also involve the cocrystallized triphenyl­phosphine oxide mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024774/cf2105sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024774/cf2105Isup2.hkl
Contains datablock I

CCDC reference: 654937

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.053
  • wR factor = 0.135
  • Data-to-parameter ratio = 14.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT480_ALERT_4_C Long H...A H-Bond Reported H4B .. S1 .. 2.99 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C18 H15 O P
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Recently, iminophosphoranes have attracted increasing attention as useful building blocks for nitrogen-containing heterocycles (Fresneda & Molina, 2004). Many interesting crystal structures involving iminophosphorane groups have been published, including some recent reports from our laboratory (Ding et al., 2005; Huang et al., 2005). As an extension of our research, we report the synthesis and crystal structure of the title compound (I), in which an iminophosphorane is not formed.

The molecular structure of (I) is shown in Fig. 1. The triazole ring (C20, C19, N1—N3) is planar with an r.m.s. deviation of 0.0066 Å, and makes a dihedral angle of 51.24 (7)° with the attached benzene group. The C—N bond lengths, in the range 1.305 (3) Å-1.370 (3) Å, are longer than a typical C=N bond [ca 1.269 (2) Å], but short than a typical C—N bond length [ca 1.443 (4) Å], indicating electron delocalization in the triazole ring (Jin et al., 2004).

The crystal packing (Fig. 2) is stabilized by an intramolecular N—H···O hydrogen bond, an intermolecular N—H···O hydrogen bond between the triazole ring and the triphenylphosphine oxide molecule, and intermolecular N—H···S hydrogen bonds, which can be described by the graph-set notation R22(8) (Xiong et al., 2005).

Related literature top

For related literature, see: Ding et al. (2004); Fresneda & Molina (2004); Huang et al. (2005); Jin et al. (2004); Xiong et al. (2005); Ding et al. (2005).

Experimental top

Triethylamine (0.024 mol, 2.42 g) was added to a mixture of triphenylphosphine (0.012 mol, 2.84 g), 4-amino-5-(2-ethoxyphenyl)-4H-1,2,4-triazole-3-thiol (0.008 mol) and dry acetonitrile (40 ml) at room temperature. The mixture was stirred for 5 h under reflux (Ding et al., 2004). The white solid was filtered off and recrystallized from ethanol. Yield 58%, m. p. 436–438 K.

Refinement top

H atoms attached to N atoms were located in a difference Fourier map, and refined with N—H distances restrained to 0.85 (1) Å with Uiso = 1.2Ueq(N). The other H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93–0.97 Å and Uiso = 1.2Ueq(C) or 1.5Ueq(methyl-C).

Structure description top

Recently, iminophosphoranes have attracted increasing attention as useful building blocks for nitrogen-containing heterocycles (Fresneda & Molina, 2004). Many interesting crystal structures involving iminophosphorane groups have been published, including some recent reports from our laboratory (Ding et al., 2005; Huang et al., 2005). As an extension of our research, we report the synthesis and crystal structure of the title compound (I), in which an iminophosphorane is not formed.

The molecular structure of (I) is shown in Fig. 1. The triazole ring (C20, C19, N1—N3) is planar with an r.m.s. deviation of 0.0066 Å, and makes a dihedral angle of 51.24 (7)° with the attached benzene group. The C—N bond lengths, in the range 1.305 (3) Å-1.370 (3) Å, are longer than a typical C=N bond [ca 1.269 (2) Å], but short than a typical C—N bond length [ca 1.443 (4) Å], indicating electron delocalization in the triazole ring (Jin et al., 2004).

The crystal packing (Fig. 2) is stabilized by an intramolecular N—H···O hydrogen bond, an intermolecular N—H···O hydrogen bond between the triazole ring and the triphenylphosphine oxide molecule, and intermolecular N—H···S hydrogen bonds, which can be described by the graph-set notation R22(8) (Xiong et al., 2005).

For related literature, see: Ding et al. (2004); Fresneda & Molina (2004); Huang et al. (2005); Jin et al. (2004); Xiong et al. (2005); Ding et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering, showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of (I). Hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, 2 - y, -z.]
4-Amino-5-(2-ethoxyphenyl)-2,4-dihydro-2H-1,2,4-triazole-3-thione– triphenylphosphine oxide (1/1) top
Crystal data top
C18H15OP·C10H12N4OSF(000) = 1080
Mr = 514.57Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5026 reflections
a = 10.0514 (7) Åθ = 2.4–25.1°
b = 18.3008 (12) ŵ = 0.21 mm1
c = 15.285 (1) ÅT = 298 K
β = 105.726 (1)°Block, colourless
V = 2706.4 (3) Å30.42 × 0.31 × 0.27 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
4857 independent reflections
Radiation source: fine-focus sealed tube4255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1112
Tmin = 0.917, Tmax = 0.942k = 2121
14188 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.066P)2 + 0.984P]
where P = (Fo2 + 2Fc2)/3
4857 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.27 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H15OP·C10H12N4OSV = 2706.4 (3) Å3
Mr = 514.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0514 (7) ŵ = 0.21 mm1
b = 18.3008 (12) ÅT = 298 K
c = 15.285 (1) Å0.42 × 0.31 × 0.27 mm
β = 105.726 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
4857 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4255 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.942Rint = 0.022
14188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0533 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.27 e Å3
4857 reflectionsΔρmin = 0.27 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05775 (9)1.11318 (3)0.05669 (4)0.0669 (2)
P10.47530 (6)1.19485 (3)0.18357 (4)0.04240 (17)
O10.32154 (16)1.19058 (8)0.21438 (12)0.0549 (4)
O20.00016 (19)0.84581 (8)0.21677 (11)0.0632 (5)
N10.00551 (18)1.00791 (9)0.18675 (11)0.0419 (4)
N20.1418 (2)1.08364 (10)0.20819 (12)0.0466 (4)
N30.11670 (18)1.03653 (10)0.28068 (12)0.0455 (4)
N40.1115 (2)0.97627 (12)0.15487 (15)0.0583 (5)
C10.5478 (2)1.15002 (13)0.07667 (15)0.0503 (5)
C20.6097 (3)1.08207 (15)0.06990 (18)0.0673 (7)
H20.62041.05910.12180.081*
C30.6557 (3)1.04802 (19)0.0136 (2)0.0856 (9)
H30.69861.00260.01760.103*
C40.6389 (4)1.0803 (2)0.0896 (2)0.0906 (10)
H40.66991.05700.14560.109*
C50.5763 (4)1.1470 (2)0.0841 (2)0.0996 (12)
H50.56441.16890.13630.119*
C60.5307 (4)1.18205 (17)0.00140 (19)0.0796 (9)
H60.48821.22750.00180.096*
C70.5512 (2)1.15562 (11)0.26723 (14)0.0446 (5)
C80.4618 (3)1.13856 (15)0.35082 (16)0.0616 (6)
H80.36731.14580.36070.074*
C90.5120 (4)1.11093 (17)0.41956 (19)0.0786 (9)
H90.45131.09970.47560.094*
C100.6507 (4)1.10008 (15)0.40541 (19)0.0736 (8)
H100.68421.08110.45180.088*
C110.7405 (3)1.11694 (14)0.32346 (19)0.0636 (7)
H110.83481.10980.31450.076*
C120.6922 (2)1.14453 (13)0.25385 (16)0.0540 (6)
H120.75371.15570.19810.065*
C130.5308 (2)1.28893 (12)0.17058 (15)0.0446 (5)
C140.6686 (3)1.30798 (14)0.13743 (17)0.0586 (6)
H140.73511.27200.11710.070*
C150.7070 (3)1.38043 (17)0.1346 (2)0.0727 (8)
H150.79971.39310.11300.087*
C160.6100 (4)1.43355 (16)0.1632 (2)0.0786 (9)
H160.63691.48230.16110.094*
C170.4741 (4)1.41562 (15)0.1947 (2)0.0786 (8)
H170.40821.45220.21330.094*
C180.4333 (3)1.34315 (13)0.19924 (18)0.0602 (6)
H180.34041.33100.22160.072*
C190.0680 (2)1.06811 (11)0.15007 (14)0.0442 (5)
C200.0245 (2)0.99114 (11)0.26665 (14)0.0400 (5)
C210.0393 (2)0.93404 (11)0.33202 (15)0.0428 (5)
C220.0484 (2)0.86112 (12)0.30667 (16)0.0489 (5)
C230.1019 (3)0.80937 (13)0.3740 (2)0.0620 (7)
H230.11010.76090.35780.074*
C240.1424 (3)0.82924 (16)0.46318 (19)0.0673 (7)
H240.17770.79410.50730.081*
C250.1316 (3)0.90041 (15)0.48875 (18)0.0626 (7)
H250.15780.91330.54990.075*
C260.0816 (2)0.95263 (13)0.42319 (15)0.0504 (5)
H260.07621.00100.44040.060*
C270.0126 (4)0.77064 (15)0.1900 (2)0.0777 (8)
H27A0.06900.74480.22230.093*
H27B0.07800.74800.20480.093*
C280.0768 (4)0.76641 (18)0.0916 (2)0.0938 (11)
H28A0.16760.78750.07770.141*
H28B0.08340.71620.07270.141*
H28C0.02130.79280.06010.141*
H2A0.202 (3)1.1183 (15)0.203 (2)0.113*
H4A0.123 (4)1.0041 (17)0.113 (2)0.113*
H4B0.078 (4)0.9357 (14)0.133 (2)0.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1072 (6)0.0476 (4)0.0524 (4)0.0064 (3)0.0329 (4)0.0079 (3)
P10.0379 (3)0.0395 (3)0.0503 (3)0.0045 (2)0.0128 (2)0.0017 (2)
O10.0421 (9)0.0480 (9)0.0748 (11)0.0070 (7)0.0162 (8)0.0034 (8)
O20.0910 (13)0.0364 (9)0.0617 (11)0.0011 (8)0.0197 (9)0.0026 (7)
N10.0504 (10)0.0344 (9)0.0447 (10)0.0030 (7)0.0196 (8)0.0039 (7)
N20.0535 (11)0.0385 (10)0.0504 (10)0.0088 (8)0.0187 (9)0.0020 (8)
N30.0494 (11)0.0413 (10)0.0494 (10)0.0056 (8)0.0194 (8)0.0027 (8)
N40.0686 (14)0.0513 (12)0.0663 (14)0.0110 (10)0.0374 (11)0.0013 (10)
C10.0493 (13)0.0529 (14)0.0502 (13)0.0053 (10)0.0162 (10)0.0052 (10)
C20.0782 (19)0.0658 (17)0.0614 (16)0.0144 (14)0.0251 (14)0.0152 (13)
C30.091 (2)0.088 (2)0.079 (2)0.0216 (18)0.0246 (17)0.0317 (17)
C40.102 (3)0.111 (3)0.0597 (18)0.001 (2)0.0222 (17)0.0295 (18)
C50.141 (3)0.109 (3)0.0576 (19)0.006 (3)0.043 (2)0.0051 (18)
C60.112 (3)0.075 (2)0.0610 (17)0.0117 (17)0.0393 (17)0.0036 (14)
C70.0491 (12)0.0385 (11)0.0462 (12)0.0010 (9)0.0131 (10)0.0054 (9)
C80.0617 (15)0.0677 (16)0.0505 (14)0.0018 (13)0.0068 (12)0.0051 (12)
C90.092 (2)0.087 (2)0.0507 (16)0.0075 (17)0.0095 (15)0.0084 (14)
C100.105 (3)0.0665 (18)0.0582 (17)0.0149 (16)0.0380 (17)0.0036 (13)
C110.0674 (17)0.0603 (16)0.0705 (17)0.0121 (13)0.0315 (14)0.0101 (13)
C120.0522 (14)0.0577 (14)0.0522 (13)0.0037 (11)0.0143 (11)0.0035 (11)
C130.0477 (12)0.0426 (11)0.0477 (12)0.0080 (9)0.0203 (10)0.0024 (9)
C140.0526 (14)0.0602 (15)0.0654 (16)0.0129 (11)0.0203 (12)0.0118 (12)
C150.0731 (18)0.074 (2)0.0811 (19)0.0350 (16)0.0383 (15)0.0259 (15)
C160.115 (3)0.0485 (16)0.087 (2)0.0277 (17)0.052 (2)0.0133 (14)
C170.102 (2)0.0459 (15)0.094 (2)0.0025 (15)0.0372 (19)0.0028 (14)
C180.0594 (15)0.0482 (14)0.0754 (17)0.0023 (12)0.0225 (13)0.0009 (12)
C190.0544 (13)0.0338 (11)0.0447 (12)0.0016 (9)0.0138 (10)0.0036 (9)
C200.0432 (11)0.0350 (11)0.0437 (11)0.0020 (9)0.0150 (9)0.0032 (8)
C210.0397 (11)0.0391 (11)0.0529 (13)0.0015 (9)0.0180 (9)0.0043 (9)
C220.0482 (13)0.0434 (12)0.0569 (14)0.0019 (10)0.0173 (11)0.0013 (10)
C230.0663 (16)0.0409 (13)0.0795 (18)0.0082 (11)0.0211 (14)0.0110 (12)
C240.0645 (17)0.0683 (18)0.0660 (17)0.0109 (13)0.0124 (13)0.0227 (14)
C250.0578 (15)0.0746 (18)0.0519 (14)0.0040 (13)0.0086 (12)0.0092 (13)
C260.0473 (13)0.0524 (13)0.0515 (13)0.0007 (10)0.0135 (10)0.0010 (10)
C270.102 (2)0.0452 (15)0.085 (2)0.0095 (15)0.0244 (17)0.0081 (14)
C280.140 (3)0.070 (2)0.081 (2)0.016 (2)0.046 (2)0.0201 (17)
Geometric parameters (Å, º) top
S1—C191.676 (2)C10—C111.366 (4)
P1—O11.4906 (16)C10—H100.930
P1—C11.797 (2)C11—C121.380 (3)
P1—C131.804 (2)C11—H110.930
P1—C71.806 (2)C12—H120.930
O2—C221.357 (3)C13—C181.379 (3)
O2—C271.431 (3)C13—C141.384 (3)
N1—C191.360 (3)C14—C151.378 (4)
N1—C201.370 (3)C14—H140.930
N1—N41.410 (3)C15—C161.362 (5)
N2—C191.334 (3)C15—H150.930
N2—N31.372 (2)C16—C171.360 (5)
N2—H2A0.862 (18)C16—H160.930
N3—C201.305 (3)C17—C181.384 (4)
N4—H4A0.846 (18)C17—H170.930
N4—H4B0.847 (18)C18—H180.930
C1—C61.381 (4)C20—C211.468 (3)
C1—C21.382 (4)C21—C261.385 (3)
C2—C31.383 (4)C21—C221.399 (3)
C2—H20.930C22—C231.394 (3)
C3—C41.354 (5)C23—C241.362 (4)
C3—H30.930C23—H230.930
C4—C51.365 (5)C24—C251.373 (4)
C4—H40.930C24—H240.930
C5—C61.380 (4)C25—C261.377 (3)
C5—H50.930C25—H250.930
C6—H60.930C26—H260.930
C7—C81.384 (3)C27—C281.469 (4)
C7—C121.390 (3)C27—H27A0.970
C8—C91.379 (4)C27—H27B0.970
C8—H80.930C28—H28A0.960
C9—C101.367 (4)C28—H28B0.960
C9—H90.930C28—H28C0.960
O1—P1—C1113.18 (10)C18—C13—P1118.67 (18)
O1—P1—C13110.35 (10)C14—C13—P1121.96 (19)
C1—P1—C13107.37 (11)C15—C14—C13119.8 (3)
O1—P1—C7110.87 (10)C15—C14—H14120.1
C1—P1—C7108.51 (10)C13—C14—H14120.1
C13—P1—C7106.26 (10)C16—C15—C14120.4 (3)
C22—O2—C27117.9 (2)C16—C15—H15119.8
C19—N1—C20108.82 (17)C14—C15—H15119.8
C19—N1—N4124.54 (18)C17—C16—C15120.3 (3)
C20—N1—N4125.86 (18)C17—C16—H16119.9
C19—N2—N3112.96 (17)C15—C16—H16119.9
C19—N2—H2A126 (2)C16—C17—C18120.3 (3)
N3—N2—H2A121 (2)C16—C17—H17119.9
C20—N3—N2104.53 (16)C18—C17—H17119.9
N1—N4—H4A106 (3)C13—C18—C17119.9 (3)
N1—N4—H4B104 (3)C13—C18—H18120.1
H4A—N4—H4B111 (3)C17—C18—H18120.1
C6—C1—C2118.4 (2)N2—C19—N1103.67 (17)
C6—C1—P1118.5 (2)N2—C19—S1129.52 (17)
C2—C1—P1122.85 (19)N1—C19—S1126.73 (17)
C1—C2—C3120.4 (3)N3—C20—N1109.98 (18)
C1—C2—H2119.8N3—C20—C21122.72 (18)
C3—C2—H2119.8N1—C20—C21127.22 (18)
C4—C3—C2120.5 (3)C26—C21—C22119.2 (2)
C4—C3—H3119.8C26—C21—C20117.93 (19)
C2—C3—H3119.8C22—C21—C20122.7 (2)
C3—C4—C5120.0 (3)O2—C22—C23124.6 (2)
C3—C4—H4120.0O2—C22—C21116.40 (19)
C5—C4—H4120.0C23—C22—C21119.0 (2)
C4—C5—C6120.4 (3)C24—C23—C22120.5 (2)
C4—C5—H5119.8C24—C23—H23119.7
C6—C5—H5119.8C22—C23—H23119.7
C5—C6—C1120.4 (3)C23—C24—C25120.9 (2)
C5—C6—H6119.8C23—C24—H24119.6
C1—C6—H6119.8C25—C24—H24119.6
C8—C7—C12118.9 (2)C24—C25—C26119.5 (2)
C8—C7—P1116.74 (18)C24—C25—H25120.2
C12—C7—P1124.27 (17)C26—C25—H25120.2
C9—C8—C7120.4 (3)C25—C26—C21120.9 (2)
C9—C8—H8119.8C25—C26—H26119.5
C7—C8—H8119.8C21—C26—H26119.5
C10—C9—C8120.1 (3)O2—C27—C28108.9 (2)
C10—C9—H9120.0O2—C27—H27A109.9
C8—C9—H9120.0C28—C27—H27A109.9
C11—C10—C9120.3 (3)O2—C27—H27B109.9
C11—C10—H10119.9C28—C27—H27B109.9
C9—C10—H10119.9H27A—C27—H27B108.3
C10—C11—C12120.5 (3)C27—C28—H28A109.5
C10—C11—H11119.8C27—C28—H28B109.5
C12—C11—H11119.8H28A—C28—H28B109.5
C11—C12—C7119.8 (2)C27—C28—H28C109.5
C11—C12—H12120.1H28A—C28—H28C109.5
C7—C12—H12120.1H28B—C28—H28C109.5
C18—C13—C14119.3 (2)
C19—N2—N3—C200.2 (2)C13—C14—C15—C160.8 (4)
O1—P1—C1—C671.7 (2)C14—C15—C16—C170.1 (4)
C13—P1—C1—C650.3 (2)C15—C16—C17—C180.9 (5)
C7—P1—C1—C6164.8 (2)C14—C13—C18—C170.1 (4)
O1—P1—C1—C2102.7 (2)P1—C13—C18—C17176.5 (2)
C13—P1—C1—C2135.2 (2)C16—C17—C18—C130.8 (4)
C7—P1—C1—C220.8 (2)N3—N2—C19—N10.9 (2)
C6—C1—C2—C31.3 (4)N3—N2—C19—S1175.86 (17)
P1—C1—C2—C3175.8 (2)C20—N1—C19—N21.7 (2)
C1—C2—C3—C41.0 (5)N4—N1—C19—N2172.0 (2)
C2—C3—C4—C50.1 (6)C20—N1—C19—S1175.21 (16)
C3—C4—C5—C60.4 (6)N4—N1—C19—S14.9 (3)
C4—C5—C6—C10.0 (6)N2—N3—C20—N11.3 (2)
C2—C1—C6—C50.8 (5)N2—N3—C20—C21175.65 (19)
P1—C1—C6—C5175.5 (3)C19—N1—C20—N32.0 (2)
O1—P1—C7—C89.8 (2)N4—N1—C20—N3172.1 (2)
C1—P1—C7—C8134.69 (19)C19—N1—C20—C21174.8 (2)
C13—P1—C7—C8110.12 (19)N4—N1—C20—C214.7 (3)
O1—P1—C7—C12172.82 (18)N3—C20—C21—C2643.7 (3)
C1—P1—C7—C1247.9 (2)N1—C20—C21—C26132.7 (2)
C13—P1—C7—C1267.3 (2)N3—C20—C21—C22130.9 (2)
C12—C7—C8—C90.1 (4)N1—C20—C21—C2252.7 (3)
P1—C7—C8—C9177.6 (2)C27—O2—C22—C237.7 (4)
C7—C8—C9—C100.1 (4)C27—O2—C22—C21170.5 (2)
C8—C9—C10—C110.4 (5)C26—C21—C22—O2177.25 (19)
C9—C10—C11—C120.5 (4)C20—C21—C22—O22.7 (3)
C10—C11—C12—C70.3 (4)C26—C21—C22—C231.1 (3)
C8—C7—C12—C110.0 (3)C20—C21—C22—C23175.6 (2)
P1—C7—C12—C11177.30 (19)O2—C22—C23—C24176.9 (2)
O1—P1—C13—C187.5 (2)C21—C22—C23—C241.3 (4)
C1—P1—C13—C18131.23 (19)C22—C23—C24—C250.1 (4)
C7—P1—C13—C18112.81 (19)C23—C24—C25—C261.2 (4)
O1—P1—C13—C14176.10 (19)C24—C25—C26—C211.4 (4)
C1—P1—C13—C1452.3 (2)C22—C21—C26—C250.3 (3)
C7—P1—C13—C1463.6 (2)C20—C21—C26—C25174.5 (2)
C18—C13—C14—C150.9 (4)C22—O2—C27—C28175.6 (2)
P1—C13—C14—C15175.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.86 (2)1.83 (2)2.682 (2)169 (3)
N4—H4A···S10.85 (2)2.68 (3)3.169 (2)118 (3)
N4—H4B···O20.85 (2)2.35 (3)2.904 (3)124 (3)
N4—H4B···S1i0.85 (2)2.99 (3)3.533 (2)124 (3)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC18H15OP·C10H12N4OS
Mr514.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.0514 (7), 18.3008 (12), 15.285 (1)
β (°) 105.726 (1)
V3)2706.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.42 × 0.31 × 0.27
Data collection
DiffractometerBruker APEX area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.917, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
14188, 4857, 4255
Rint0.022
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.135, 1.08
No. of reflections4857
No. of parameters335
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2002), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.862 (18)1.830 (19)2.682 (2)169 (3)
N4—H4A···S10.846 (18)2.68 (3)3.169 (2)118 (3)
N4—H4B···O20.847 (18)2.35 (3)2.904 (3)124 (3)
N4—H4B···S1i0.847 (18)2.99 (3)3.533 (2)124 (3)
Symmetry code: (i) x, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds