Download citation
Download citation
link to html
The title compound, [Cu(C5H3N6)2(NH3)2]·2H2O, consists of a mononuclear copper complex and two solvent water mol­ecules. The center CuII ion is coordinated by two NH3 and two 5-(pyrimidin-2-yl)tetra­zolato ligands through the tetra­zole N atoms in the 1 positions to form a square geometry. The two axial positions are occupied by weakly coordinated pyrimidinyl N atoms, thus giving rise to a highly distorted octa­hedral geometry. Furthermore, extensive inter­molecular hydrogen-bond inter­actions lead to the formation of a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028668/er2035sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028668/er2035Isup2.hkl
Contains datablock I

CCDC reference: 654786

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.036
  • wR factor = 0.097
  • Data-to-parameter ratio = 13.8

checkCIF/PLATON results

No syntax errors found




Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.77 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.64 Ratio PLAT420_ALERT_2_C D-H Without Acceptor N13 - H13C ... ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.849(10) ...... 4.00 su-Ra O2W -H2WA 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.85(4), Rep 0.848(10) ...... 4.00 su-Ra O2W -H2WB 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.850(10) ...... 4.00 su-Ra O2W -H1# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(4), Rep 0.850(10) ...... 4.00 su-Ra O2W -H3# 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 2.20(4), Rep 2.199(12) ...... 3.33 su-Ra H3# -N8 1.555 1.655
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.775 Tmax scaled 0.775 Tmin scaled 0.756 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.14 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The crystal structures of Fe(II) and Co(II) complexes with 5-(pyrimidin-2-yl)tetrazolate ligand have been reported recently (Rodríguez et al., 2005), which feature a two-dimensional square-grid-like network. And, the ligands coordinate to metal atoms through one of the pyrimidinyl nitrogen atoms and the 1- and 3-positon tetrazole nitrogen atoms. The title complex, diamminobis[5-(pyrimidin-2-yl-κN1)tetrazolato-κN1]copper(II) dehydrate (I) performs a mono-nuclear structure (Fig. 1), in which the center CuII atom, located on a normal position, is normally coordinated by two NH3 and two ligand molecules using tetrazole N atoms in 1-position to form a square geometry. Simultaneously, two apical positions in CuII atom form weak coordination (Cu1-N11 = 2.429 (2) and Cu1-N5 = 2.728 (2) Å) with two pyrimidinyl N atoms of two ligands, thus giving a highly distorted octahedral geometry (see Table 1). In addition, a three-dimensional supramolecular framework (Fig. 2) is formed by the intermolecular extensive N-H···O, N-H···N, O-H···N and O-H···O hydrogen-bond interactions between parking water molecules and complex molecules. The hydrogen bond parameters are listed in Table 2.

Related literature top

For related literature, see: Demko & Sharpless (2001); Rodríguez et al. (2005).

Experimental top

TThe ligand, 2-(1H-tetrazol-5-yl)pyrimidine (L) was synthesized according to the literature method (Demko & Sharpless, 2001). CuCl2.2H2O (34 mg, 0.2 mmol) and L (60 mg, 0.4 mmol) were dissolved in ammonium hydroxide (20%, 10 ml). The solution was filtered, and then filtrate was allowed to stand for about 10 days. Blue crystals of (I) were isolated in about 30% yield.

Refinement top

H atoms bound to carbon and amine were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 and N—H = 0.89 Å and Uiso(H) = 1.2 and 1.5 Ueq(C and N), respectively. The H atoms of the water molecules were located in Fourier difference maps and refined with isotropic displacement parameters set at 1.5 times those of the parent O atoms.

Structure description top

The crystal structures of Fe(II) and Co(II) complexes with 5-(pyrimidin-2-yl)tetrazolate ligand have been reported recently (Rodríguez et al., 2005), which feature a two-dimensional square-grid-like network. And, the ligands coordinate to metal atoms through one of the pyrimidinyl nitrogen atoms and the 1- and 3-positon tetrazole nitrogen atoms. The title complex, diamminobis[5-(pyrimidin-2-yl-κN1)tetrazolato-κN1]copper(II) dehydrate (I) performs a mono-nuclear structure (Fig. 1), in which the center CuII atom, located on a normal position, is normally coordinated by two NH3 and two ligand molecules using tetrazole N atoms in 1-position to form a square geometry. Simultaneously, two apical positions in CuII atom form weak coordination (Cu1-N11 = 2.429 (2) and Cu1-N5 = 2.728 (2) Å) with two pyrimidinyl N atoms of two ligands, thus giving a highly distorted octahedral geometry (see Table 1). In addition, a three-dimensional supramolecular framework (Fig. 2) is formed by the intermolecular extensive N-H···O, N-H···N, O-H···N and O-H···O hydrogen-bond interactions between parking water molecules and complex molecules. The hydrogen bond parameters are listed in Table 2.

For related literature, see: Demko & Sharpless (2001); Rodríguez et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97; molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Three-dimensional hydrogen-bonded network.
Diamminebis[5-(pyrimidin-2-yl-κN1)tetrazolato-κN1]copper(II) dihydrate top
Crystal data top
[Cu(C5H3N6)2(NH3)2]·2H2OZ = 2
Mr = 427.91F(000) = 438
Triclinic, P1Dx = 1.605 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1533 (12) ÅCell parameters from 3035 reflections
b = 9.5708 (16) Åθ = 2.5–26.4°
c = 13.155 (2) ŵ = 1.28 mm1
α = 97.048 (3)°T = 294 K
β = 90.214 (2)°Block, blue
γ = 97.777 (3)°0.22 × 0.22 × 0.20 mm
V = 885.4 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3549 independent reflections
Radiation source: fine-focus sealed tube3104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 26.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 68
Tmin = 0.975, Tmax = 1.000k = 1110
5086 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.2049P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3549 reflectionsΔρmax = 0.56 e Å3
257 parametersΔρmin = 0.63 e Å3
4 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.096 (5)
Crystal data top
[Cu(C5H3N6)2(NH3)2]·2H2Oγ = 97.777 (3)°
Mr = 427.91V = 885.4 (2) Å3
Triclinic, P1Z = 2
a = 7.1533 (12) ÅMo Kα radiation
b = 9.5708 (16) ŵ = 1.28 mm1
c = 13.155 (2) ÅT = 294 K
α = 97.048 (3)°0.22 × 0.22 × 0.20 mm
β = 90.214 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3549 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3104 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 1.000Rint = 0.023
5086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0364 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.56 e Å3
3549 reflectionsΔρmin = 0.63 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.23179 (3)0.95624 (3)0.245828 (19)0.02515 (13)
N10.2492 (3)1.0675 (2)0.38683 (14)0.0257 (4)
N20.2601 (3)1.2084 (2)0.41174 (16)0.0352 (5)
N30.2667 (3)1.2353 (2)0.51209 (17)0.0402 (5)
N40.2606 (3)1.1139 (2)0.55440 (15)0.0333 (5)
N50.2149 (3)0.7757 (2)0.39173 (18)0.0384 (5)
N60.2597 (4)0.8204 (2)0.57417 (18)0.0448 (6)
N70.2131 (3)0.8657 (2)0.09642 (15)0.0285 (4)
N80.1767 (3)0.7331 (2)0.04961 (17)0.0389 (5)
N90.1783 (4)0.7390 (3)0.05057 (18)0.0469 (6)
N100.2150 (3)0.8732 (3)0.07049 (16)0.0410 (5)
N110.2867 (3)1.1532 (2)0.14470 (15)0.0314 (4)
N120.2938 (3)1.1822 (3)0.03200 (16)0.0418 (5)
C10.2495 (3)1.0122 (2)0.47534 (17)0.0246 (5)
C20.2402 (3)0.8601 (2)0.48099 (18)0.0282 (5)
C30.2101 (5)0.6381 (3)0.3973 (3)0.0554 (8)
H3A0.19210.57510.33730.067*
C40.2309 (5)0.5847 (3)0.4888 (3)0.0641 (10)
H4A0.22870.48790.49160.077*
C50.2547 (5)0.6800 (3)0.5747 (3)0.0642 (10)
H5A0.26830.64610.63730.077*
C60.2364 (3)0.9490 (3)0.02177 (17)0.0284 (5)
C70.2752 (3)1.1045 (3)0.04536 (18)0.0291 (5)
C80.3217 (4)1.2939 (3)0.1692 (2)0.0407 (6)
H8A0.33231.33160.23790.049*
C90.3426 (4)1.3842 (3)0.0953 (2)0.0478 (7)
H9A0.36621.48220.11240.057*
C100.3270 (4)1.3236 (3)0.0047 (2)0.0502 (7)
H10A0.33991.38270.05600.060*
N140.5061 (3)0.9386 (3)0.24816 (16)0.0369 (5)
H14A0.52540.86820.28350.055*
H14B0.57041.01960.27770.055*
H14C0.54490.92030.18430.055*
N130.0473 (3)0.9502 (3)0.24504 (15)0.0383 (5)
H13A0.09860.88130.28010.057*
H13B0.09150.93340.18070.057*
H13C0.07681.03320.27390.057*
O1W0.6222 (4)0.6186 (4)0.2726 (2)0.0799 (8)
H2WA0.895 (7)0.449 (3)0.145 (4)0.120*
H1WA0.655 (7)0.643 (6)0.3348 (14)0.120*
O2W0.9450 (4)0.5292 (3)0.17569 (19)0.0651 (6)
H2WB1.008 (6)0.579 (4)0.135 (3)0.098*
H1WB0.731 (3)0.610 (6)0.251 (3)0.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01906 (17)0.0352 (2)0.02059 (18)0.00532 (11)0.00056 (10)0.00088 (11)
N10.0269 (10)0.0287 (10)0.0217 (9)0.0063 (8)0.0015 (7)0.0010 (8)
N20.0455 (13)0.0277 (10)0.0331 (11)0.0075 (9)0.0035 (9)0.0042 (9)
N30.0575 (15)0.0301 (11)0.0322 (12)0.0083 (10)0.0039 (10)0.0019 (9)
N40.0457 (12)0.0274 (10)0.0259 (10)0.0048 (9)0.0015 (9)0.0000 (8)
N50.0390 (12)0.0318 (11)0.0415 (13)0.0038 (9)0.0001 (10)0.0051 (9)
N60.0580 (15)0.0366 (12)0.0408 (13)0.0028 (11)0.0064 (11)0.0130 (10)
N70.0244 (10)0.0329 (10)0.0269 (10)0.0040 (8)0.0010 (8)0.0012 (8)
N80.0427 (13)0.0353 (12)0.0363 (12)0.0059 (10)0.0024 (9)0.0054 (9)
N90.0540 (15)0.0445 (14)0.0380 (13)0.0049 (11)0.0038 (11)0.0101 (10)
N100.0474 (13)0.0467 (14)0.0263 (11)0.0057 (11)0.0018 (9)0.0056 (10)
N110.0341 (11)0.0340 (11)0.0259 (10)0.0057 (9)0.0019 (8)0.0016 (8)
N120.0441 (13)0.0507 (14)0.0296 (11)0.0030 (11)0.0026 (9)0.0113 (10)
C10.0214 (10)0.0305 (12)0.0211 (11)0.0040 (9)0.0002 (8)0.0004 (9)
C20.0238 (11)0.0277 (12)0.0327 (12)0.0026 (9)0.0006 (9)0.0039 (10)
C30.0542 (19)0.0307 (15)0.076 (2)0.0039 (13)0.0033 (16)0.0113 (14)
C40.067 (2)0.0276 (15)0.099 (3)0.0053 (14)0.006 (2)0.0125 (17)
C50.081 (2)0.0436 (18)0.074 (2)0.0062 (17)0.0107 (19)0.0299 (17)
C60.0199 (10)0.0409 (13)0.0234 (11)0.0045 (9)0.0001 (8)0.0007 (9)
C70.0202 (11)0.0407 (13)0.0258 (12)0.0033 (9)0.0002 (9)0.0033 (10)
C80.0456 (15)0.0358 (14)0.0389 (14)0.0051 (11)0.0020 (12)0.0015 (11)
C90.0487 (17)0.0344 (14)0.0589 (19)0.0019 (12)0.0016 (14)0.0089 (13)
C100.0549 (18)0.0475 (17)0.0496 (17)0.0036 (14)0.0000 (14)0.0239 (14)
N140.0262 (10)0.0590 (14)0.0258 (10)0.0120 (10)0.0029 (8)0.0000 (9)
N130.0230 (10)0.0663 (15)0.0250 (10)0.0072 (10)0.0001 (8)0.0023 (10)
O1W0.0835 (19)0.094 (2)0.0572 (16)0.0256 (17)0.0117 (15)0.0251 (15)
O2W0.0788 (18)0.0543 (14)0.0550 (14)0.0030 (12)0.0053 (12)0.0155 (11)
Geometric parameters (Å, º) top
Cu1—N12.0170 (18)N12—C101.345 (4)
Cu1—N52.728 (2)C1—C21.459 (3)
Cu1—N72.0447 (19)C3—C41.379 (5)
Cu1—N112.429 (2)C3—H3A0.9300
Cu1—N131.990 (2)C4—C51.357 (5)
Cu1—N141.992 (2)C4—H4A0.9300
N1—C11.337 (3)C5—H5A0.9300
N1—N21.339 (3)C6—C71.471 (3)
N2—N31.313 (3)C8—C91.374 (4)
N3—N41.344 (3)C8—H8A0.9300
N4—C11.329 (3)C9—C101.369 (4)
N5—C31.324 (4)C9—H9A0.9300
N5—C21.338 (3)C10—H10A0.9300
N6—C21.339 (3)N14—H14A0.8900
N6—C51.341 (4)N14—H14B0.8900
N7—N81.332 (3)N14—H14C0.8900
N7—C61.336 (3)N13—H13A0.8900
N8—N91.326 (3)N13—H13B0.8900
N9—N101.334 (3)N13—H13C0.8900
N10—C61.332 (3)O1W—H1WA0.846 (10)
N11—C71.331 (3)O1W—H1WB0.843 (10)
N11—C81.334 (3)O2W—H2WA0.849 (10)
N12—C71.329 (3)O2W—H2WB0.848 (10)
N13—Cu1—N14173.45 (9)C4—C3—H3A118.8
N13—Cu1—N190.18 (8)C5—C4—C3117.0 (3)
N14—Cu1—N191.95 (8)C5—C4—H4A121.5
N13—Cu1—N788.98 (8)C3—C4—H4A121.5
N14—Cu1—N789.61 (8)N6—C5—C4123.4 (3)
N1—Cu1—N7173.28 (7)N6—C5—H5A118.3
N13—Cu1—N1194.55 (8)C4—C5—H5A118.3
N14—Cu1—N1191.24 (8)N10—C6—N7111.5 (2)
N1—Cu1—N1198.88 (7)N10—C6—C7127.4 (2)
N7—Cu1—N1174.54 (7)N7—C6—C7121.1 (2)
C1—N1—N2106.16 (18)N12—C7—N11126.4 (2)
C1—N1—Cu1125.67 (16)N12—C7—C6118.5 (2)
N2—N1—Cu1128.17 (15)N11—C7—C6115.1 (2)
N3—N2—N1107.98 (19)N11—C8—C9121.5 (3)
N2—N3—N4110.3 (2)N11—C8—H8A119.2
C1—N4—N3104.76 (19)C9—C8—H8A119.2
C3—N5—C2115.6 (3)C10—C9—C8117.1 (3)
C2—N6—C5114.4 (3)C10—C9—H9A121.5
N8—N7—C6105.87 (19)C8—C9—H9A121.5
N8—N7—Cu1134.76 (17)N12—C10—C9122.9 (3)
C6—N7—Cu1119.35 (16)N12—C10—H10A118.6
N9—N8—N7107.8 (2)C9—C10—H10A118.6
N8—N9—N10110.8 (2)Cu1—N14—H14A109.5
C6—N10—N9104.1 (2)Cu1—N14—H14B109.5
C7—N11—C8116.9 (2)H14A—N14—H14B109.5
C7—N11—Cu1109.90 (16)Cu1—N14—H14C109.5
C8—N11—Cu1133.21 (17)H14A—N14—H14C109.5
C7—N12—C10115.2 (2)H14B—N14—H14C109.5
N4—C1—N1110.8 (2)Cu1—N13—H13A109.5
N4—C1—C2126.1 (2)Cu1—N13—H13B109.5
N1—C1—C2123.1 (2)H13A—N13—H13B109.5
N5—C2—N6127.2 (2)Cu1—N13—H13C109.5
N5—C2—C1116.0 (2)H13A—N13—H13C109.5
N6—C2—C1116.8 (2)H13B—N13—H13C109.5
N5—C3—C4122.4 (3)H1WA—O1W—H1WB96 (5)
N5—C3—H3A118.8H2WA—O2W—H2WB112 (5)
N13—Cu1—N1—C192.85 (19)C3—N5—C2—N60.5 (4)
N14—Cu1—N1—C180.95 (19)C3—N5—C2—C1178.8 (2)
N11—Cu1—N1—C1172.51 (18)C5—N6—C2—N50.8 (4)
N13—Cu1—N1—N286.2 (2)C5—N6—C2—C1178.4 (3)
N14—Cu1—N1—N2100.0 (2)N4—C1—C2—N5175.0 (2)
N11—Cu1—N1—N28.5 (2)N1—C1—C2—N55.5 (3)
C1—N1—N2—N30.0 (3)N4—C1—C2—N65.7 (4)
Cu1—N1—N2—N3179.19 (16)N1—C1—C2—N6173.8 (2)
N1—N2—N3—N40.1 (3)C2—N5—C3—C40.4 (5)
N2—N3—N4—C10.2 (3)N5—C3—C4—C50.7 (5)
N13—Cu1—N7—N883.5 (2)C2—N6—C5—C40.4 (5)
N14—Cu1—N7—N890.1 (2)C3—C4—C5—N60.3 (6)
N11—Cu1—N7—N8178.6 (2)N9—N10—C6—N70.3 (3)
N14—Cu1—N7—C691.74 (18)N9—N10—C6—C7178.6 (2)
N11—Cu1—N7—C60.35 (16)N8—N7—C6—N100.3 (3)
C6—N7—N8—N90.1 (3)Cu1—N7—C6—N10178.39 (16)
Cu1—N7—N8—N9178.26 (17)N8—N7—C6—C7178.7 (2)
N7—N8—N9—N100.1 (3)Cu1—N7—C6—C70.0 (3)
N8—N9—N10—C60.3 (3)C10—N12—C7—N110.2 (4)
N13—Cu1—N11—C786.98 (16)C10—N12—C7—C6179.3 (2)
N14—Cu1—N11—C789.95 (16)C8—N11—C7—N120.5 (4)
N1—Cu1—N11—C7177.88 (15)Cu1—N11—C7—N12178.6 (2)
N7—Cu1—N11—C70.69 (15)C8—N11—C7—C6180.0 (2)
N13—Cu1—N11—C891.9 (2)Cu1—N11—C7—C60.9 (2)
N14—Cu1—N11—C891.1 (2)N10—C6—C7—N120.7 (4)
N1—Cu1—N11—C81.0 (2)N7—C6—C7—N12178.8 (2)
N7—Cu1—N11—C8179.6 (3)N10—C6—C7—N11178.8 (2)
N3—N4—C1—N10.2 (3)N7—C6—C7—N110.7 (3)
N3—N4—C1—C2179.8 (2)C7—N11—C8—C90.8 (4)
N2—N1—C1—N40.2 (3)Cu1—N11—C8—C9178.1 (2)
Cu1—N1—C1—N4179.34 (15)N11—C8—C9—C100.4 (4)
N2—N1—C1—C2179.7 (2)C7—N12—C10—C90.6 (4)
Cu1—N1—C1—C21.1 (3)C8—C9—C10—N120.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O1W0.892.563.332 (4)145
N14—H14A···N4i0.892.593.209 (3)127
N14—H14B···N6i0.892.523.345 (3)154
N14—H14C···N12ii0.892.483.339 (3)162
N13—H13A···N4iii0.892.473.137 (3)132
N13—H13B···N12iv0.892.483.325 (3)158
O2W—H2WA···N9v0.85 (1)2.07 (2)2.901 (3)168 (5)
O1W—H1WA···N3i0.85 (1)2.23 (2)3.053 (3)165 (5)
O1W—H1WA···N4i0.85 (1)2.59 (4)3.227 (3)133 (5)
O2W—H2WB···N8vi0.85 (1)2.20 (1)3.041 (4)172 (4)
O1W—H1WB···O2W0.84 (1)2.01 (2)2.825 (4)161 (5)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z; (iii) x, y+2, z+1; (iv) x, y+2, z; (v) x+1, y+1, z; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C5H3N6)2(NH3)2]·2H2O
Mr427.91
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.1533 (12), 9.5708 (16), 13.155 (2)
α, β, γ (°)97.048 (3), 90.214 (2), 97.777 (3)
V3)885.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.22 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.975, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5086, 3549, 3104
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.04
No. of reflections3549
No. of parameters257
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.63

Computer programs: SMART (Bruker, 1998), SMART, SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97, SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N12.0170 (18)Cu1—N112.429 (2)
Cu1—N52.728 (2)Cu1—N131.990 (2)
Cu1—N72.0447 (19)Cu1—N141.992 (2)
N13—Cu1—N14173.45 (9)N1—Cu1—N7173.28 (7)
N13—Cu1—N190.18 (8)N13—Cu1—N1194.55 (8)
N14—Cu1—N191.95 (8)N14—Cu1—N1191.24 (8)
N13—Cu1—N788.98 (8)N1—Cu1—N1198.88 (7)
N14—Cu1—N789.61 (8)N7—Cu1—N1174.54 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14A···O1W0.892.563.332 (4)145.2
N14—H14A···N4i0.892.593.209 (3)126.9
N14—H14B···N6i0.892.523.345 (3)154.0
N14—H14C···N12ii0.892.483.339 (3)162.2
N13—H13A···N4iii0.892.473.137 (3)132.2
N13—H13B···N12iv0.892.483.325 (3)158.2
O2W—H2WA···N9v0.85 (1)2.07 (2)2.901 (3)168 (5)
O1W—H1WA···N3i0.85 (1)2.23 (2)3.053 (3)165 (5)
O1W—H1WA···N4i0.85 (1)2.59 (4)3.227 (3)133 (5)
O2W—H2WB···N8vi0.85 (1)2.199 (12)3.041 (4)172 (4)
O1W—H1WB···O2W0.84 (1)2.01 (2)2.825 (4)161 (5)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z; (iii) x, y+2, z+1; (iv) x, y+2, z; (v) x+1, y+1, z; (vi) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds