Download citation
Download citation
link to html
In the mol­ecule of the title compound, (4-bromo­benzo­yl)(triphenyl­phospho­nio)methanide, C26H20BrOP, the geometry around the P atom is nearly tetra­hedral and the O atom is oriented cis to the P atom. The bromo­phenyl ring of the benzoyl group is twisted with respect to the plane of the carbonyl group through an angle of 3.83 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807022623/hk2238sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807022623/hk2238Isup2.hkl
Contains datablock I

CCDC reference: 632047

Key indicators

  • Single-crystal X-ray study
  • T = 128 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.027
  • wR factor = 0.059
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT431_ALERT_2_B Short Inter HL..A Contact Br1 .. Br1 .. 3.35 Ang.
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C26 H20 Br O P
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phosphoranes of the type (C6H5)3PCHCOC6H4Br (BBPPY) can coordinate to metals through either C or O atoms. The crystal and molecular structure of this ylide with space group P21/c, was determined successfully (Bart, 1969). The structural investigation with metrical parameters for the title compound, (I), show that how they vary with a change in delocalization in the metal derivatives, as well as in other resonance-stabilized ylides.

In the molecule of the title compound, (I), (Fig. 1), the bond lengths and angles (Table 1) are generally within normal ranges (Allen et al., 1987).

The P1—C8 [1.719 (17) Å] bond is shorter than the other P—C bonds (Table 1) and longer than the equivalent bond lengths of 1.66 Å reported for methylenetriphenylphosphorane (Bart, 1969), which shows partial double-bond character for these two bonds. The C7—O1 [1.256 (2) A°] double bond is shorter than the C=O bonds in ketons (1.331 Å; Allen et al., 1987). These bond distances suggest resonance decolization in the molecule (Fig. 2). The resonance formulation is supported by the near planarity of P1, C8, O1 and C7 in (I). The torsion angle O1—C7—C8—P1 [2.8 (3)°] also indicates the resonance.

The bromophenyl ring of the benzoyl group is twisted with respect to the plane of the carbonyl group through an angle of 3.83 (3)°. The C7—C8—P1 [120.37 (13)°] bond angle indicates a distorted trigonal arrangement about C8. The P1···O1 [2.990 (3) Å] distance is significantly shorter than the sum of the van der Waals radii of P and O (3.3 Å; Dunitz, 1979), indicating a strong intramolecular interaction between P+ and O- charge centers, which leads to the cis orientation.

Related literature top

For general background, see: Allen et al. (1987); Dunitz (1979). For related literature, see: Bart (1969).

Experimental top

The title compound was prepared by addition of 2,4-Bromophenyl acetophenone (278 mg, 1 mmol) in chloroform (20 ml) to a solution of triphenylphosphine (262 mg, 1 mmol) in the same solvent (5 ml). The resulting pale yellow solution was stirred for 10 h, and then concentrated under reduced pressure to 5 ml, and diethyl ether (20 ml) was added. The yellow solid formed was filtered off, washed with petroleum benzene (10 ml), and then dried under reduced pressure. In order to get the final product, all of the crude solid, was transferred to an alkaline solution of NaOH (5%) and stirred at 310 K for about 14 h, yielding the white precipitate. The product was washed several times with distilled water and air dried. The resulting solid was recrystallized from an acetonitrile-diethyl ether mixture (5:15) (yield; 436 mg, 95%, m.p. 465–467 K).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic and methine H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Phosphoranes of the type (C6H5)3PCHCOC6H4Br (BBPPY) can coordinate to metals through either C or O atoms. The crystal and molecular structure of this ylide with space group P21/c, was determined successfully (Bart, 1969). The structural investigation with metrical parameters for the title compound, (I), show that how they vary with a change in delocalization in the metal derivatives, as well as in other resonance-stabilized ylides.

In the molecule of the title compound, (I), (Fig. 1), the bond lengths and angles (Table 1) are generally within normal ranges (Allen et al., 1987).

The P1—C8 [1.719 (17) Å] bond is shorter than the other P—C bonds (Table 1) and longer than the equivalent bond lengths of 1.66 Å reported for methylenetriphenylphosphorane (Bart, 1969), which shows partial double-bond character for these two bonds. The C7—O1 [1.256 (2) A°] double bond is shorter than the C=O bonds in ketons (1.331 Å; Allen et al., 1987). These bond distances suggest resonance decolization in the molecule (Fig. 2). The resonance formulation is supported by the near planarity of P1, C8, O1 and C7 in (I). The torsion angle O1—C7—C8—P1 [2.8 (3)°] also indicates the resonance.

The bromophenyl ring of the benzoyl group is twisted with respect to the plane of the carbonyl group through an angle of 3.83 (3)°. The C7—C8—P1 [120.37 (13)°] bond angle indicates a distorted trigonal arrangement about C8. The P1···O1 [2.990 (3) Å] distance is significantly shorter than the sum of the van der Waals radii of P and O (3.3 Å; Dunitz, 1979), indicating a strong intramolecular interaction between P+ and O- charge centers, which leads to the cis orientation.

For general background, see: Allen et al. (1987); Dunitz (1979). For related literature, see: Bart (1969).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Resonance in the BBPPY.
(4-bromobenzoyl)(triphenylphosphonio)methanide top
Crystal data top
C26H20BrOPZ = 8
Mr = 459.3F(000) = 1872
Monoclinic, C2/cDx = 1.425 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 16.6819 (17) Åθ = 1.7–26.8°
b = 10.9590 (8) ŵ = 2.01 mm1
c = 23.718 (2) ÅT = 128 K
β = 98.983 (8)°Plate, colorless
V = 4282.8 (7) Å30.3 × 0.2 × 0.05 mm
Data collection top
Stoe IPDS II
diffractometer
4025 reflections with I > 2σ(I)
rotation method scansRint = 0.027
Absorption correction: numerical
shape of crystal determined optically
θmax = 26.8°, θmin = 1.7°
Tmin = 0.62, Tmax = 0.91h = 2121
16156 measured reflectionsk = 1313
4447 independent reflectionsl = 2930
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0207P)2 + 5.8973P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.015
S = 1.12Δρmax = 0.39 e Å3
4447 reflectionsΔρmin = 0.24 e Å3
262 parameters
Crystal data top
C26H20BrOPV = 4282.8 (7) Å3
Mr = 459.3Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.6819 (17) ŵ = 2.01 mm1
b = 10.9590 (8) ÅT = 128 K
c = 23.718 (2) Å0.3 × 0.2 × 0.05 mm
β = 98.983 (8)°
Data collection top
Stoe IPDS II
diffractometer
4447 independent reflections
Absorption correction: numerical
shape of crystal determined optically
4025 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.91Rint = 0.027
16156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.12Δρmax = 0.39 e Å3
4447 reflectionsΔρmin = 0.24 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16258 (10)0.03950 (17)0.14125 (7)0.0192 (3)
C20.21774 (11)0.05592 (17)0.13165 (8)0.0218 (4)
H20.2230.11180.16040.026*
C30.26484 (10)0.06607 (16)0.07828 (8)0.0205 (4)
H30.30190.12980.07120.025*
C40.25771 (10)0.01771 (15)0.03477 (7)0.0170 (3)
C50.20215 (10)0.11313 (16)0.04636 (8)0.0206 (4)
H50.1970.16970.01790.025*
C60.15460 (11)0.12498 (16)0.09947 (8)0.0212 (4)
H60.1180.18920.10690.025*
C70.30930 (10)0.01368 (16)0.02367 (7)0.0186 (3)
C80.36518 (11)0.08152 (16)0.03652 (7)0.0197 (4)
H80.36710.14430.01040.024*
C90.48997 (10)0.05477 (16)0.11460 (7)0.0188 (3)
C100.49752 (11)0.13549 (16)0.07044 (8)0.0217 (4)
H100.47110.11960.03370.026*
C110.54467 (12)0.23993 (17)0.08151 (9)0.0266 (4)
H110.54950.29430.05210.032*
C120.58459 (13)0.26341 (18)0.13623 (10)0.0308 (5)
H120.61580.33370.14340.037*
C130.57818 (13)0.18271 (19)0.18017 (9)0.0319 (5)
H130.60560.19810.21670.038*
C140.53068 (12)0.07852 (17)0.16958 (8)0.0255 (4)
H140.5260.02450.19910.031*
C150.38403 (11)0.10728 (17)0.16402 (7)0.0199 (4)
C160.32349 (13)0.0264 (2)0.17531 (9)0.0333 (5)
H160.30850.03910.1510.04*
C170.28599 (14)0.0444 (2)0.22271 (9)0.0386 (5)
H170.24550.00910.230.046*
C180.30800 (12)0.1410 (2)0.25940 (8)0.0306 (4)
H180.28210.15280.29090.037*
C190.36853 (12)0.21988 (18)0.24907 (8)0.0264 (4)
H190.3840.28410.2740.032*
C200.40652 (11)0.20340 (17)0.20119 (8)0.0229 (4)
H200.4470.2570.19420.027*
C210.49912 (10)0.20790 (15)0.09477 (7)0.0162 (3)
C220.58242 (11)0.18995 (16)0.09849 (7)0.0195 (4)
H220.60440.11260.10620.023*
C230.63283 (11)0.28770 (17)0.09072 (8)0.0231 (4)
H230.68840.27540.09290.028*
C240.60041 (12)0.40320 (17)0.07974 (9)0.0269 (4)
H240.63430.46840.07490.032*
C250.51717 (12)0.42187 (17)0.07595 (9)0.0274 (4)
H250.49550.49950.06850.033*
C260.46648 (11)0.32434 (17)0.08331 (8)0.0225 (4)
H260.41080.33660.08060.027*
O10.30126 (8)0.09884 (12)0.05778 (5)0.0239 (3)
P10.43030 (3)0.08289 (4)0.100322 (18)0.01607 (9)
Br10.094213 (11)0.053119 (18)0.213126 (8)0.02670 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0132 (8)0.0252 (9)0.0184 (8)0.0027 (7)0.0002 (7)0.0059 (7)
C20.0185 (8)0.0251 (9)0.0217 (9)0.0012 (7)0.0029 (7)0.0032 (7)
C30.0168 (8)0.0206 (9)0.0238 (9)0.0041 (7)0.0019 (7)0.0009 (7)
C40.0128 (8)0.0178 (8)0.0206 (8)0.0005 (6)0.0030 (7)0.0013 (7)
C50.0191 (8)0.0189 (9)0.0239 (9)0.0019 (7)0.0038 (7)0.0013 (7)
C60.0166 (8)0.0196 (9)0.0270 (9)0.0029 (7)0.0018 (7)0.0036 (7)
C70.0172 (8)0.0192 (8)0.0196 (8)0.0024 (7)0.0035 (7)0.0003 (7)
C80.0201 (8)0.0209 (9)0.0173 (8)0.0048 (7)0.0007 (7)0.0029 (7)
C90.0188 (8)0.0165 (8)0.0218 (8)0.0050 (7)0.0059 (7)0.0024 (7)
C100.0217 (9)0.0220 (9)0.0227 (9)0.0069 (7)0.0071 (7)0.0001 (7)
C110.0280 (10)0.0193 (9)0.0353 (11)0.0059 (7)0.0134 (9)0.0034 (8)
C120.0335 (11)0.0168 (9)0.0437 (12)0.0006 (8)0.0109 (10)0.0078 (8)
C130.0382 (11)0.0265 (10)0.0297 (10)0.0024 (9)0.0013 (9)0.0098 (8)
C140.0339 (10)0.0207 (9)0.0219 (9)0.0009 (8)0.0042 (8)0.0016 (7)
C150.0182 (8)0.0250 (9)0.0166 (8)0.0006 (7)0.0035 (7)0.0023 (7)
C160.0340 (11)0.0404 (12)0.0278 (10)0.0145 (9)0.0120 (9)0.0065 (9)
C170.0334 (11)0.0527 (14)0.0335 (11)0.0175 (10)0.0175 (10)0.0046 (10)
C180.0278 (10)0.0449 (12)0.0210 (9)0.0017 (9)0.0098 (8)0.0014 (9)
C190.0305 (10)0.0293 (10)0.0198 (9)0.0027 (8)0.0050 (8)0.0007 (8)
C200.0233 (9)0.0257 (9)0.0199 (9)0.0020 (7)0.0047 (8)0.0028 (7)
C210.0179 (8)0.0181 (8)0.0131 (7)0.0045 (6)0.0037 (6)0.0017 (6)
C220.0196 (8)0.0194 (9)0.0200 (8)0.0002 (7)0.0045 (7)0.0012 (7)
C230.0164 (8)0.0270 (10)0.0270 (9)0.0030 (7)0.0073 (8)0.0025 (7)
C240.0270 (10)0.0214 (9)0.0350 (10)0.0096 (8)0.0134 (9)0.0042 (8)
C250.0271 (10)0.0168 (9)0.0404 (11)0.0004 (7)0.0117 (9)0.0003 (8)
C260.0178 (8)0.0226 (9)0.0282 (9)0.0008 (7)0.0069 (8)0.0020 (7)
O10.0240 (7)0.0242 (7)0.0228 (6)0.0074 (5)0.0010 (5)0.0053 (5)
P10.0158 (2)0.0174 (2)0.0152 (2)0.00392 (16)0.00301 (17)0.00050 (16)
Br10.02069 (10)0.03603 (11)0.02137 (9)0.00387 (8)0.00301 (7)0.00497 (8)
Geometric parameters (Å, º) top
C1—C61.385 (3)C13—H130.93
C1—C21.388 (2)C14—H140.93
C1—Br11.9032 (17)C15—C201.387 (3)
C2—C31.386 (2)C15—C161.401 (3)
C2—H20.93C15—P11.8204 (18)
C3—C41.400 (2)C16—C171.383 (3)
C3—H30.93C16—H160.93
C4—C51.396 (2)C17—C181.383 (3)
C4—C71.514 (2)C17—H170.93
C5—C61.386 (2)C18—C191.380 (3)
C5—H50.93C18—H180.93
C6—H60.93C19—C201.396 (3)
C7—O11.256 (2)C19—H190.93
C7—C81.401 (2)C20—H200.93
C8—P11.7194 (17)C21—C221.393 (2)
C8—H80.93C21—C261.397 (3)
C9—C101.392 (3)C21—P11.8054 (17)
C9—C141.397 (3)C22—C231.392 (2)
C9—P11.8101 (18)C22—H220.93
C10—C111.390 (3)C23—C241.385 (3)
C10—H100.93C23—H230.93
C11—C121.387 (3)C24—C251.393 (3)
C11—H110.93C24—H240.93
C12—C131.384 (3)C25—C261.391 (3)
C12—H120.93C25—H250.93
C13—C141.390 (3)C26—H260.93
C6—C1—C2121.84 (16)C16—C15—P1118.53 (14)
C6—C1—Br1118.47 (13)C17—C16—C15119.76 (19)
C2—C1—Br1119.68 (14)C17—C16—H16120.1
C3—C2—C1118.49 (17)C15—C16—H16120.1
C3—C2—H2120.8C16—C17—C18120.7 (2)
C1—C2—H2120.8C16—C17—H17119.6
C2—C3—C4121.27 (16)C18—C17—H17119.6
C2—C3—H3119.4C19—C18—C17119.83 (19)
C4—C3—H3119.4C19—C18—H18120.1
C5—C4—C3118.45 (16)C17—C18—H18120.1
C5—C4—C7117.86 (15)C18—C19—C20120.08 (18)
C3—C4—C7123.65 (15)C18—C19—H19120
C6—C5—C4121.16 (17)C20—C19—H19120
C6—C5—H5119.4C15—C20—C19120.21 (18)
C4—C5—H5119.4C15—C20—H20119.9
C1—C6—C5118.79 (16)C19—C20—H20119.9
C1—C6—H6120.6C22—C21—C26119.74 (16)
C5—C6—H6120.6C22—C21—P1121.86 (13)
O1—C7—C8123.21 (16)C26—C21—P1118.31 (13)
O1—C7—C4117.75 (15)C23—C22—C21120.03 (17)
C8—C7—C4119.01 (15)C23—C22—H22120
C7—C8—P1120.37 (13)C21—C22—H22120
C7—C8—H8119.8C24—C23—C22120.13 (17)
P1—C8—H8119.8C24—C23—H23119.9
C10—C9—C14119.74 (17)C22—C23—H23119.9
C10—C9—P1120.05 (14)C23—C24—C25120.17 (17)
C14—C9—P1120.18 (14)C23—C24—H24119.9
C11—C10—C9119.75 (18)C25—C24—H24119.9
C11—C10—H10120.1C26—C25—C24119.92 (17)
C9—C10—H10120.1C26—C25—H25120
C12—C11—C10120.27 (18)C24—C25—H25120
C12—C11—H11119.9C25—C26—C21120.01 (17)
C10—C11—H11119.9C25—C26—H26120
C13—C12—C11120.26 (18)C21—C26—H26120
C13—C12—H12119.9C8—P1—C21105.31 (8)
C11—C12—H12119.9C8—P1—C9114.25 (9)
C12—C13—C14119.86 (19)C21—P1—C9107.98 (8)
C12—C13—H13120.1C8—P1—C15116.12 (9)
C14—C13—H13120.1C21—P1—C15107.81 (8)
C13—C14—C9120.11 (18)C9—P1—C15105.02 (8)
C13—C14—H14119.9P1—C8—C7120.37 (13)
C9—C14—H14119.9O1—C7—C8123.21 (16)
C20—C15—C16119.38 (17)C4—C7—C8119.01 (15)
C20—C15—P1122.09 (14)O1—C7—C4117.75 (15)
C6—C1—C2—C31.1 (3)C18—C19—C20—C150.5 (3)
Br1—C1—C2—C3177.82 (13)C26—C21—C22—C230.1 (3)
C1—C2—C3—C40.2 (3)P1—C21—C22—C23176.30 (14)
C2—C3—C4—C50.4 (3)C21—C22—C23—C240.5 (3)
C2—C3—C4—C7177.96 (17)C22—C23—C24—C250.5 (3)
C3—C4—C5—C60.3 (3)C23—C24—C25—C260.1 (3)
C7—C4—C5—C6178.00 (16)C24—C25—C26—C210.3 (3)
C2—C1—C6—C51.2 (3)C22—C21—C26—C250.3 (3)
Br1—C1—C6—C5177.73 (13)P1—C21—C26—C25176.85 (15)
C4—C5—C6—C10.5 (3)C7—C8—P1—C21172.54 (15)
C5—C4—C7—O12.5 (2)C7—C8—P1—C954.22 (18)
C3—C4—C7—O1175.06 (17)C7—C8—P1—C1568.29 (18)
C5—C4—C7—C8179.62 (17)C22—C21—P1—C8119.40 (15)
C3—C4—C7—C82.9 (3)C26—C21—P1—C857.05 (16)
O1—C7—C8—P12.8 (3)C22—C21—P1—C93.05 (16)
C4—C7—C8—P1174.97 (13)C26—C21—P1—C9179.50 (14)
C14—C9—C10—C110.8 (3)C22—C21—P1—C15116.03 (15)
P1—C9—C10—C11178.81 (14)C26—C21—P1—C1567.52 (16)
C9—C10—C11—C120.5 (3)C10—C9—P1—C817.02 (17)
C10—C11—C12—C130.4 (3)C14—C9—P1—C8164.99 (14)
C11—C12—C13—C140.8 (3)C10—C9—P1—C2199.76 (15)
C12—C13—C14—C90.5 (3)C14—C9—P1—C2178.22 (16)
C10—C9—C14—C130.3 (3)C10—C9—P1—C15145.40 (14)
P1—C9—C14—C13178.34 (15)C14—C9—P1—C1536.62 (16)
C20—C15—C16—C171.1 (3)C20—C15—P1—C8121.99 (16)
P1—C15—C16—C17178.53 (18)C16—C15—P1—C857.58 (18)
C15—C16—C17—C180.4 (4)C20—C15—P1—C214.19 (18)
C16—C17—C18—C190.6 (4)C16—C15—P1—C21175.38 (16)
C17—C18—C19—C201.1 (3)C20—C15—P1—C9110.76 (16)
C16—C15—C20—C190.6 (3)C16—C15—P1—C969.66 (17)
P1—C15—C20—C19178.96 (14)

Experimental details

Crystal data
Chemical formulaC26H20BrOP
Mr459.3
Crystal system, space groupMonoclinic, C2/c
Temperature (K)128
a, b, c (Å)16.6819 (17), 10.9590 (8), 23.718 (2)
β (°) 98.983 (8)
V3)4282.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.3 × 0.2 × 0.05
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
shape of crystal determined optically
Tmin, Tmax0.62, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
16156, 4447, 4025
Rint0.027
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.059, 1.12
No. of reflections4447
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.24

Computer programs: X-AREA (Stoe & Cie, 2005), X-AREA, X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—Br11.9032 (17)C8—P11.7194 (17)
C7—O11.256 (2)C9—P11.8101 (18)
C7—C81.401 (2)C15—P11.8204 (18)
C8—P1—C21105.31 (8)C9—P1—C15105.02 (8)
C8—P1—C9114.25 (9)P1—C8—C7120.37 (13)
C21—P1—C9107.98 (8)O1—C7—C8123.21 (16)
C8—P1—C15116.12 (9)C4—C7—C8119.01 (15)
C21—P1—C15107.81 (8)O1—C7—C4117.75 (15)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds