Download citation
Download citation
link to html
The asymmetric unit of the title compound, {(C2H10N2)[Cu(C10H2O8)]·2.5H2O}n, contains one cuprate(II)-μ4-benzene-1,2,4,5-tetra­carboxyl­ate anion, one ethyl­ene­diammonium cation and two and a half water mol­ecules. The Cu atom is four-coordinated by four O atoms from four benzene-1,2,4,5-tetra­carboxyl­ate anions. Intra- and inter­molecular O—H...O and N—H...O hydrogen bonds in the formation of a supra­molecular structure. One of the water molecules is disordered equally over two sites.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025834/hk2258sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025834/hk2258Isup2.hkl
Contains datablock I

CCDC reference: 654724

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • Some non-H atoms missing
  • Disorder in solvent or counterion
  • R factor = 0.037
  • wR factor = 0.100
  • Data-to-parameter ratio = 22.6

checkCIF/PLATON results

No syntax errors found



Alert level A ABSMU01_ALERT_1_A The ratio of given/expected absorption coefficient lies outside the range 0.90 <> 1.10 Calculated value of mu = 5.918 Value of mu given = 1.479 CHEMW01_ALERT_1_A The ratio of given/expected molecular weight as calculated from the _chemical_formula_sum lies outside the range 0.90 <> 1.10 Calculated formula weight = 1683.2776 Formula weight given = 420.8200
Alert level C CHEMW01_ALERT_1_C The difference between the given and expected weight for compound is greater 1 mass unit. Check that all hydrogen atoms have been taken into account. PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.25 Ratio PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 7.00 Perc. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 2 O7 -CU1 -O1 -C1 -42.80 0.40 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 O1 -CU1 -O7 -C9 -163.90 0.30 1.555 1.555 1.555 1.555 PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 16
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C48 H68 Cu4 N8 O42 Atom count from _chemical_formula_moiety:C12 H17 Cu1 N2 O10.5 FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C48 H68 Cu4 N8 O42 Atom count from the _atom_site data: C12 H17 Cu1 N2 O10.5 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G ALERT: Large difference may be due to a symmetry error - see SYMMG tests From the CIF: _cell_formula_units_Z 4 From the CIF: _chemical_formula_sum C48 H68 Cu4 N8 O42 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 192.00 48.00 144.00 H 272.00 68.00 204.00 Cu 16.00 4.00 12.00 N 32.00 8.00 24.00 O 168.00 42.00 126.00
2 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level G PUBL017_ALERT_1_G The _publ_section_references section is missing or empty.
0 ALERT level A = Data missing that is essential or data in wrong format 1 ALERT level G = General alerts. Data that may be required is missing

Comment top

The self-assembly of metal ions with aromatic carboxylates is a rapidly developing research field of modern coordination chemistry, because of the aggregation of metal ions and these carboxylate ligands in versatile binding modes, such as monodentate, chelating bidentate, bridging bidentate and bridging tridentate. Hereby, benzene-1,2,4,5-tetracarboxylic acid (H4BTC) is a good bridging ligand, and numerous complexes with H4BTC anions have been prepared, such as those of cobalt (Hu et al., 2004; Fu et al., 2004; Cheng et al., 2002), nickel (Kim et al., 2003; Cheng et al., 2003), thallium (Day & Luehrs, 1988), copper (Kim et al., 2003; Yuan et al., 2005; Hao et al., 2004), zinc (Hou et al., 2004), iron (Chu et al., 2001) and manganese (Rochon & Massarweh, 2000; Hu et al., 2001). There are also compounds of the rare earth elements reported (Cao et al., 2002; Daiguebonne et al., 2003). The complex of benzene-1,2,4,5-tetracarboxylate containing organic ammonium cations are rare and may have interesting polymeric chemistry. Recently, we have reported the syntheses and crystal structure of a proton transfer system using (H4BTC), with ethylenediamine (en), (BTC)(H2en)2.2H2O, (Rafizadeh et al., 2006). We herein report the synthesis and crystal structure of the title compound, (I), which was synthesized by reaction of Cu(NO3)2.3H2O and (BTC)(H2en)2.2H2O.

The asymmetric unit of (I) contains one [Cu(C10H2O8)] anion, one (N2C2H10) cation and two and a half water molecules. The Cu atom is four-coordinated by four O atoms from four benzene-1,2,4,5-tetracarboxylate (btc) anions (Fig. 1). The Cu—O bond lengths and angles (Table 1) are within normal ranges (Kim et al., 2003; Yuan et al., 2005; Hao et al., 2004).

The intra- and intermolecular O—H—O and N—H···O hydrogen bonds (Table 2) seem to be effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure (Fig. 2). Dipol-dipol and van der Waals interactions are also effective in the molecular packing.

Related literature top

For general backgroud, see: Hu et al. (2004, 2001); Fu et al. (2004); Cheng et al. (2002); Hou et al. (2004); Chu et al. (2001); Rochon & Massarweh (2000); Cao et al. (2002); Daiguebonne et al. (2003); Rafizadeh et al. (2006). For related literature, see: Kim et al. (2003); Yuan et al. (2005); Hao et al. (2004).

For related literature, see: Cheng et al. (2003); Day & Luehrs (1988).

Experimental top

For the preparation of the title compound, (I), a solution of (BTC)(H2en)2.2H2O, (0.30 g, 0.73 mmol) in water (100 ml) was added to a solution of Cu(NO3)2.3H2O (0.09 g, 0.365 mmol) in water (10 ml) and the resulting blue solution was stirred for 5 min at room temperature. Then, it was left to evaporate slowly at room temperature. After one week, blue prismatic crystals of (I) were isolated (yield; 0.13 g, 84.6%; decompose <562 K).

Structure description top

The self-assembly of metal ions with aromatic carboxylates is a rapidly developing research field of modern coordination chemistry, because of the aggregation of metal ions and these carboxylate ligands in versatile binding modes, such as monodentate, chelating bidentate, bridging bidentate and bridging tridentate. Hereby, benzene-1,2,4,5-tetracarboxylic acid (H4BTC) is a good bridging ligand, and numerous complexes with H4BTC anions have been prepared, such as those of cobalt (Hu et al., 2004; Fu et al., 2004; Cheng et al., 2002), nickel (Kim et al., 2003; Cheng et al., 2003), thallium (Day & Luehrs, 1988), copper (Kim et al., 2003; Yuan et al., 2005; Hao et al., 2004), zinc (Hou et al., 2004), iron (Chu et al., 2001) and manganese (Rochon & Massarweh, 2000; Hu et al., 2001). There are also compounds of the rare earth elements reported (Cao et al., 2002; Daiguebonne et al., 2003). The complex of benzene-1,2,4,5-tetracarboxylate containing organic ammonium cations are rare and may have interesting polymeric chemistry. Recently, we have reported the syntheses and crystal structure of a proton transfer system using (H4BTC), with ethylenediamine (en), (BTC)(H2en)2.2H2O, (Rafizadeh et al., 2006). We herein report the synthesis and crystal structure of the title compound, (I), which was synthesized by reaction of Cu(NO3)2.3H2O and (BTC)(H2en)2.2H2O.

The asymmetric unit of (I) contains one [Cu(C10H2O8)] anion, one (N2C2H10) cation and two and a half water molecules. The Cu atom is four-coordinated by four O atoms from four benzene-1,2,4,5-tetracarboxylate (btc) anions (Fig. 1). The Cu—O bond lengths and angles (Table 1) are within normal ranges (Kim et al., 2003; Yuan et al., 2005; Hao et al., 2004).

The intra- and intermolecular O—H—O and N—H···O hydrogen bonds (Table 2) seem to be effective in the stabilization of the crystal structure, resulting in the formation of a supramolecular structure (Fig. 2). Dipol-dipol and van der Waals interactions are also effective in the molecular packing.

For general backgroud, see: Hu et al. (2004, 2001); Fu et al. (2004); Cheng et al. (2002); Hou et al. (2004); Chu et al. (2001); Rochon & Massarweh (2000); Cao et al. (2002); Daiguebonne et al. (2003); Rafizadeh et al. (2006). For related literature, see: Kim et al. (2003); Yuan et al. (2005); Hao et al. (2004).

For related literature, see: Cheng et al. (2003); Day & Luehrs (1988).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) 2 - x, y - 1/2, 2.5 - z, (ii) 2 - x, 1 - y, 2 - z, (iii) 2 - x, y - 1/2, 2.5 - z].
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Poly[ethylenediammonium [copper(II)-µ4-benzene-1,2,4,5-tetracarboxylato-κ4O:O':O'':O'''] 2.5-hydrate] top
Crystal data top
(C2H10N2)[Cu(C10H2O8)]·2.5H2OF(000) = 864
Mr = 420.82Dx = 1.811 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5022 reflections
a = 7.3937 (5) Åθ = 2.8–34.7°
b = 18.4414 (11) ŵ = 1.48 mm1
c = 11.3607 (7) ÅT = 100 K
β = 94.783 (1)°Cube, blue
V = 1543.64 (17) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEX II CCD area-detector
diffractometer
5364 independent reflections
Radiation source: fine-focus sealed tube4304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 32.0°, θmin = 2.1°
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
h = 1111
Tmin = 0.744, Tmax = 0.751k = 2727
22717 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.100H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0453P)2 + 1.6005P]
where P = (Fo2 + 2Fc2)/3
5364 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
(C2H10N2)[Cu(C10H2O8)]·2.5H2OV = 1543.64 (17) Å3
Mr = 420.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3937 (5) ŵ = 1.48 mm1
b = 18.4414 (11) ÅT = 100 K
c = 11.3607 (7) Å0.20 × 0.20 × 0.20 mm
β = 94.783 (1)°
Data collection top
Bruker APEX II CCD area-detector
diffractometer
5364 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2005)
4304 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.751Rint = 0.042
22717 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.01Δρmax = 0.95 e Å3
5364 reflectionsΔρmin = 0.70 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.98260 (3)0.743122 (11)0.999045 (17)0.00747 (7)
O11.00080 (18)0.81812 (7)1.12002 (11)0.0109 (2)
O20.72149 (18)0.85964 (7)1.06384 (11)0.0129 (2)
O31.04758 (17)0.66759 (6)1.11446 (11)0.0096 (2)
O40.74826 (18)0.65069 (7)1.11395 (12)0.0137 (3)
O50.96462 (18)0.81928 (7)0.87939 (11)0.0107 (2)
O61.24867 (18)0.85345 (7)0.93744 (11)0.0125 (2)
O70.92059 (17)0.66741 (6)0.88281 (11)0.0092 (2)
O81.22206 (18)0.65801 (7)0.88507 (12)0.0127 (3)
C10.8752 (2)0.86592 (9)1.11718 (14)0.0085 (3)
C20.9277 (2)0.93511 (9)1.18051 (14)0.0075 (3)
C30.8811 (2)1.00135 (9)1.12768 (15)0.0085 (3)
H3A0.80761.00251.05500.010*
C40.9066 (2)0.63317 (9)1.14322 (15)0.0085 (3)
C50.9522 (2)0.56440 (9)1.21098 (14)0.0070 (3)
C60.9048 (2)0.49801 (9)1.15800 (15)0.0080 (3)
H6A0.83070.49681.08560.010*
C71.0580 (2)0.93391 (9)0.81899 (14)0.0078 (3)
C81.0975 (2)0.86364 (9)0.88280 (14)0.0084 (3)
C91.0668 (2)0.63647 (9)0.85520 (14)0.0081 (3)
C101.0338 (2)0.56645 (9)0.78862 (14)0.0076 (3)
N1'1.5660 (2)0.65943 (8)1.32091 (14)0.0127 (3)
H1'C1.66290.64901.37290.019*
H1'D1.57740.63561.25180.019*
H1'E1.46210.64501.35180.019*
N2'1.4052 (2)0.83478 (9)1.17836 (14)0.0137 (3)
H2'C1.31080.84501.12430.021*
H2'D1.51070.85001.15060.021*
H2'E1.38870.85801.24730.021*
C1'1.5587 (3)0.73907 (10)1.29853 (17)0.0134 (3)
H1'A1.67810.75631.27640.016*
H1'B1.53030.76491.37110.016*
C2'1.4139 (3)0.75515 (10)1.19949 (17)0.0138 (3)
H2'A1.44320.72991.12660.017*
H2'B1.29480.73741.22110.017*
O1W0.6201 (2)0.42273 (8)0.89555 (14)0.0216 (3)
H1WA0.56290.41000.95400.032*
H1WB0.72440.40530.88610.032*
O2W0.5892 (2)0.57443 (9)0.87753 (16)0.0262 (4)
H2WA0.57580.52870.88010.039*
H2WB0.69510.59220.89090.039*
O3W1.4335 (4)0.99565 (15)1.1305 (3)0.0217 (6)0.50
H3WA1.32681.00231.15100.033*0.50
H3WB1.47551.01131.06790.033*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01489 (11)0.00322 (10)0.00438 (10)0.00031 (7)0.00120 (7)0.00017 (7)
O10.0199 (6)0.0058 (5)0.0068 (5)0.0024 (4)0.0001 (4)0.0008 (4)
O20.0136 (6)0.0148 (6)0.0103 (6)0.0050 (5)0.0009 (4)0.0029 (5)
O30.0151 (6)0.0059 (5)0.0078 (6)0.0009 (4)0.0014 (4)0.0014 (4)
O40.0139 (6)0.0149 (6)0.0123 (6)0.0060 (5)0.0020 (5)0.0034 (5)
O50.0181 (6)0.0062 (5)0.0077 (6)0.0025 (4)0.0012 (4)0.0015 (4)
O60.0152 (6)0.0114 (6)0.0107 (6)0.0033 (5)0.0008 (5)0.0023 (5)
O70.0135 (6)0.0069 (5)0.0073 (5)0.0017 (4)0.0015 (4)0.0014 (4)
O80.0140 (6)0.0120 (6)0.0123 (6)0.0046 (5)0.0021 (5)0.0014 (5)
C10.0139 (8)0.0068 (7)0.0053 (7)0.0017 (5)0.0040 (5)0.0005 (5)
C20.0113 (7)0.0046 (7)0.0067 (7)0.0003 (5)0.0015 (5)0.0008 (5)
C30.0125 (8)0.0062 (7)0.0067 (7)0.0005 (5)0.0007 (5)0.0001 (6)
C40.0135 (8)0.0057 (7)0.0065 (7)0.0014 (5)0.0022 (5)0.0008 (5)
C50.0102 (7)0.0058 (7)0.0052 (7)0.0002 (5)0.0015 (5)0.0007 (5)
C60.0107 (7)0.0069 (7)0.0066 (7)0.0000 (5)0.0012 (5)0.0001 (6)
C70.0131 (7)0.0048 (7)0.0057 (7)0.0004 (5)0.0024 (5)0.0012 (5)
C80.0155 (8)0.0042 (7)0.0060 (7)0.0008 (5)0.0032 (5)0.0004 (5)
C90.0144 (8)0.0047 (7)0.0054 (7)0.0005 (5)0.0014 (5)0.0002 (5)
C100.0109 (7)0.0052 (7)0.0067 (7)0.0005 (5)0.0017 (5)0.0008 (5)
N1'0.0127 (7)0.0150 (7)0.0105 (7)0.0026 (5)0.0006 (5)0.0012 (5)
N2'0.0142 (7)0.0153 (7)0.0116 (7)0.0032 (5)0.0008 (5)0.0016 (6)
C1'0.0142 (8)0.0122 (8)0.0132 (8)0.0020 (6)0.0015 (6)0.0016 (6)
C2'0.0130 (8)0.0147 (8)0.0134 (8)0.0016 (6)0.0013 (6)0.0009 (6)
O1W0.0207 (7)0.0168 (7)0.0282 (8)0.0001 (5)0.0085 (6)0.0002 (6)
O2W0.0165 (7)0.0189 (7)0.0429 (10)0.0002 (5)0.0012 (6)0.0094 (7)
O3W0.0218 (15)0.0176 (14)0.0245 (16)0.0036 (10)0.0049 (12)0.0016 (12)
Geometric parameters (Å, º) top
Cu1—O31.9456 (12)C7—C81.502 (2)
Cu1—O11.9466 (12)C9—C101.506 (2)
Cu1—O71.9500 (12)C10—C6iii1.393 (2)
Cu1—O51.9514 (12)C10—C2iv1.402 (2)
O1—C11.279 (2)N1'—C1'1.491 (2)
O2—C11.248 (2)N1'—H1'C0.9100
O3—C41.285 (2)N1'—H1'D0.9100
O4—C41.233 (2)N1'—H1'E0.9100
O5—C81.276 (2)N2'—C2'1.489 (2)
O6—C81.247 (2)N2'—H2'C0.9100
O7—C91.284 (2)N2'—H2'D0.9100
O8—C91.235 (2)N2'—H2'E0.9100
C1—C21.500 (2)C1'—C2'1.516 (3)
C2—C31.392 (2)C1'—H1'A0.9900
C2—C10i1.402 (2)C1'—H1'B0.9900
C3—C7ii1.396 (2)C2'—H2'A0.9900
C3—H3A0.9500C2'—H2'B0.9900
C4—C51.507 (2)O1W—H1WA0.8499
C5—C61.396 (2)O1W—H1WB0.8500
C5—C7i1.399 (2)O2W—H2WA0.8501
C6—C10iii1.393 (2)O2W—H2WB0.8500
C6—H6A0.9500O3W—H3WA0.8500
C7—C3ii1.396 (2)O3W—H3WB0.8499
C7—C5iv1.399 (2)
O3—Cu1—O191.96 (5)O8—C9—O7124.89 (16)
O3—Cu1—O788.55 (5)O8—C9—C10121.42 (15)
O1—Cu1—O7170.20 (6)O7—C9—C10113.55 (14)
O3—Cu1—O5169.55 (6)C6iii—C10—C2iv120.14 (15)
O1—Cu1—O588.69 (5)C6iii—C10—C9118.68 (14)
O7—Cu1—O592.59 (5)C2iv—C10—C9120.87 (14)
C1—O1—Cu1117.69 (11)C1'—N1'—H1'C109.5
C4—O3—Cu1111.40 (11)C1'—N1'—H1'D109.5
C8—O5—Cu1115.63 (11)H1'C—N1'—H1'D109.5
C9—O7—Cu1109.17 (11)C1'—N1'—H1'E109.5
O2—C1—O1125.32 (16)H1'C—N1'—H1'E109.5
O2—C1—C2120.03 (15)H1'D—N1'—H1'E109.5
O1—C1—C2114.60 (15)C2'—N2'—H2'C109.5
C3—C2—C10i119.76 (15)C2'—N2'—H2'D109.5
C3—C2—C1119.68 (15)H2'C—N2'—H2'D109.5
C10i—C2—C1120.42 (14)C2'—N2'—H2'E109.5
C2—C3—C7ii120.27 (15)H2'C—N2'—H2'E109.5
C2—C3—H3A119.9H2'D—N2'—H2'E109.5
C7ii—C3—H3A119.9N1'—C1'—C2'109.42 (15)
O4—C4—O3125.01 (16)N1'—C1'—H1'A109.8
O4—C4—C5121.65 (15)C2'—C1'—H1'A109.8
O3—C4—C5113.21 (14)N1'—C1'—H1'B109.8
C6—C5—C7i119.96 (15)C2'—C1'—H1'B109.8
C6—C5—C4118.72 (14)H1'A—C1'—H1'B108.2
C7i—C5—C4120.92 (14)N2'—C2'—C1'109.34 (15)
C10iii—C6—C5119.99 (15)N2'—C2'—H2'A109.8
C10iii—C6—H6A120.0C1'—C2'—H2'A109.8
C5—C6—H6A120.0N2'—C2'—H2'B109.8
C3ii—C7—C5iv119.86 (15)C1'—C2'—H2'B109.8
C3ii—C7—C8119.05 (15)H2'A—C2'—H2'B108.3
C5iv—C7—C8120.96 (14)H1WA—O1W—H1WB120.7
O6—C8—O5125.05 (16)H2WA—O2W—H2WB118.9
O6—C8—C7120.04 (15)H3WA—O3W—H3WB126.4
O5—C8—C7114.85 (15)
O3—Cu1—O1—C1135.64 (12)Cu1—O3—C4—C5167.38 (10)
O7—Cu1—O1—C142.8 (4)O4—C4—C5—C663.2 (2)
O5—Cu1—O1—C154.80 (12)O3—C4—C5—C6112.90 (17)
O1—Cu1—O3—C4100.44 (11)O4—C4—C5—C7i124.12 (19)
O7—Cu1—O3—C469.76 (11)O3—C4—C5—C7i59.8 (2)
O5—Cu1—O3—C4166.2 (3)C7i—C5—C6—C10iii1.4 (3)
O3—Cu1—O5—C835.5 (3)C4—C5—C6—C10iii171.39 (15)
O1—Cu1—O5—C858.23 (12)Cu1—O5—C8—O615.9 (2)
O7—Cu1—O5—C8131.50 (12)Cu1—O5—C8—C7161.28 (11)
O3—Cu1—O7—C970.78 (11)C3ii—C7—C8—O640.7 (2)
O1—Cu1—O7—C9163.9 (3)C5iv—C7—C8—O6143.24 (17)
O5—Cu1—O7—C998.82 (11)C3ii—C7—C8—O5136.63 (17)
Cu1—O1—C1—O218.8 (2)C5iv—C7—C8—O539.4 (2)
Cu1—O1—C1—C2158.60 (11)Cu1—O7—C9—O89.2 (2)
O2—C1—C2—C342.1 (2)Cu1—O7—C9—C10166.48 (11)
O1—C1—C2—C3135.45 (17)O8—C9—C10—C6iii61.5 (2)
O2—C1—C2—C10i142.31 (17)O7—C9—C10—C6iii114.33 (17)
O1—C1—C2—C10i40.1 (2)O8—C9—C10—C2iv124.93 (19)
C10i—C2—C3—C7ii1.0 (3)O7—C9—C10—C2iv59.2 (2)
C1—C2—C3—C7ii174.62 (15)N1'—C1'—C2'—N2'179.25 (14)
Cu1—O3—C4—O48.5 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+2, z+2; (iii) x+2, y+1, z+2; (iv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2v0.912.182.921 (2)138
N1—H1C···O5v0.912.302.993 (2)132
N1—H1D···O4vi0.912.112.810 (2)133
N1—H1E···O6i0.911.922.799 (2)161
N2—H2C···O60.912.142.902 (2)141
N2—H2D···O2vi0.911.922.807 (2)164
N2—H2E···O8i0.912.092.810 (2)135
O1W—H1WA···O2Wvii0.852.323.116 (2)157
O1W—H1WB···O3iii0.852.162.9784 (19)162
O2W—H2WA···O1W0.851.992.813 (2)164
O2W—H2WB···O70.852.182.987 (2)159
Symmetry codes: (i) x, y+3/2, z+1/2; (iii) x+2, y+1, z+2; (v) x+1, y+3/2, z+1/2; (vi) x+1, y, z; (vii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula(C2H10N2)[Cu(C10H2O8)]·2.5H2O
Mr420.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.3937 (5), 18.4414 (11), 11.3607 (7)
β (°) 94.783 (1)
V3)1543.64 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEX II CCD area-detector
Absorption correctionMulti-scan
(APEX2; Bruker, 2005)
Tmin, Tmax0.744, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
22717, 5364, 4304
Rint0.042
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.01
No. of reflections5364
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.95, 0.70

Computer programs: APEX2 (Bruker, 2005), APEX2, SHELXTL (Sheldrick, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—O31.9456 (12)Cu1—O71.9500 (12)
Cu1—O11.9466 (12)Cu1—O51.9514 (12)
O3—Cu1—O191.96 (5)O3—Cu1—O5169.55 (6)
O3—Cu1—O788.55 (5)O1—Cu1—O588.69 (5)
O1—Cu1—O7170.20 (6)O7—Cu1—O592.59 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1'—H1'C···O2i0.912.182.921 (2)138
N1'—H1'C···O5i0.912.302.993 (2)132
N1'—H1'D···O4ii0.912.112.810 (2)133
N1'—H1'E···O6iii0.911.922.799 (2)161
N2'—H2'C···O60.912.142.902 (2)141
N2'—H2'D···O2ii0.911.922.807 (2)164
N2'—H2'E···O8iii0.912.092.810 (2)135
O1W—H1WA···O2Wiv0.852.323.116 (2)157
O1W—H1WB···O3v0.852.162.9784 (19)162
O2W—H2WA···O1W0.851.992.813 (2)164
O2W—H2WB···O70.852.182.987 (2)159
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1, z+2; (v) x+2, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds