Download citation
Download citation
link to html
In the title complex, [Eu(NO3)4(C10H9N2)(C10H8N2)], each EuIII ion is ten-coordinated by an N atom from a 4,4′-bipyridine mol­ecule, an N atom from a 4′-(4-pyridyl)­pyridinium cation and eight O atoms from four different nitrate ions. A C2 axis passes through the EuIII ion. Adjacent mol­ecules are connected by strong and weak hydrogen bonds to construct a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807022982/hg2235sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807022982/hg2235Isup2.hkl
Contains datablock I

CCDC reference: 655591

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.018
  • wR factor = 0.049
  • Data-to-parameter ratio = 11.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Eu1 - O6 .. 11.98 su
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.94 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Eu1 - O1 .. 9.98 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Eu1 - O3 .. 9.71 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Eu1 - O4 .. 7.70 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Eu1
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.943 Tmax scaled 0.583 Tmin scaled 0.503 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Eu1 (3) 2.49 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Rare earth complexes with luminescent properties feature long emission life but narrow emission bands. Complexes of different rare earth metals yield each of the three basic colors (Eu3+ for red, Tb3+ for green and Eu2+ for blue) and represent potential candidates for the preparation of new generational display and other luminescent instruments (Shaheen et al., 1999; Adachi et al.,2000). Past research shows it is important to select ligands which can match the central metal ions in energy and thus lead to 'antenna effect' (Sabbatini et al.,1993). Complexes of EuIII ion with 4,4'-bipyridine or its dioxide derivative as a bidentate ligand have been reported (Cotton et al.,2003), but to our knowledge, complexes of EuIII with 4,4'-bipyridyl as monodentate ligand have not been reported. In this paper we report the crystal structure of the title complex. As shown in Fig. 1, in this complex every EuIII ion is ten coordinate defined by two N atoms from two different monodentate 4,4'-bipyridine molecules and eight O atoms from four different bidentate nitrate anions. The Eu—N bond length is 2.626 (2) Å. The Eu—O bond lengths range from 2.4620 (17) to 2.5160 (17) Å. The C2 symmetry element existing in the crystal structure goes through the EuIIIions. One hydrogen ion is distributed between the two non-coordinated N atoms of the 4,4'-bipyridine ligands in 50% occupation ratio and takes part in forming an N—H···N strong intermolecular hydrogen bond to give a zigzag array. As depicted in Fig. 2, the zigzag strings are found to extend by forming strong hydrogen bonds described above along the a axis, in the packing structure of the crystal. Weak hydrogen bonds between nitrate O atoms and H atoms of pyridine rings connect different strings in adjacent molecules to form a three-dimensional network.

Related literature top

For related literature, see: Adachi et al. (2000); Cotton et al. (2003); Sabbatini et al. (1993); Shaheen et al. (1999).

Experimental top

A mixture of 4,4'-bipyridine (0.25 g) and Eu(NO3)3 (0.28 g) in the molar ratio of 2:1 was added to methanol (20 ml). The mixture was heated at 350 K for 5 h under reflux with stirring. The resulting solution was then filtered. Single crystals suitable for X-ray diffraction analysis formed after a week by slow evaporation of the solvent.

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H = 0.93 Å (pyridine ring) and 0.96 Å(methyl), and N—H = 0.86 Å (amine group), and with Uiso(H) = 1.2Ueq(C). H11 and H11A were defined as first and second disordered parts in a 50% occupation ratio and fully refined.

Structure description top

Rare earth complexes with luminescent properties feature long emission life but narrow emission bands. Complexes of different rare earth metals yield each of the three basic colors (Eu3+ for red, Tb3+ for green and Eu2+ for blue) and represent potential candidates for the preparation of new generational display and other luminescent instruments (Shaheen et al., 1999; Adachi et al.,2000). Past research shows it is important to select ligands which can match the central metal ions in energy and thus lead to 'antenna effect' (Sabbatini et al.,1993). Complexes of EuIII ion with 4,4'-bipyridine or its dioxide derivative as a bidentate ligand have been reported (Cotton et al.,2003), but to our knowledge, complexes of EuIII with 4,4'-bipyridyl as monodentate ligand have not been reported. In this paper we report the crystal structure of the title complex. As shown in Fig. 1, in this complex every EuIII ion is ten coordinate defined by two N atoms from two different monodentate 4,4'-bipyridine molecules and eight O atoms from four different bidentate nitrate anions. The Eu—N bond length is 2.626 (2) Å. The Eu—O bond lengths range from 2.4620 (17) to 2.5160 (17) Å. The C2 symmetry element existing in the crystal structure goes through the EuIIIions. One hydrogen ion is distributed between the two non-coordinated N atoms of the 4,4'-bipyridine ligands in 50% occupation ratio and takes part in forming an N—H···N strong intermolecular hydrogen bond to give a zigzag array. As depicted in Fig. 2, the zigzag strings are found to extend by forming strong hydrogen bonds described above along the a axis, in the packing structure of the crystal. Weak hydrogen bonds between nitrate O atoms and H atoms of pyridine rings connect different strings in adjacent molecules to form a three-dimensional network.

For related literature, see: Adachi et al. (2000); Cotton et al. (2003); Sabbatini et al. (1993); Shaheen et al. (1999).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 35% probability displacement ellipsoids.
[Figure 2] Fig. 2. The one dimensional zigzag string of the title complex extending along the a axis.
(4,4'-Bipyridyl-κN)[4'-(4-pyridyl)pyridinium-κN1']tetrakis(nitrato- κ2N,N')europium(III) top
Crystal data top
[Eu(NO3)4(C10H9N2)(C10H8N2)]Z = 4
Mr = 713.38F(000) = 1408
Monoclinic, C2/cDx = 1.879 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 20.136 (5) Åθ = 2.1–28.4°
b = 7.8079 (14) ŵ = 2.57 mm1
c = 18.310 (3) ÅT = 293 K
β = 118.834 (2)°Block, yellow
V = 2521.8 (9) Å30.28 × 0.26 × 0.21 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2211 independent reflections
Radiation source: fine-focus sealed tube2153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2324
Tmin = 0.533, Tmax = 0.619k = 99
7437 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.031P)2 + 0.9897P]
where P = (Fo2 + 2Fc2)/3
2211 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = 0.56 e Å3
Crystal data top
[Eu(NO3)4(C10H9N2)(C10H8N2)]V = 2521.8 (9) Å3
Mr = 713.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.136 (5) ŵ = 2.57 mm1
b = 7.8079 (14) ÅT = 293 K
c = 18.310 (3) Å0.28 × 0.26 × 0.21 mm
β = 118.834 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
2211 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2153 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 0.619Rint = 0.051
7437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0181 restraint
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.50 e Å3
2211 reflectionsΔρmin = 0.56 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
H110.243 (7)1.222 (16)0.018 (7)0.13 (5)*0.50 (10)
Eu10.00000.338536 (17)0.25000.03085 (8)
O40.00208 (11)0.3047 (3)0.11446 (11)0.0480 (4)
O30.12196 (11)0.2141 (3)0.27142 (11)0.0468 (4)
O60.09200 (10)0.4418 (2)0.11018 (11)0.0478 (4)
N20.05805 (13)0.3852 (3)0.07139 (12)0.0427 (5)
N10.12672 (12)0.0900 (3)0.31810 (12)0.0407 (5)
O10.07166 (11)0.0719 (3)0.33171 (13)0.0554 (5)
O20.18155 (12)0.0037 (3)0.34727 (12)0.0622 (5)
O50.08280 (14)0.4120 (3)0.00236 (11)0.0702 (6)
N30.06444 (12)0.6021 (3)0.22022 (12)0.0399 (4)
C30.12606 (15)0.8304 (3)0.15042 (14)0.0340 (5)
C40.05361 (16)0.8533 (3)0.13925 (16)0.0396 (6)
H40.02440.94590.10870.048*
C20.16818 (15)0.6951 (3)0.19990 (15)0.0412 (5)
H20.21780.67770.21080.049*
C50.02512 (15)0.7364 (3)0.17410 (15)0.0411 (5)
H50.02410.75210.16490.049*
C10.13539 (14)0.5861 (4)0.23286 (15)0.0437 (6)
H10.16450.49590.26600.052*
C60.15731 (13)0.9448 (3)0.10950 (13)0.0347 (5)
C70.20534 (15)0.8784 (4)0.08172 (15)0.0399 (5)
H70.21780.76270.08820.048*
C100.13999 (17)1.1166 (4)0.09719 (19)0.0509 (7)
H100.10711.16450.11380.061*
N40.21769 (15)1.1517 (3)0.03422 (15)0.0461 (6)
C80.23413 (14)0.9869 (4)0.04437 (15)0.0444 (6)
H80.26610.94240.02570.053*
C90.17182 (18)1.2178 (4)0.05995 (19)0.0571 (7)
H90.16081.33430.05290.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.03323 (11)0.02896 (11)0.04004 (11)0.0000.02536 (8)0.000
O40.0522 (12)0.0524 (11)0.0503 (9)0.0116 (9)0.0333 (9)0.0021 (8)
O30.0481 (10)0.0443 (10)0.0590 (10)0.0099 (9)0.0345 (8)0.0132 (9)
O60.0424 (10)0.0494 (11)0.0557 (9)0.0070 (8)0.0268 (8)0.0007 (8)
N20.0485 (13)0.0384 (11)0.0410 (10)0.0004 (10)0.0214 (10)0.0026 (9)
N10.0442 (12)0.0352 (12)0.0429 (10)0.0027 (9)0.0210 (9)0.0010 (9)
O10.0572 (12)0.0441 (11)0.0790 (12)0.0028 (9)0.0442 (10)0.0143 (10)
O20.0588 (12)0.0558 (13)0.0664 (11)0.0266 (10)0.0258 (9)0.0138 (10)
O50.0959 (17)0.0657 (15)0.0396 (10)0.0070 (13)0.0253 (10)0.0010 (10)
N30.0473 (13)0.0380 (11)0.0475 (10)0.0024 (9)0.0332 (9)0.0034 (9)
C30.0401 (13)0.0324 (13)0.0387 (11)0.0038 (8)0.0262 (10)0.0016 (8)
C40.0447 (15)0.0358 (13)0.0524 (13)0.0048 (9)0.0346 (12)0.0064 (10)
C20.0358 (13)0.0450 (14)0.0475 (12)0.0003 (10)0.0238 (11)0.0091 (11)
C50.0466 (14)0.0350 (13)0.0578 (13)0.0022 (11)0.0382 (12)0.0027 (11)
C10.0404 (14)0.0450 (16)0.0480 (12)0.0022 (11)0.0230 (11)0.0140 (11)
C60.0349 (11)0.0372 (12)0.0390 (10)0.0024 (9)0.0234 (9)0.0022 (9)
C70.0405 (13)0.0396 (12)0.0486 (12)0.0024 (10)0.0286 (11)0.0041 (10)
C100.0651 (19)0.0383 (13)0.0764 (18)0.0059 (13)0.0558 (16)0.0090 (13)
N40.0494 (14)0.0488 (15)0.0536 (12)0.0056 (9)0.0356 (11)0.0093 (9)
C80.0412 (13)0.0527 (16)0.0513 (12)0.0010 (11)0.0318 (11)0.0043 (11)
C90.073 (2)0.0411 (15)0.0819 (18)0.0055 (14)0.0567 (17)0.0146 (15)
Geometric parameters (Å, º) top
Eu1—O6i2.4620 (18)C3—C41.383 (4)
Eu1—O62.4620 (18)C3—C21.384 (3)
Eu1—O32.4900 (19)C3—C61.487 (3)
Eu1—O3i2.4900 (19)C4—C51.386 (3)
Eu1—O4i2.5159 (18)C4—H40.9300
Eu1—O42.5160 (18)C2—C11.381 (4)
Eu1—O1i2.563 (2)C2—H20.9300
Eu1—O12.563 (2)C5—H50.9300
Eu1—N32.626 (2)C1—H10.9300
Eu1—N3i2.626 (2)C6—C101.377 (4)
Eu1—N2i2.917 (2)C6—C71.392 (3)
Eu1—N1i2.960 (2)C7—C81.380 (4)
O4—N21.250 (3)C7—H70.9300
O3—N11.265 (3)C10—C91.386 (4)
O6—N21.279 (3)C10—H100.9300
N2—O51.211 (3)N4—C81.319 (4)
N1—O21.213 (3)N4—C91.327 (4)
N1—O11.256 (3)N4—H110.89 (2)
N3—C11.338 (3)C8—H80.9300
N3—C51.340 (4)C9—H90.9300
O6i—Eu1—O6141.76 (9)O6—Eu1—N1i73.34 (6)
O6i—Eu1—O376.92 (6)O3—Eu1—N1i113.25 (7)
O6—Eu1—O3118.81 (6)O3i—Eu1—N1i24.97 (6)
O6i—Eu1—O3i118.81 (6)O4i—Eu1—N1i85.74 (6)
O6—Eu1—O3i76.92 (6)O4—Eu1—N1i86.37 (6)
O3—Eu1—O3i134.06 (10)O1i—Eu1—N1i24.99 (6)
O6i—Eu1—O4i51.01 (6)O1—Eu1—N1i80.89 (6)
O6—Eu1—O4i134.26 (7)N3—Eu1—N1i146.93 (6)
O3—Eu1—O4i106.74 (6)N3i—Eu1—N1i100.91 (7)
O3i—Eu1—O4i68.29 (6)N2i—Eu1—N1i110.62 (6)
O6i—Eu1—O4134.26 (7)N2—O4—Eu195.61 (13)
O6—Eu1—O451.01 (6)N1—O3—Eu198.80 (14)
O3—Eu1—O468.29 (6)N2—O6—Eu197.39 (14)
O3i—Eu1—O4106.74 (6)O5—N2—O4122.9 (2)
O4i—Eu1—O4167.96 (9)O5—N2—O6121.1 (2)
O6i—Eu1—O1i143.35 (6)O4—N2—O6115.97 (19)
O6—Eu1—O1i74.31 (7)O2—N1—O1123.2 (2)
O3—Eu1—O1i90.56 (6)O2—N1—O3121.1 (2)
O3i—Eu1—O1i49.94 (6)O1—N1—O3115.7 (2)
O4i—Eu1—O1i102.59 (6)N1—O1—Eu195.47 (13)
O4—Eu1—O1i67.15 (7)C1—N3—C5116.0 (2)
O6i—Eu1—O174.31 (7)C1—N3—Eu1118.97 (17)
O6—Eu1—O1143.35 (6)C5—N3—Eu1122.90 (16)
O3—Eu1—O149.94 (6)C4—C3—C2117.7 (2)
O3i—Eu1—O190.56 (6)C4—C3—C6121.4 (2)
O4i—Eu1—O167.14 (7)C2—C3—C6120.9 (2)
O4—Eu1—O1102.60 (6)C3—C4—C5119.2 (2)
O1i—Eu1—O171.41 (10)C3—C4—H4120.4
O6i—Eu1—N376.11 (6)C5—C4—H4120.4
O6—Eu1—N374.15 (7)C1—C2—C3119.0 (2)
O3—Eu1—N377.88 (7)C1—C2—H2120.5
O3i—Eu1—N3145.24 (7)C3—C2—H2120.5
O4i—Eu1—N3122.13 (6)N3—C5—C4123.7 (2)
O4—Eu1—N368.44 (7)N3—C5—H5118.1
O1i—Eu1—N3135.27 (6)C4—C5—H5118.1
O1—Eu1—N3124.20 (7)N3—C1—C2124.2 (2)
O6i—Eu1—N3i74.15 (7)N3—C1—H1117.9
O6—Eu1—N3i76.11 (6)C2—C1—H1117.9
O3—Eu1—N3i145.24 (7)C10—C6—C7117.9 (2)
O3i—Eu1—N3i77.88 (7)C10—C6—C3122.2 (2)
O4i—Eu1—N3i68.44 (7)C7—C6—C3119.9 (2)
O4—Eu1—N3i122.13 (6)C8—C7—C6119.0 (3)
O1i—Eu1—N3i124.20 (6)C8—C7—H7120.5
O1—Eu1—N3i135.27 (6)C6—C7—H7120.5
N3—Eu1—N3i76.83 (9)C6—C10—C9119.7 (3)
O6i—Eu1—N2i25.77 (6)C6—C10—H10120.2
O6—Eu1—N2i144.95 (6)C9—C10—H10120.2
O3—Eu1—N2i92.34 (6)C8—N4—C9120.0 (2)
O3i—Eu1—N2i93.26 (6)C8—N4—H11120 (10)
O4i—Eu1—N2i25.24 (6)C9—N4—H11119 (10)
O4—Eu1—N2i158.55 (7)N4—C8—C7122.1 (2)
O1i—Eu1—N2i124.35 (7)N4—C8—H8118.9
O1—Eu1—N2i68.82 (7)C7—C8—H8118.9
N3—Eu1—N2i99.43 (6)N4—C9—C10121.3 (3)
N3i—Eu1—N2i68.91 (6)N4—C9—H9119.4
O6i—Eu1—N1i135.74 (6)C10—C9—H9119.4
O6i—Eu1—O4—N2127.84 (16)N3—Eu1—O1—N123.62 (17)
O6—Eu1—O4—N20.63 (14)N3i—Eu1—O1—N1130.75 (14)
O3—Eu1—O4—N2171.12 (17)N2i—Eu1—O1—N1110.70 (15)
O3i—Eu1—O4—N257.44 (17)N1i—Eu1—O1—N1132.90 (14)
O4i—Eu1—O4—N2121.24 (16)O6i—Eu1—N3—C173.72 (18)
O1i—Eu1—O4—N288.55 (16)O6—Eu1—N3—C1130.59 (19)
O1—Eu1—O4—N2151.89 (15)O3—Eu1—N3—C15.60 (17)
N3—Eu1—O4—N286.04 (16)O3i—Eu1—N3—C1165.32 (15)
N3i—Eu1—O4—N228.55 (19)O4i—Eu1—N3—C196.69 (18)
N2i—Eu1—O4—N2144.4 (2)O4—Eu1—N3—C176.82 (18)
N1i—Eu1—O4—N272.07 (16)O1i—Eu1—N3—C183.9 (2)
O6i—Eu1—O3—N178.56 (15)O1—Eu1—N3—C114.0 (2)
O6—Eu1—O3—N1139.02 (14)N3i—Eu1—N3—C1150.4 (2)
O3i—Eu1—O3—N139.07 (13)N2i—Eu1—N3—C184.77 (18)
O4i—Eu1—O3—N136.66 (16)N1i—Eu1—N3—C1119.82 (18)
O4—Eu1—O3—N1131.72 (16)O6i—Eu1—N3—C5123.43 (19)
O1i—Eu1—O3—N166.67 (15)O6—Eu1—N3—C532.26 (18)
O1—Eu1—O3—N11.81 (13)O3—Eu1—N3—C5157.24 (19)
N3—Eu1—O3—N1156.89 (16)O3i—Eu1—N3—C52.5 (2)
N3i—Eu1—O3—N1112.80 (16)O4i—Eu1—N3—C5100.46 (19)
N2i—Eu1—O3—N157.74 (15)O4—Eu1—N3—C586.02 (18)
N1i—Eu1—O3—N155.91 (18)O1i—Eu1—N3—C578.9 (2)
O6i—Eu1—O6—N2114.43 (15)O1—Eu1—N3—C5176.88 (17)
O3—Eu1—O6—N28.13 (17)N3i—Eu1—N3—C546.80 (16)
O3i—Eu1—O6—N2125.26 (15)N2i—Eu1—N3—C5112.38 (18)
O4i—Eu1—O6—N2166.10 (13)N1i—Eu1—N3—C543.0 (2)
O4—Eu1—O6—N20.62 (14)C2—C3—C4—C53.2 (4)
O1i—Eu1—O6—N273.66 (15)C6—C3—C4—C5175.7 (2)
O1—Eu1—O6—N252.45 (19)C4—C3—C2—C12.5 (4)
N3—Eu1—O6—N274.22 (15)C6—C3—C2—C1176.3 (2)
N3i—Eu1—O6—N2154.21 (16)C1—N3—C5—C41.0 (4)
N2i—Eu1—O6—N2158.00 (15)Eu1—N3—C5—C4162.3 (2)
N1i—Eu1—O6—N299.67 (15)C3—C4—C5—N31.4 (4)
Eu1—O4—N2—O5177.7 (2)C5—N3—C1—C21.8 (4)
Eu1—O4—N2—O61.0 (2)Eu1—N3—C1—C2162.2 (2)
Eu1—O6—N2—O5177.7 (2)C3—C2—C1—N30.0 (4)
Eu1—O6—N2—O41.1 (2)C4—C3—C6—C1034.9 (4)
Eu1—O3—N1—O2176.7 (2)C2—C3—C6—C10146.3 (3)
Eu1—O3—N1—O13.1 (2)C4—C3—C6—C7144.6 (2)
O2—N1—O1—Eu1176.8 (2)C2—C3—C6—C734.2 (3)
O3—N1—O1—Eu13.0 (2)C10—C6—C7—C80.8 (4)
O6i—Eu1—O1—N184.12 (15)C3—C6—C7—C8179.6 (2)
O6—Eu1—O1—N187.49 (17)C7—C6—C10—C91.6 (4)
O3—Eu1—O1—N11.81 (13)C3—C6—C10—C9178.9 (3)
O3i—Eu1—O1—N1156.02 (14)C9—N4—C8—C70.3 (4)
O4i—Eu1—O1—N1137.91 (16)C6—C7—C8—N40.1 (4)
O4—Eu1—O1—N148.72 (15)C8—N4—C9—C100.4 (5)
O1i—Eu1—O1—N1109.05 (16)C6—C10—C9—N41.4 (5)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H11···N4ii0.89 (6)1.80 (6)2.682 (4)169 (6)
Symmetry code: (ii) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formula[Eu(NO3)4(C10H9N2)(C10H8N2)]
Mr713.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.136 (5), 7.8079 (14), 18.310 (3)
β (°) 118.834 (2)
V3)2521.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.57
Crystal size (mm)0.28 × 0.26 × 0.21
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.533, 0.619
No. of measured, independent and
observed [I > 2σ(I)] reflections
7437, 2211, 2153
Rint0.051
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.049, 1.02
No. of reflections2211
No. of parameters191
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.56

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected bond lengths (Å) top
Eu1—O6i2.4620 (18)Eu1—N32.626 (2)
Eu1—O32.4900 (19)Eu1—N2i2.917 (2)
Eu1—O4i2.5159 (18)Eu1—N1i2.960 (2)
Eu1—O1i2.563 (2)
Symmetry code: (i) x, y, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds