Download citation
Download citation
link to html
In the title dinuclear palladium complex, [Pd2(C12H10P)2Cl2(C22H23P)2], the terminal ligands adopt a trans configuration with a Pd...Pd distance of 3.6111 (4) Å. A crystallographic twofold rotation axis runs perpendicular to the Pd2P2 ring. The Cl atom lies slightly out of the plane of the Pd and three P atoms in each half of the molecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030280/dn2205sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030280/dn2205Isup2.hkl
Contains datablock I

CCDC reference: 654817

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.031
  • wR factor = 0.064
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.775 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.98 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.26 Ratio PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 66.00 A   3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, [PdCl(µ2-PPh2){PPh2CH2(2,4,6-Me3C6H2)}]2, (I), is prepared in a similar manner as the isoelectronic dinuclear palladium complex [PdCl(µ2-PPh2)(PPh3)]2 (Brandon & Dixon, 1981). The triphenylphosphine being replaced by (mesithylmethyl)(diphenyl)phosphine (Chahen et al., 2006). The 31P{1H} NMR spectrum gives rise to two multiplets centred at 7.5 and -142.6 p.p.m. respectively. The signals are consistent with an AA'BB' spin system (Brandon & Dixon, 1981). The molecular structure of (I) shows the palladium atoms to be surrounded by two phosphido-bridged ligands, a chloride, and a PPh2CH2(2,4,6-Me3C6H2) ligand. The complex adopts the trans-symmetrical isomer, see scheme.

The two halves of the dinuclear complex are related by a crystallography twofold rotation axis, see Fig. 1. The Pd atoms are in a slightly distorted square-planar geometry. The plane formed by the palladium, the chloride and the three P atoms is mainly planar, with a maximum deviation from the mean plane of 0.0770 (4)Å for one bridging P atom. However, the angle between the two square-planar units is 12.63 (1)°, giving rise to a slightly bent conformation for the dimeric unit, see Fig. 2. Otherwise, the bond distances and angles are similar to those found in [PtCl(µ2-PPh2)(HPPh2)]2 (Carty et al., 1982), [PdCl(µ2-PPh2)(HPPh2)]2 (Gebauer et al., 1992) and [PdI(µ2-PPh2)(HPPh2)]2 (Zhuravel et al., 2000).

Related literature top

For similar dinuclear palladium complexes, see: Brandon & Dixon (1981); Carty et al. (1982); Gebauer et al. (1992); Zhuravel et al. (2000). For the synthesis of PPh2CH2(2,4,6-Me3C6H2), see: Chahen et al. (2006).

Experimental top

The synthesis of [PdCl(µ2-PPh2){PPh2CH2(2,4,6-Me3C6H2)}]2 is identical to the synthesis of [PdCl(µ2-PPh2)(PPh3)]2 (Brandon & Dixon, 1981). The yellow product is purified by column chromatography on silica gel (dichloromethane:acetone, 1:2).

1H NMR (CDCl3): 6.9–6.2 (m, 44H), 2.76 (m, 4H), 1.58 (s, 12H), 1.34 (m, 6H). 31P NMR (CDCl3): 7.5 and -142.6 p.p.m.. MS (ESI, m/z): 1291; [C68H66Cl2P4Pd2] Calcd. for C68H66Cl2P4Pd2: C, 63.27; H, 5.15 Found: C, 62.87; H, 5.02.

[PdCl(µ2-PPh2){PPh2CH2(2,4,6-Me3C6H2)}]2 is disolved in chloroform, and crystals suitable for X-ray diffraction analysis are obtained by slow evaporation of the chloroform solution.

Refinement top

The H atoms were included in calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

The title compound, [PdCl(µ2-PPh2){PPh2CH2(2,4,6-Me3C6H2)}]2, (I), is prepared in a similar manner as the isoelectronic dinuclear palladium complex [PdCl(µ2-PPh2)(PPh3)]2 (Brandon & Dixon, 1981). The triphenylphosphine being replaced by (mesithylmethyl)(diphenyl)phosphine (Chahen et al., 2006). The 31P{1H} NMR spectrum gives rise to two multiplets centred at 7.5 and -142.6 p.p.m. respectively. The signals are consistent with an AA'BB' spin system (Brandon & Dixon, 1981). The molecular structure of (I) shows the palladium atoms to be surrounded by two phosphido-bridged ligands, a chloride, and a PPh2CH2(2,4,6-Me3C6H2) ligand. The complex adopts the trans-symmetrical isomer, see scheme.

The two halves of the dinuclear complex are related by a crystallography twofold rotation axis, see Fig. 1. The Pd atoms are in a slightly distorted square-planar geometry. The plane formed by the palladium, the chloride and the three P atoms is mainly planar, with a maximum deviation from the mean plane of 0.0770 (4)Å for one bridging P atom. However, the angle between the two square-planar units is 12.63 (1)°, giving rise to a slightly bent conformation for the dimeric unit, see Fig. 2. Otherwise, the bond distances and angles are similar to those found in [PtCl(µ2-PPh2)(HPPh2)]2 (Carty et al., 1982), [PdCl(µ2-PPh2)(HPPh2)]2 (Gebauer et al., 1992) and [PdI(µ2-PPh2)(HPPh2)]2 (Zhuravel et al., 2000).

For similar dinuclear palladium complexes, see: Brandon & Dixon (1981); Carty et al. (1982); Gebauer et al. (1992); Zhuravel et al. (2000). For the synthesis of PPh2CH2(2,4,6-Me3C6H2), see: Chahen et al. (2006).

Computing details top

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 2000); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Version 1.4.1; Bruno et al., 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Bent conformation adopted by the title compound.
Di-µ-diphenylphosphido-bis{chlorido[(mesitylmethyl)diphenylphosphine- κP]palladium(II)]} top
Crystal data top
[Pd2(C12H10P)2Cl2(C22H23P)2]F(000) = 2640
Mr = 1290.83Dx = 1.392 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 8000 reflections
a = 12.0793 (7) Åθ = 2.1–25.9°
b = 22.6156 (14) ŵ = 0.81 mm1
c = 22.5499 (14) ÅT = 173 K
V = 6160.2 (6) Å3Plate, yellow
Z = 40.31 × 0.24 × 0.17 mm
Data collection top
Stoe IPDS
diffractometer
3498 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.089
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
Detector resolution: 0.81 pixels mm-1h = 1414
φ oscillation scansk = 2727
46413 measured reflectionsl = 2727
6011 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.78 w = 1/[σ2(Fo2) + (0.0284P)2]
where P = (Fo2 + 2Fc2)/3
6011 reflections(Δ/σ)max = 0.002
346 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Pd2(C12H10P)2Cl2(C22H23P)2]V = 6160.2 (6) Å3
Mr = 1290.83Z = 4
Orthorhombic, PccnMo Kα radiation
a = 12.0793 (7) ŵ = 0.81 mm1
b = 22.6156 (14) ÅT = 173 K
c = 22.5499 (14) Å0.31 × 0.24 × 0.17 mm
Data collection top
Stoe IPDS
diffractometer
3498 reflections with I > 2σ(I)
46413 measured reflectionsRint = 0.089
6011 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 0.78Δρmax = 0.53 e Å3
6011 reflectionsΔρmin = 0.98 e Å3
346 parameters
Special details top

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, φ oscillation scans 0 - 200°, step Δφ = 1.0°, 3 minutes per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3394 (2)0.68728 (15)0.14638 (15)0.0288 (8)
H1A0.33330.72990.14980.035*
H1B0.27260.67290.12730.035*
C20.3467 (2)0.66113 (15)0.20757 (16)0.0313 (8)
C30.2996 (3)0.60533 (16)0.21955 (18)0.0348 (9)
C40.3181 (3)0.57908 (17)0.27389 (19)0.0446 (10)
H40.28670.54230.28130.054*
C50.3810 (3)0.60503 (18)0.31752 (19)0.0467 (10)
C60.4210 (3)0.66176 (18)0.30728 (18)0.0442 (10)
H60.46010.68100.33710.053*
C70.4040 (3)0.69051 (15)0.25328 (16)0.0332 (8)
C80.2300 (3)0.57336 (17)0.17367 (18)0.0455 (10)
H8A0.20780.53560.18900.068*
H8B0.27260.56780.13820.068*
H8C0.16540.59650.16480.068*
C90.4049 (4)0.5717 (2)0.3747 (2)0.0758 (14)
H9A0.33900.55170.38760.114*
H9B0.42820.59910.40470.114*
H9C0.46250.54330.36790.114*
C100.4471 (3)0.75305 (17)0.24475 (16)0.0434 (9)
H10A0.38570.77990.24200.065*
H10B0.48990.75500.20900.065*
H10C0.49270.76380.27790.065*
C110.4922 (2)0.59215 (13)0.11434 (15)0.0257 (8)
C120.4717 (3)0.54607 (15)0.07458 (17)0.0335 (9)
H120.43770.55380.03840.040*
C130.5023 (3)0.48856 (15)0.08905 (17)0.0379 (10)
H130.48720.45790.06280.045*
C140.5544 (3)0.47669 (17)0.14176 (19)0.0409 (10)
H140.57720.43840.15040.049*
C150.5733 (3)0.52168 (16)0.18205 (18)0.0364 (9)
H150.60680.51350.21830.044*
C160.5420 (2)0.57898 (15)0.16824 (17)0.0304 (8)
H160.55450.60910.19550.036*
C170.4122 (2)0.67027 (14)0.02220 (15)0.0279 (8)
C180.4917 (3)0.67252 (16)0.02190 (16)0.0372 (9)
H180.56620.67160.01170.045*
C190.4618 (3)0.67611 (17)0.08118 (17)0.0443 (10)
H190.51630.67700.11030.053*
C200.3531 (3)0.67830 (17)0.09702 (19)0.0508 (11)
H200.33290.68100.13670.061*
C210.2743 (3)0.6765 (2)0.0539 (2)0.0614 (13)
H210.20000.67800.06460.074*
C220.3022 (3)0.67225 (18)0.00542 (18)0.0475 (11)
H220.24690.67080.03410.057*
C230.7748 (2)0.63475 (14)0.04978 (15)0.0256 (8)
C240.7492 (3)0.57485 (15)0.05565 (16)0.0324 (8)
H240.72510.56050.09210.039*
C250.7593 (3)0.53672 (18)0.00822 (18)0.0466 (10)
H250.74240.49690.01300.056*
C260.7940 (3)0.5572 (2)0.0457 (2)0.0540 (12)
H260.80010.53140.07770.065*
C270.8196 (3)0.6159 (2)0.05260 (18)0.0527 (11)
H270.84320.62970.08940.063*
C280.8109 (3)0.65508 (17)0.00562 (16)0.0378 (9)
H280.82890.69470.01080.045*
C290.7848 (2)0.65141 (14)0.17945 (16)0.0262 (8)
C300.8636 (3)0.60701 (15)0.18551 (18)0.0357 (9)
H300.90220.59340.15260.043*
C310.8840 (3)0.58332 (18)0.2410 (2)0.0500 (11)
H310.93550.55300.24500.060*
C320.8293 (3)0.6039 (2)0.2902 (2)0.0550 (12)
H320.84400.58750.32720.066*
C330.7531 (4)0.64862 (19)0.28494 (17)0.0513 (11)
H330.71700.66310.31830.062*
C340.7303 (3)0.67193 (16)0.22955 (16)0.0375 (9)
H340.67780.70180.22580.045*
Cl10.46039 (6)0.81271 (4)0.08771 (4)0.0368 (2)
P30.76040 (6)0.68822 (3)0.10901 (4)0.02197 (18)
P50.46032 (6)0.66918 (4)0.09866 (4)0.02419 (19)
Pd10.601393 (16)0.741408 (10)0.103340 (11)0.02204 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0208 (15)0.033 (2)0.033 (2)0.0008 (14)0.0053 (14)0.0005 (17)
C20.0270 (17)0.035 (2)0.032 (2)0.0045 (15)0.0070 (15)0.0018 (18)
C30.0304 (17)0.038 (2)0.037 (2)0.0009 (16)0.0071 (16)0.0002 (19)
C40.039 (2)0.042 (2)0.052 (3)0.0029 (18)0.012 (2)0.010 (2)
C50.048 (2)0.055 (3)0.037 (3)0.002 (2)0.006 (2)0.007 (2)
C60.045 (2)0.055 (3)0.033 (3)0.0003 (19)0.0029 (18)0.004 (2)
C70.0287 (16)0.036 (2)0.034 (2)0.0011 (17)0.0073 (17)0.0054 (17)
C80.042 (2)0.046 (3)0.048 (3)0.0153 (18)0.0046 (18)0.005 (2)
C90.095 (4)0.081 (4)0.052 (3)0.002 (3)0.010 (3)0.024 (3)
C100.0496 (19)0.045 (2)0.036 (2)0.0038 (19)0.0057 (16)0.010 (2)
C110.0238 (15)0.0244 (17)0.029 (2)0.0010 (13)0.0014 (14)0.0013 (16)
C120.0353 (18)0.033 (2)0.033 (2)0.0068 (15)0.0013 (16)0.0033 (17)
C130.048 (2)0.0225 (19)0.043 (3)0.0054 (16)0.0112 (18)0.0054 (18)
C140.046 (2)0.029 (2)0.048 (3)0.0036 (16)0.0113 (19)0.007 (2)
C150.0339 (19)0.038 (2)0.038 (3)0.0032 (15)0.0048 (16)0.0130 (19)
C160.0228 (16)0.032 (2)0.037 (2)0.0005 (14)0.0033 (15)0.0003 (18)
C170.0299 (17)0.0249 (18)0.029 (2)0.0019 (15)0.0042 (15)0.0012 (15)
C180.0399 (19)0.040 (2)0.031 (2)0.0046 (17)0.0001 (17)0.0013 (19)
C190.062 (3)0.042 (2)0.029 (2)0.0030 (19)0.0041 (19)0.0003 (19)
C200.070 (3)0.053 (2)0.029 (3)0.0086 (19)0.016 (2)0.000 (2)
C210.046 (3)0.090 (4)0.048 (3)0.011 (2)0.024 (2)0.006 (3)
C220.0335 (19)0.070 (3)0.039 (3)0.0002 (19)0.0039 (18)0.001 (2)
C230.0205 (17)0.030 (2)0.026 (2)0.0043 (13)0.0024 (13)0.0059 (16)
C240.0297 (15)0.032 (2)0.036 (2)0.0042 (15)0.0036 (19)0.0080 (18)
C250.046 (2)0.042 (2)0.052 (3)0.0046 (18)0.001 (2)0.019 (2)
C260.059 (2)0.061 (3)0.042 (3)0.002 (2)0.002 (2)0.028 (2)
C270.063 (3)0.076 (3)0.019 (2)0.007 (2)0.002 (2)0.005 (2)
C280.047 (2)0.041 (2)0.026 (2)0.0048 (17)0.0022 (18)0.0015 (19)
C290.0283 (17)0.0248 (19)0.026 (2)0.0061 (14)0.0016 (14)0.0050 (16)
C300.0361 (19)0.036 (2)0.035 (2)0.0031 (15)0.0041 (16)0.0025 (18)
C310.055 (2)0.043 (2)0.052 (3)0.010 (2)0.018 (2)0.014 (2)
C320.064 (3)0.068 (3)0.032 (3)0.006 (2)0.013 (2)0.019 (2)
C330.059 (2)0.070 (3)0.025 (2)0.003 (2)0.005 (2)0.007 (2)
C340.041 (2)0.039 (2)0.032 (2)0.0016 (16)0.0012 (16)0.0034 (19)
Cl10.0234 (4)0.0269 (5)0.0601 (7)0.0045 (3)0.0014 (4)0.0051 (4)
P30.0207 (4)0.0218 (4)0.0234 (5)0.0006 (3)0.0003 (4)0.0009 (4)
P50.0200 (4)0.0234 (4)0.0291 (5)0.0016 (3)0.0004 (4)0.0007 (4)
Pd10.01932 (10)0.02174 (12)0.02506 (13)0.00082 (11)0.00015 (11)0.00017 (13)
Geometric parameters (Å, º) top
C1—C21.504 (5)C18—C191.387 (5)
C1—P51.860 (3)C18—H180.9300
C1—H1A0.9700C19—C201.362 (5)
C1—H1B0.9700C19—H190.9300
C2—C71.408 (5)C20—C211.361 (6)
C2—C31.410 (5)C20—H200.9300
C3—C41.380 (5)C21—C221.382 (6)
C3—C81.517 (5)C21—H210.9300
C4—C51.375 (5)C22—H220.9300
C4—H40.9300C23—C241.396 (4)
C5—C61.390 (5)C23—C281.401 (5)
C5—C91.521 (6)C23—P31.810 (3)
C6—C71.396 (5)C24—C251.379 (5)
C6—H60.9300C24—H240.9300
C7—C101.519 (5)C25—C261.368 (6)
C8—H8A0.9600C25—H250.9300
C8—H8B0.9600C26—C271.373 (6)
C8—H8C0.9600C26—H260.9300
C9—H9A0.9600C27—C281.385 (5)
C9—H9B0.9600C27—H270.9300
C9—H9C0.9600C28—H280.9300
C10—H10A0.9600C29—C341.388 (5)
C10—H10B0.9600C29—C301.390 (4)
C10—H10C0.9600C29—P31.817 (3)
C11—C161.388 (5)C30—C311.383 (5)
C11—C121.397 (5)C30—H300.9300
C11—P51.819 (3)C31—C321.372 (6)
C12—C131.391 (5)C31—H310.9300
C12—H120.9300C32—C331.373 (6)
C13—C141.372 (5)C32—H320.9300
C13—H130.9300C33—C341.383 (5)
C14—C151.383 (5)C33—H330.9300
C14—H140.9300C34—H340.9300
C15—C161.385 (5)Cl1—Pd12.3718 (8)
C15—H150.9300P3—Pd12.2699 (8)
C16—H160.9300P3—Pd1i2.3101 (8)
C17—C181.383 (5)P5—Pd12.3629 (8)
C17—C221.383 (4)Pd1—P3i2.3101 (8)
C17—P51.819 (3)
C2—C1—P5113.5 (2)C20—C19—C18120.4 (4)
C2—C1—H1A108.9C20—C19—H19119.8
P5—C1—H1A108.9C18—C19—H19119.8
C2—C1—H1B108.9C21—C20—C19119.0 (4)
P5—C1—H1B108.9C21—C20—H20120.5
H1A—C1—H1B107.7C19—C20—H20120.5
C7—C2—C3118.7 (3)C20—C21—C22121.5 (4)
C7—C2—C1121.0 (3)C20—C21—H21119.2
C3—C2—C1120.3 (3)C22—C21—H21119.2
C4—C3—C2119.3 (4)C21—C22—C17120.1 (4)
C4—C3—C8119.4 (3)C21—C22—H22120.0
C2—C3—C8121.3 (3)C17—C22—H22120.0
C5—C4—C3122.8 (4)C24—C23—C28118.2 (3)
C5—C4—H4118.6C24—C23—P3123.9 (3)
C3—C4—H4118.6C28—C23—P3117.9 (3)
C4—C5—C6117.9 (4)C25—C24—C23120.9 (4)
C4—C5—C9120.0 (4)C25—C24—H24119.5
C6—C5—C9122.1 (4)C23—C24—H24119.5
C5—C6—C7121.6 (4)C26—C25—C24120.3 (4)
C5—C6—H6119.2C26—C25—H25119.8
C7—C6—H6119.2C24—C25—H25119.8
C6—C7—C2119.4 (3)C25—C26—C27119.8 (4)
C6—C7—C10119.6 (3)C25—C26—H26120.1
C2—C7—C10121.0 (3)C27—C26—H26120.1
C3—C8—H8A109.5C26—C27—C28121.0 (4)
C3—C8—H8B109.5C26—C27—H27119.5
H8A—C8—H8B109.5C28—C27—H27119.5
C3—C8—H8C109.5C27—C28—C23119.8 (4)
H8A—C8—H8C109.5C27—C28—H28120.1
H8B—C8—H8C109.5C23—C28—H28120.1
C5—C9—H9A109.5C34—C29—C30119.1 (3)
C5—C9—H9B109.5C34—C29—P3118.8 (3)
H9A—C9—H9B109.5C30—C29—P3121.9 (3)
C5—C9—H9C109.5C31—C30—C29119.4 (4)
H9A—C9—H9C109.5C31—C30—H30120.3
H9B—C9—H9C109.5C29—C30—H30120.3
C7—C10—H10A109.5C32—C31—C30120.9 (4)
C7—C10—H10B109.5C32—C31—H31119.5
H10A—C10—H10B109.5C30—C31—H31119.5
C7—C10—H10C109.5C31—C32—C33120.2 (4)
H10A—C10—H10C109.5C31—C32—H32119.9
H10B—C10—H10C109.5C33—C32—H32119.9
C16—C11—C12118.6 (3)C32—C33—C34119.4 (4)
C16—C11—P5117.9 (3)C32—C33—H33120.3
C12—C11—P5123.5 (3)C34—C33—H33120.3
C13—C12—C11120.0 (3)C33—C34—C29120.9 (4)
C13—C12—H12120.0C33—C34—H34119.5
C11—C12—H12120.0C29—C34—H34119.5
C14—C13—C12120.5 (3)C23—P3—C29108.87 (16)
C14—C13—H13119.7C23—P3—Pd1113.18 (10)
C12—C13—H13119.7C29—P3—Pd1115.42 (11)
C13—C14—C15120.1 (4)C23—P3—Pd1i110.50 (10)
C13—C14—H14120.0C29—P3—Pd1i104.28 (10)
C15—C14—H14120.0Pd1—P3—Pd1i104.08 (3)
C14—C15—C16119.7 (4)C11—P5—C17105.36 (15)
C14—C15—H15120.2C11—P5—C1105.35 (15)
C16—C15—H15120.2C17—P5—C1107.13 (15)
C15—C16—C11121.1 (3)C11—P5—Pd1120.04 (10)
C15—C16—H16119.5C17—P5—Pd1105.25 (10)
C11—C16—H16119.5C1—P5—Pd1112.86 (11)
C18—C17—C22118.0 (3)P3—Pd1—P3i75.55 (3)
C18—C17—P5117.4 (2)P3—Pd1—P5104.26 (3)
C22—C17—P5124.5 (3)P3i—Pd1—P5179.37 (4)
C17—C18—C19121.0 (3)P3—Pd1—Cl1167.50 (3)
C17—C18—H18119.5P3i—Pd1—Cl193.37 (3)
C19—C18—H18119.5P5—Pd1—Cl186.87 (3)
P5—C1—C2—C785.3 (3)C31—C32—C33—C341.2 (6)
P5—C1—C2—C392.2 (3)C32—C33—C34—C291.1 (6)
C7—C2—C3—C44.9 (5)C30—C29—C34—C330.3 (5)
C1—C2—C3—C4172.6 (3)P3—C29—C34—C33174.6 (3)
C7—C2—C3—C8175.6 (3)C24—C23—P3—C2931.2 (3)
C1—C2—C3—C86.9 (5)C28—C23—P3—C29150.5 (2)
C2—C3—C4—C50.0 (5)C24—C23—P3—Pd198.5 (3)
C8—C3—C4—C5179.5 (3)C28—C23—P3—Pd179.7 (2)
C3—C4—C5—C64.3 (6)C24—C23—P3—Pd1i145.2 (2)
C3—C4—C5—C9175.6 (4)C28—C23—P3—Pd1i36.6 (3)
C4—C5—C6—C73.7 (6)C34—C29—P3—C23149.4 (3)
C9—C5—C6—C7176.2 (4)C30—C29—P3—C2336.5 (3)
C5—C6—C7—C21.1 (5)C34—C29—P3—Pd120.9 (3)
C5—C6—C7—C10178.6 (3)C30—C29—P3—Pd1165.0 (2)
C3—C2—C7—C65.5 (5)C34—C29—P3—Pd1i92.6 (3)
C1—C2—C7—C6172.1 (3)C30—C29—P3—Pd1i81.5 (3)
C3—C2—C7—C10174.2 (3)C16—C11—P5—C17173.5 (2)
C1—C2—C7—C108.3 (5)C12—C11—P5—C175.0 (3)
C16—C11—C12—C130.8 (5)C16—C11—P5—C173.4 (3)
P5—C11—C12—C13177.6 (2)C12—C11—P5—C1108.1 (3)
C11—C12—C13—C141.2 (5)C16—C11—P5—Pd155.2 (3)
C12—C13—C14—C152.5 (5)C12—C11—P5—Pd1123.2 (2)
C13—C14—C15—C161.8 (5)C18—C17—P5—C1183.7 (3)
C14—C15—C16—C110.3 (5)C22—C17—P5—C11100.0 (3)
C12—C11—C16—C151.5 (4)C18—C17—P5—C1164.5 (3)
P5—C11—C16—C15177.0 (2)C22—C17—P5—C111.8 (3)
C22—C17—C18—C190.6 (5)C18—C17—P5—Pd144.1 (3)
P5—C17—C18—C19177.1 (3)C22—C17—P5—Pd1132.2 (3)
C17—C18—C19—C200.9 (6)C2—C1—P5—C1140.5 (3)
C18—C19—C20—C210.5 (6)C2—C1—P5—C17152.3 (2)
C19—C20—C21—C220.2 (7)C2—C1—P5—Pd192.3 (2)
C20—C21—C22—C170.5 (7)C23—P3—Pd1—P3i126.54 (12)
C18—C17—C22—C210.1 (6)C29—P3—Pd1—P3i107.09 (11)
P5—C17—C22—C21176.2 (3)Pd1i—P3—Pd1—P3i6.53 (5)
C28—C23—C24—C250.0 (5)C23—P3—Pd1—P554.08 (13)
P3—C23—C24—C25178.3 (3)C29—P3—Pd1—P572.29 (12)
C23—C24—C25—C260.4 (6)Pd1i—P3—Pd1—P5174.09 (3)
C24—C25—C26—C270.5 (6)C23—P3—Pd1—Cl198.4 (2)
C25—C26—C27—C280.1 (6)C29—P3—Pd1—Cl1135.22 (18)
C26—C27—C28—C230.3 (6)Pd1i—P3—Pd1—Cl121.60 (18)
C24—C23—C28—C270.4 (5)C11—P5—Pd1—P311.84 (14)
P3—C23—C28—C27178.0 (3)C17—P5—Pd1—P3106.51 (11)
C34—C29—C30—C311.5 (5)C1—P5—Pd1—P3136.98 (12)
P3—C29—C30—C31175.6 (3)C11—P5—Pd1—Cl1173.91 (14)
C29—C30—C31—C321.4 (6)C17—P5—Pd1—Cl167.74 (11)
C30—C31—C32—C330.0 (6)C1—P5—Pd1—Cl148.76 (12)
Symmetry code: (i) x+3/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Pd2(C12H10P)2Cl2(C22H23P)2]
Mr1290.83
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)173
a, b, c (Å)12.0793 (7), 22.6156 (14), 22.5499 (14)
V3)6160.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.31 × 0.24 × 0.17
Data collection
DiffractometerStoe IPDS
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
46413, 6011, 3498
Rint0.089
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.064, 0.78
No. of reflections6011
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.98

Computer programs: EXPOSE in IPDS Software (Stoe & Cie, 2000), CELL in IPDS Software, INTEGRATE in IPDS Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Version 1.4.1; Bruno et al., 2002), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds