Download citation
Download citation
link to html
The title compound, C20H18Br2N2O3, exhibits inter­molecular N—H...O hydrogen bonds which form pseudo-dimers across inversion centres. Intra­molecular N—H...O hydrogen bonds and weak intra­molecular C—H...π hydrogen-bonding inter­actions are also present within the mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025974/dn2178sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025974/dn2178Isup2.hkl
Contains datablock I

CCDC reference: 654847

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.050
  • wR factor = 0.137
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.73 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.74 Ratio PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.55 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C18 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.03 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.729 Tmax scaled 0.241 Tmin scaled 0.213
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Heterocyclic ketene aminals (HKAs) are bis-nucleophiles which are valuable synthons for heterocyclic synthesis (Huang & Wang, 2002). The title compound, (I), (Fig. 1) is an N-alkylation product of a HKA. The crystal structure of (I) was determined in order to provide information regarding its electronic conjugation properties and to examine a possible intramolecular hydrogen bond (Wang et al.,1987).

In the title compound, the two substituted phenyl rings make dihedral angle of 84.0 (2)°, such conformation results from the occurrence of C—H···π interaction between the C15—C20 and C6—C11 rings (Fig.1, Table 1). The H atom attached to N1 is engaged in intramolecular and intermolecular hydrogen bonds. The intermolecular hydrogen bond results in the formation of pseudo dimers which are further interconnected through C—H···O weak hydrogen bonds to form a three dimensionnal network (Fig. 2, Table 1). The bond distances and bond angles are within the expected range observed for related compounds.

Related literature top

For related literature, see: Huang & Wang (2002); Wang & Huang (1996); Wang et al. (1987).

Experimental top

Compound (I) was prepared according to the procedure of Wang et al. (1996) and purified by recrystallization from acetone in 19% yield (m.p. 449–450 K). Anal. Calcd for C20H18Br2N2O3: C 48.61, H 3.67, N 5.67, Br 32.34%; found: C 48.64, H 3.64, N 5.38, Br 32.47%.

Refinement top

All H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) and with Uiso(H) = 1.2Ueq(C). H attached to N atom were freely refined with Uiso(H) = 1.2Ueq(N)

Structure description top

Heterocyclic ketene aminals (HKAs) are bis-nucleophiles which are valuable synthons for heterocyclic synthesis (Huang & Wang, 2002). The title compound, (I), (Fig. 1) is an N-alkylation product of a HKA. The crystal structure of (I) was determined in order to provide information regarding its electronic conjugation properties and to examine a possible intramolecular hydrogen bond (Wang et al.,1987).

In the title compound, the two substituted phenyl rings make dihedral angle of 84.0 (2)°, such conformation results from the occurrence of C—H···π interaction between the C15—C20 and C6—C11 rings (Fig.1, Table 1). The H atom attached to N1 is engaged in intramolecular and intermolecular hydrogen bonds. The intermolecular hydrogen bond results in the formation of pseudo dimers which are further interconnected through C—H···O weak hydrogen bonds to form a three dimensionnal network (Fig. 2, Table 1). The bond distances and bond angles are within the expected range observed for related compounds.

For related literature, see: Huang & Wang (2002); Wang & Huang (1996); Wang et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. The C—H···π and N—H···O intramolecular interactions are shown as dashed lines (CT1 is the centroid of the C6–C11 phenyl ring).
[Figure 2] Fig. 2. Partial packing view showing the N—H···O and C—H···O hydrogen bonds network. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, -y, -z; (iii) x - 1, y, z].
(E)-2-[2-(4-Bromobenzoylmethylene)imidazolidin-1-yl]ethyl 4-bromobenzoate top
Crystal data top
C20H18Br2N2O3Z = 2
Mr = 494.18F(000) = 492
Triclinic, P1Dx = 1.687 Mg m3
Hall symbol: -P 1Melting point: 449 K
a = 7.3733 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.117 (2) ÅCell parameters from 1807 reflections
c = 12.954 (2) Åθ = 2.9–25.4°
α = 104.635 (10)°µ = 4.19 mm1
β = 105.108 (11)°T = 294 K
γ = 96.700 (9)°Prism, colourless
V = 972.7 (3) Å30.39 × 0.37 × 0.34 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3389 independent reflections
Radiation source: fine-focus sealed tube2404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 48
Tmin = 0.292, Tmax = 0.330k = 1311
4924 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.4017P]
where P = (Fo2 + 2Fc2)/3
3389 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C20H18Br2N2O3γ = 96.700 (9)°
Mr = 494.18V = 972.7 (3) Å3
Triclinic, P1Z = 2
a = 7.3733 (15) ÅMo Kα radiation
b = 11.117 (2) ŵ = 4.19 mm1
c = 12.954 (2) ÅT = 294 K
α = 104.635 (10)°0.39 × 0.37 × 0.34 mm
β = 105.108 (11)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3389 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2404 reflections with I > 2σ(I)
Tmin = 0.292, Tmax = 0.330Rint = 0.024
4924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.88 e Å3
3389 reflectionsΔρmin = 0.78 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.11210 (7)0.92243 (5)0.38589 (6)0.0615 (2)
Br20.22475 (12)0.75878 (7)0.04472 (7)0.0909 (3)
N10.8470 (6)0.3228 (4)0.3643 (4)0.0445 (11)
H10.904 (8)0.388 (5)0.405 (5)0.053*
N20.5887 (5)0.1767 (4)0.2816 (4)0.0459 (10)
O10.8064 (4)0.5665 (3)0.4319 (3)0.0473 (9)
O20.2955 (6)0.2177 (3)0.0964 (3)0.0669 (12)
O30.2102 (9)0.1289 (4)0.0866 (4)0.121 (2)
C10.6565 (6)0.3019 (4)0.3296 (4)0.0346 (10)
C20.9211 (7)0.2063 (5)0.3468 (5)0.0569 (14)
H2A0.98790.19420.41750.068*
H2B1.00750.20620.30170.068*
C30.7435 (8)0.1057 (5)0.2862 (5)0.0583 (15)
H3A0.74470.06160.21160.070*
H3B0.73130.04450.32690.070*
C40.5481 (6)0.3957 (4)0.3401 (4)0.0343 (10)
H40.41540.37200.31290.041*
C50.6293 (6)0.5236 (4)0.3895 (4)0.0312 (10)
C60.4998 (6)0.6184 (4)0.3882 (3)0.0289 (9)
C70.3073 (6)0.5882 (4)0.3806 (3)0.0318 (10)
H70.25490.50590.37550.038*
C80.1921 (6)0.6777 (4)0.3803 (4)0.0355 (11)
H80.06410.65680.37640.043*
C90.2711 (6)0.7988 (4)0.3861 (4)0.0361 (11)
C100.4601 (6)0.8321 (4)0.3943 (4)0.0405 (12)
H100.51110.91420.39800.049*
C110.5735 (6)0.7422 (4)0.3969 (4)0.0388 (11)
H110.70280.76520.40460.047*
C120.3886 (8)0.1157 (5)0.2361 (5)0.0628 (16)
H12A0.31510.16710.27480.075*
H12B0.37380.03420.25050.075*
C130.3079 (9)0.0958 (5)0.1128 (6)0.079 (2)
H13A0.39060.05570.07350.095*
H13B0.18200.04150.08430.095*
C140.2466 (9)0.2216 (6)0.0085 (6)0.0720 (19)
C150.2433 (7)0.3529 (5)0.0155 (4)0.0515 (14)
C160.2172 (8)0.3767 (6)0.1179 (5)0.0683 (17)
H160.20280.31000.18140.082*
C170.2120 (9)0.4968 (6)0.1280 (5)0.0667 (16)
H170.19440.51190.19710.080*
C180.2339 (7)0.5940 (5)0.0324 (5)0.0540 (14)
C190.2565 (8)0.5734 (5)0.0685 (5)0.0549 (14)
H190.26740.64010.13130.066*
C200.2631 (8)0.4530 (5)0.0773 (4)0.0559 (14)
H200.28120.43910.14680.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0415 (3)0.0467 (3)0.0999 (5)0.0273 (2)0.0168 (3)0.0240 (3)
Br20.1142 (6)0.0704 (5)0.0953 (6)0.0032 (4)0.0313 (5)0.0441 (4)
N10.032 (2)0.049 (3)0.056 (3)0.0215 (19)0.011 (2)0.017 (2)
N20.036 (2)0.037 (2)0.064 (3)0.0206 (18)0.005 (2)0.017 (2)
O10.0207 (17)0.0457 (19)0.073 (2)0.0117 (14)0.0064 (16)0.0178 (17)
O20.069 (3)0.035 (2)0.067 (3)0.0199 (17)0.021 (2)0.0036 (18)
O30.173 (6)0.066 (3)0.070 (3)0.057 (3)0.024 (3)0.023 (3)
C10.030 (2)0.043 (3)0.040 (3)0.017 (2)0.011 (2)0.022 (2)
C20.044 (3)0.061 (3)0.069 (4)0.036 (3)0.012 (3)0.019 (3)
C30.054 (3)0.056 (3)0.084 (4)0.042 (3)0.027 (3)0.034 (3)
C40.024 (2)0.044 (3)0.039 (3)0.0146 (19)0.0058 (19)0.021 (2)
C50.024 (2)0.042 (3)0.031 (2)0.0128 (19)0.0062 (19)0.017 (2)
C60.023 (2)0.036 (2)0.029 (2)0.0089 (18)0.0058 (18)0.0131 (19)
C70.024 (2)0.037 (2)0.035 (3)0.0072 (18)0.0079 (19)0.013 (2)
C80.022 (2)0.041 (3)0.043 (3)0.0079 (19)0.008 (2)0.012 (2)
C90.030 (2)0.037 (2)0.043 (3)0.0172 (19)0.007 (2)0.013 (2)
C100.026 (2)0.033 (2)0.064 (3)0.0073 (19)0.012 (2)0.019 (2)
C110.024 (2)0.041 (3)0.054 (3)0.0082 (19)0.012 (2)0.017 (2)
C120.050 (3)0.037 (3)0.104 (5)0.012 (2)0.015 (3)0.032 (3)
C130.060 (4)0.032 (3)0.110 (6)0.008 (3)0.022 (4)0.009 (3)
C140.063 (4)0.056 (4)0.063 (4)0.028 (3)0.021 (3)0.009 (3)
C150.038 (3)0.054 (3)0.043 (3)0.020 (2)0.008 (2)0.002 (3)
C160.065 (4)0.072 (4)0.051 (4)0.020 (3)0.012 (3)0.008 (3)
C170.067 (4)0.084 (5)0.050 (4)0.012 (3)0.020 (3)0.021 (3)
C180.043 (3)0.061 (3)0.060 (4)0.005 (3)0.014 (3)0.024 (3)
C190.062 (4)0.050 (3)0.044 (3)0.015 (3)0.007 (3)0.007 (3)
C200.068 (4)0.051 (3)0.039 (3)0.019 (3)0.000 (3)0.010 (3)
Geometric parameters (Å, º) top
Br1—C91.908 (4)C7—H70.9300
Br2—C181.886 (6)C8—C91.378 (6)
N1—C11.331 (6)C8—H80.9300
N1—C21.452 (6)C9—C101.368 (6)
N1—H10.78 (5)C10—C111.377 (6)
N2—C11.346 (6)C10—H100.9300
N2—C121.447 (6)C11—H110.9300
N2—C31.459 (6)C12—C131.499 (9)
O1—C51.258 (5)C12—H12A0.9700
O2—C141.324 (8)C12—H12B0.9700
O2—C131.434 (6)C13—H13A0.9700
O3—C141.194 (7)C13—H13B0.9700
C1—C41.387 (6)C14—C151.488 (8)
C2—C31.503 (8)C15—C201.379 (7)
C2—H2A0.9700C15—C161.387 (8)
C2—H2B0.9700C16—C171.378 (9)
C3—H3A0.9700C16—H160.9300
C3—H3B0.9700C17—C181.381 (8)
C4—C51.390 (6)C17—H170.9300
C4—H40.9300C18—C191.355 (8)
C5—C61.503 (6)C19—C201.377 (7)
C6—C111.385 (6)C19—H190.9300
C6—C71.391 (5)C20—H200.9300
C7—C81.382 (6)
C1—N1—C2112.6 (4)C9—C10—C11119.0 (4)
C1—N1—H1119 (4)C9—C10—H10120.5
C2—N1—H1125 (4)C11—C10—H10120.5
C1—N2—C12125.8 (4)C10—C11—C6121.6 (4)
C1—N2—C3111.5 (4)C10—C11—H11119.2
C12—N2—C3122.6 (4)C6—C11—H11119.2
C14—O2—C13116.7 (5)N2—C12—C13113.7 (5)
N1—C1—N2109.0 (4)N2—C12—H12A108.8
N1—C1—C4124.7 (4)C13—C12—H12A108.8
N2—C1—C4126.3 (4)N2—C12—H12B108.8
N1—C2—C3103.2 (4)C13—C12—H12B108.8
N1—C2—H2A111.1H12A—C12—H12B107.7
C3—C2—H2A111.1O2—C13—C12107.6 (4)
N1—C2—H2B111.1O2—C13—H13A110.2
C3—C2—H2B111.1C12—C13—H13A110.2
H2A—C2—H2B109.1O2—C13—H13B110.2
N2—C3—C2103.6 (4)C12—C13—H13B110.2
N2—C3—H3A111.0H13A—C13—H13B108.5
C2—C3—H3A111.0O3—C14—O2122.6 (6)
N2—C3—H3B111.0O3—C14—C15125.3 (6)
C2—C3—H3B111.0O2—C14—C15112.1 (5)
H3A—C3—H3B109.0C20—C15—C16118.2 (5)
C1—C4—C5122.9 (4)C20—C15—C14121.9 (5)
C1—C4—H4118.6C16—C15—C14119.9 (5)
C5—C4—H4118.6C17—C16—C15121.6 (5)
O1—C5—C4124.2 (4)C17—C16—H16119.2
O1—C5—C6117.2 (4)C15—C16—H16119.2
C4—C5—C6118.6 (4)C16—C17—C18117.9 (6)
C11—C6—C7117.7 (4)C16—C17—H17121.1
C11—C6—C5119.4 (4)C18—C17—H17121.1
C7—C6—C5122.9 (4)C19—C18—C17121.9 (5)
C8—C7—C6121.5 (4)C19—C18—Br2119.6 (4)
C8—C7—H7119.2C17—C18—Br2118.5 (4)
C6—C7—H7119.2C18—C19—C20119.5 (5)
C9—C8—C7118.5 (4)C18—C19—H19120.3
C9—C8—H8120.7C20—C19—H19120.3
C7—C8—H8120.7C19—C20—C15120.9 (5)
C10—C9—C8121.6 (4)C19—C20—H20119.6
C10—C9—Br1119.9 (3)C15—C20—H20119.6
C8—C9—Br1118.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.78 (5)2.16 (5)2.706 (5)128 (5)
N1—H1···O1i0.78 (5)2.48 (6)3.020 (5)128 (5)
C3—H3A···O3ii0.972.433.296 (7)148
C8—H8···O1iii0.932.403.264 (5)154
C19—H19···Cg10.933.073.841 (6)141
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC20H18Br2N2O3
Mr494.18
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.3733 (15), 11.117 (2), 12.954 (2)
α, β, γ (°)104.635 (10), 105.108 (11), 96.700 (9)
V3)972.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)4.19
Crystal size (mm)0.39 × 0.37 × 0.34
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.292, 0.330
No. of measured, independent and
observed [I > 2σ(I)] reflections
4924, 3389, 2404
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.137, 1.04
No. of reflections3389
No. of parameters247
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 0.78

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.78 (5)2.16 (5)2.706 (5)128 (5)
N1—H1···O1i0.78 (5)2.48 (6)3.020 (5)128 (5)
C3—H3A···O3ii0.972.433.296 (7)147.7
C8—H8···O1iii0.932.403.264 (5)154.1
C19—H19···Cg10.933.073.841 (6)141.4
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds