Download citation
Download citation
link to html
The mol­ecule of the title compound, [La2(C7H6NO3)6(C12H8N2)2], has an inversion centre midway between the two LaIII ions, which are bridged by two terdentate and two bidentate carboxyl­ate groups. Each La atom is seven-coordinated by two N atoms of a 1,10-phenanthroline ligand and five O atoms of 2-pyridyloxyacetate ligands. In the crystal structure, inter­molecular C—H...O hydrogen bonds lead to a supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030917/hk2279sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030917/hk2279Isup2.hkl
Contains datablock I

CCDC reference: 1277970

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.039
  • wR factor = 0.099
  • Data-to-parameter ratio = 18.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for N3 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for O7
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.97 Ratio PLAT220_ALERT_2_C Large Non-Solvent N Ueq(max)/Ueq(min) ... 2.63 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N5 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C6 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C15 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C22 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C29 PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10 PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 83.00 A   3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for La1 (3) 3.11 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 10 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

There has been great interest in the design and synthesis of supramolecular metal organic frameworks with organic ligands and rare earth metals exhibiting novel properties such as optical, electronic, magnetic and biological (Swiegers & Malefetse, 2002; Johnson & Raymond, 2001; Hof et al., 2002; Tsukube & Shinoda, 2002; Zhang et al., 2005). In the synthesis of supramolecular metal organic frameworks by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1997; Braga et al., 1998). Directional intermolecular interactions are the primary tools in achieving this goal and hydrogen bonding is currently the best tool amongst them (Zaworotko, 1997; Braga & Grepioni, 2000). These compounds are usually prepared by the reaction of rare-earth metal ions with bi- or multidentate ligands (Kay et al., 1972; Ma et al., 1999; Mao et al., 1998). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). It has an inversion centre between the two LaIII ions, in which they are bridged by the two terdentate and the two bidentate carboxylate groups. Each La atom is seven-coordinated by the two N atoms of 1,10-phenanthroline (phen) ligand and the five O atoms of 2-pyridyloxyacetic acid ligands (Table 1). The La—O and La—N bonds are in the range of [2.457 (3)–2.887 (3) Å] and [2.739 (3)–2.769 (3) Å], respectively.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) lead to a supramolecular network structure (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For bond length data, see: Allen et al. (1987). For related literature, see: Braga & Grepioni (2000); Braga et al. (1998); Desiraju (1997); Hof et al. (2002); Johnson & Raymond (2001); Kay et al. (1972); Ma et al. (1999); Mao et al. (1998); Swiegers & Malefetse (2002); Tsukube & Shinoda (2002); Zaworotko (1997); Zhang et al. (2005).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb. Lanthanum (III) chloride hexahydrate (143 mg, 0.4 mmol), phen (79.2 mg, 0.4 mmol), phenoxyacetic acid (182.6 mg, 1.2 mmol) and distilled water (6 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure for 7 d at 433 K and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

There has been great interest in the design and synthesis of supramolecular metal organic frameworks with organic ligands and rare earth metals exhibiting novel properties such as optical, electronic, magnetic and biological (Swiegers & Malefetse, 2002; Johnson & Raymond, 2001; Hof et al., 2002; Tsukube & Shinoda, 2002; Zhang et al., 2005). In the synthesis of supramolecular metal organic frameworks by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1997; Braga et al., 1998). Directional intermolecular interactions are the primary tools in achieving this goal and hydrogen bonding is currently the best tool amongst them (Zaworotko, 1997; Braga & Grepioni, 2000). These compounds are usually prepared by the reaction of rare-earth metal ions with bi- or multidentate ligands (Kay et al., 1972; Ma et al., 1999; Mao et al., 1998). We report herein the crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). It has an inversion centre between the two LaIII ions, in which they are bridged by the two terdentate and the two bidentate carboxylate groups. Each La atom is seven-coordinated by the two N atoms of 1,10-phenanthroline (phen) ligand and the five O atoms of 2-pyridyloxyacetic acid ligands (Table 1). The La—O and La—N bonds are in the range of [2.457 (3)–2.887 (3) Å] and [2.739 (3)–2.769 (3) Å], respectively.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) lead to a supramolecular network structure (Fig. 2), in which they may be effective in the stabilization of the structure.

For bond length data, see: Allen et al. (1987). For related literature, see: Braga & Grepioni (2000); Braga et al. (1998); Desiraju (1997); Hof et al. (2002); Johnson & Raymond (2001); Kay et al. (1972); Ma et al. (1999); Mao et al. (1998); Swiegers & Malefetse (2002); Tsukube & Shinoda (2002); Zaworotko (1997); Zhang et al. (2005).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): 2 - x, -y, 2 - z].
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Tetrakis(µ-2-pyridyloxyacetato)bis[(1,10-phenanthroline)(2- pyridyloxyacetato)lanthanum(III)] top
Crystal data top
[La2(C7H6NO3)6(C12H8N2)2]F(000) = 1552
Mr = 1551.00Dx = 1.456 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9025 reflections
a = 20.312 (3) Åθ = 2.4–26.7°
b = 8.721 (2) ŵ = 1.27 mm1
c = 20.915 (3) ÅT = 273 K
β = 107.332 (9)°Plate, colorless
V = 3536.8 (11) Å30.33 × 0.13 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
7585 independent reflections
Radiation source: fine-focus sealed tube5008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.682, Tmax = 0.905k = 1011
27369 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.05P)2 + 0.9707P]
where P = (Fo2 + 2Fc2)/3
7585 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 0.59 e Å3
3 restraintsΔρmin = 0.59 e Å3
Crystal data top
[La2(C7H6NO3)6(C12H8N2)2]V = 3536.8 (11) Å3
Mr = 1551.00Z = 2
Monoclinic, P21/nMo Kα radiation
a = 20.312 (3) ŵ = 1.27 mm1
b = 8.721 (2) ÅT = 273 K
c = 20.915 (3) Å0.33 × 0.13 × 0.08 mm
β = 107.332 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7585 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5008 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.905Rint = 0.043
27369 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.00Δρmax = 0.59 e Å3
7585 reflectionsΔρmin = 0.59 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.931204 (11)0.19063 (2)0.964291 (10)0.04055 (9)
O10.84640 (13)0.0360 (3)0.91884 (13)0.0525 (7)
O20.94651 (13)0.1380 (4)0.97709 (13)0.0578 (7)
O30.94005 (14)0.4208 (3)1.03412 (12)0.0560 (7)
O40.97065 (14)0.0599 (3)0.87485 (12)0.0558 (7)
O51.06702 (14)0.0831 (3)0.92168 (13)0.0577 (7)
O61.11841 (16)0.0166 (4)0.82197 (15)0.0765 (9)
O70.78448 (16)0.3265 (3)0.89795 (17)0.0721 (9)
O81.00778 (16)0.6128 (4)1.09096 (13)0.0656 (8)
O90.98699 (16)0.5278 (4)1.20622 (13)0.0711 (9)
N10.79696 (17)0.2345 (4)0.96667 (17)0.0554 (9)
N20.83402 (19)0.3068 (4)0.85441 (16)0.0557 (9)
N31.1133 (3)0.1077 (7)0.7156 (3)0.129 (2)
N40.7868 (4)0.2775 (7)1.0123 (4)0.1454 (13)
N50.9271 (3)0.3777 (7)1.2705 (2)0.1130 (17)
C10.7780 (2)0.1921 (5)1.0201 (2)0.0710 (13)
H10.81220.16901.05970.085*
C20.7091 (3)0.1811 (7)1.0189 (3)0.0924 (18)
H20.69810.15151.05720.111*
C30.6578 (3)0.2138 (8)0.9613 (4)0.101 (2)
H30.61180.20600.96030.122*
C40.6742 (3)0.2588 (7)0.9043 (3)0.0846 (16)
C50.7460 (2)0.2676 (5)0.9088 (2)0.0595 (11)
C60.6238 (3)0.2977 (9)0.8398 (4)0.120 (3)
H60.57700.28880.83540.144*
C70.6427 (3)0.3450 (8)0.7875 (3)0.112 (2)
H70.60900.37260.74820.135*
C80.7133 (3)0.3542 (6)0.7904 (3)0.0787 (15)
C90.7658 (2)0.3096 (5)0.8505 (2)0.0588 (11)
C100.7356 (4)0.4030 (7)0.7365 (3)0.0950 (19)
H100.70340.43710.69750.114*
C110.8032 (4)0.4012 (6)0.7407 (2)0.0903 (17)
H110.81770.43360.70460.108*
C120.8524 (3)0.3489 (5)0.8009 (2)0.0711 (13)
H120.89870.34410.80280.085*
C130.8843 (2)0.1512 (5)0.93930 (19)0.0505 (10)
C140.8576 (2)0.3145 (5)0.9191 (2)0.0623 (11)
H14A0.87490.34900.88300.075*
H14B0.87610.38240.95690.075*
C150.7509 (6)0.3132 (8)0.9433 (5)0.1454 (13)
C160.6798 (5)0.3380 (8)0.9209 (5)0.1454 (13)
H160.65840.35800.87580.174*
C170.6412 (5)0.3333 (8)0.9649 (5)0.1454 (13)
H170.59450.35820.95100.174*
C180.6736 (5)0.2903 (8)1.0307 (5)0.1454 (13)
H180.64640.27891.05910.174*
C190.7428 (5)0.2636 (9)1.0565 (5)0.1454 (13)
H190.76160.23711.10130.174*
C200.9691 (2)0.4992 (5)1.08642 (19)0.0505 (10)
C210.9490 (2)0.4459 (5)1.14740 (19)0.0650 (12)
H21A0.90000.46231.13970.078*
H21B0.95810.33701.15410.078*
C220.9751 (2)0.4892 (5)1.2657 (2)0.0617 (11)
C231.0144 (3)0.5693 (6)1.3220 (2)0.0795 (15)
H231.04690.64081.31800.095*
C241.0047 (3)0.5416 (8)1.3834 (2)0.1020 (19)
H241.03040.59541.42100.122*
C250.9566 (4)0.4332 (9)1.3894 (3)0.115 (2)
H250.94940.41671.43080.138*
C260.9201 (4)0.3518 (9)1.3352 (3)0.119 (3)
H260.88950.27681.34050.142*
C271.0287 (2)0.0032 (5)0.87717 (19)0.0491 (9)
C281.0526 (2)0.0503 (5)0.8173 (2)0.0637 (12)
H28B1.01900.01700.77610.076*
H28A1.05600.16110.81590.076*
C291.1458 (3)0.0143 (6)0.7707 (2)0.0697 (13)
C301.2082 (3)0.0548 (7)0.7764 (3)0.0895 (16)
H301.22920.11480.81360.107*
C311.2398 (3)0.0351 (8)0.7264 (4)0.106 (2)
H311.28170.08310.73000.127*
C321.2096 (4)0.0547 (8)0.6720 (4)0.114 (2)
H321.23120.06790.63890.136*
C331.1486 (4)0.1242 (8)0.6661 (3)0.119 (2)
H331.12900.18470.62860.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.04671 (13)0.03586 (13)0.03402 (12)0.00164 (11)0.00427 (8)0.00055 (10)
O10.0531 (15)0.0420 (17)0.0535 (16)0.0007 (13)0.0023 (12)0.0036 (12)
O20.0511 (17)0.0636 (19)0.0493 (16)0.0041 (13)0.0005 (13)0.0072 (13)
O30.0775 (19)0.0429 (16)0.0449 (15)0.0070 (15)0.0142 (13)0.0061 (13)
O40.0648 (18)0.0573 (18)0.0446 (15)0.0085 (15)0.0152 (13)0.0023 (13)
O50.0684 (18)0.0585 (19)0.0466 (16)0.0088 (15)0.0178 (13)0.0117 (14)
O60.077 (2)0.096 (3)0.064 (2)0.0207 (19)0.0335 (17)0.0231 (18)
O70.067 (2)0.055 (2)0.079 (2)0.0157 (15)0.0016 (16)0.0073 (16)
O80.094 (2)0.0575 (19)0.0445 (16)0.0287 (18)0.0195 (15)0.0028 (14)
O90.099 (2)0.072 (2)0.0426 (16)0.0303 (18)0.0207 (15)0.0074 (14)
N10.055 (2)0.051 (2)0.053 (2)0.0033 (16)0.0047 (17)0.0081 (16)
N20.069 (2)0.045 (2)0.0430 (19)0.0038 (17)0.0015 (16)0.0007 (16)
N30.166 (5)0.136 (5)0.106 (4)0.003 (4)0.075 (4)0.026 (4)
N40.171 (4)0.110 (2)0.186 (4)0.018 (2)0.100 (3)0.030 (3)
N50.117 (4)0.135 (5)0.096 (4)0.033 (4)0.046 (3)0.008 (3)
C10.065 (3)0.087 (4)0.060 (3)0.007 (3)0.017 (2)0.003 (3)
C20.066 (3)0.129 (5)0.088 (4)0.004 (3)0.033 (3)0.014 (4)
C30.052 (3)0.133 (6)0.116 (5)0.002 (3)0.020 (3)0.019 (4)
C40.052 (3)0.097 (4)0.085 (4)0.008 (3)0.008 (3)0.021 (3)
C50.056 (3)0.047 (3)0.066 (3)0.006 (2)0.004 (2)0.011 (2)
C60.064 (4)0.159 (8)0.111 (5)0.015 (4)0.012 (4)0.032 (5)
C70.082 (4)0.128 (6)0.090 (5)0.041 (4)0.030 (3)0.018 (4)
C80.082 (4)0.070 (3)0.059 (3)0.018 (3)0.018 (3)0.011 (2)
C90.064 (3)0.042 (2)0.052 (2)0.005 (2)0.0114 (19)0.005 (2)
C100.118 (5)0.082 (4)0.055 (3)0.020 (4)0.021 (3)0.002 (3)
C110.130 (5)0.081 (4)0.044 (3)0.001 (4)0.001 (3)0.012 (3)
C120.092 (4)0.062 (3)0.050 (3)0.003 (3)0.006 (2)0.009 (2)
C130.054 (2)0.056 (3)0.037 (2)0.003 (2)0.0061 (17)0.0027 (18)
C140.067 (3)0.051 (3)0.062 (3)0.004 (2)0.007 (2)0.006 (2)
C150.171 (4)0.110 (2)0.186 (4)0.018 (2)0.100 (3)0.030 (3)
C160.171 (4)0.110 (2)0.186 (4)0.018 (2)0.100 (3)0.030 (3)
C170.171 (4)0.110 (2)0.186 (4)0.018 (2)0.100 (3)0.030 (3)
C180.171 (4)0.110 (2)0.186 (4)0.018 (2)0.100 (3)0.030 (3)
C190.171 (4)0.110 (2)0.186 (4)0.018 (2)0.100 (3)0.030 (3)
C200.067 (3)0.039 (2)0.045 (2)0.004 (2)0.0145 (19)0.0012 (18)
C210.084 (3)0.063 (3)0.049 (2)0.021 (3)0.021 (2)0.006 (2)
C220.078 (3)0.063 (3)0.045 (2)0.007 (2)0.021 (2)0.004 (2)
C230.098 (4)0.086 (4)0.052 (3)0.024 (3)0.017 (2)0.010 (3)
C240.130 (5)0.121 (5)0.047 (3)0.024 (4)0.013 (3)0.010 (3)
C250.144 (6)0.154 (7)0.057 (3)0.032 (5)0.043 (4)0.008 (4)
C260.140 (6)0.160 (7)0.067 (4)0.067 (5)0.048 (4)0.002 (4)
C270.061 (3)0.042 (2)0.043 (2)0.003 (2)0.0134 (19)0.0015 (18)
C280.073 (3)0.065 (3)0.055 (3)0.007 (2)0.023 (2)0.014 (2)
C290.081 (3)0.075 (3)0.063 (3)0.004 (3)0.038 (3)0.005 (2)
C300.090 (4)0.110 (5)0.081 (4)0.002 (4)0.044 (3)0.002 (3)
C310.101 (4)0.114 (6)0.126 (5)0.005 (4)0.069 (4)0.009 (4)
C320.152 (6)0.096 (5)0.131 (6)0.015 (5)0.100 (5)0.001 (4)
C330.169 (7)0.117 (5)0.103 (5)0.016 (5)0.091 (5)0.033 (4)
Geometric parameters (Å, º) top
La1—O12.608 (3)C6—H60.9300
La1—O22.887 (3)C7—C81.420 (9)
La1—O32.457 (3)C7—H70.9300
La1—O42.517 (3)C8—C101.400 (8)
La1—N12.769 (3)C8—C91.438 (6)
La1—N22.739 (3)C10—C111.351 (8)
La1—O2i2.463 (3)C10—H100.9300
La1—O5i2.553 (3)C11—C121.429 (6)
La1—O8ii2.581 (3)C11—H110.9300
O1—C131.260 (5)C12—H120.9300
O2—C131.280 (5)C13—C141.538 (6)
O2—La1i2.463 (3)C14—H14A0.9700
O3—C201.276 (4)C14—H14B0.9700
O4—C271.266 (4)C15—C161.396 (12)
O5—C271.268 (4)C16—C171.377 (10)
O5—La1i2.553 (3)C16—H160.9300
O6—C291.373 (5)C17—C181.388 (12)
O6—C281.435 (5)C17—H170.9300
O7—C151.329 (9)C18—C191.366 (11)
O7—C141.422 (5)C18—H180.9300
O8—C201.251 (5)C19—H190.9300
O8—La1ii2.581 (3)C20—C211.523 (5)
O9—C221.377 (5)C21—H21A0.9700
O9—C211.433 (5)C21—H21B0.9700
N1—C11.338 (5)C22—C231.397 (6)
N1—C51.369 (5)C23—C241.378 (7)
N2—C121.333 (5)C23—H230.9300
N2—C91.363 (6)C24—C251.393 (8)
N3—C291.406 (7)C24—H240.9300
N3—C331.432 (7)C25—C261.357 (8)
N4—C151.444 (11)C25—H250.9300
N4—C191.470 (9)C26—H260.9300
N5—C221.403 (6)C27—C281.529 (5)
N5—C261.420 (7)C28—H28B0.9700
C1—C21.396 (7)C28—H28A0.9700
C1—H10.9300C29—C301.376 (7)
C2—C31.370 (8)C30—C311.391 (7)
C2—H20.9300C30—H300.9300
C3—C41.387 (8)C31—C321.366 (9)
C3—H30.9300C31—H310.9300
C4—C51.436 (7)C32—C331.351 (9)
C4—C61.470 (8)C32—H320.9300
C5—C91.441 (6)C33—H330.9300
C6—C71.328 (9)
O1—La1—O247.35 (8)C8—C9—C5119.1 (5)
O1—La1—O3139.39 (9)C11—C10—C8120.8 (5)
O1—La1—O473.00 (9)C11—C10—H10119.6
O2—La1—O3140.28 (8)C8—C10—H10119.6
O2—La1—O464.52 (8)C10—C11—C12119.4 (5)
O3—La1—O4145.97 (9)C10—C11—H11120.3
O1—La1—N164.18 (9)C12—C11—H11120.3
O2—La1—N1102.42 (9)N2—C12—C11122.0 (5)
O3—La1—N176.96 (10)N2—C12—H12119.0
O4—La1—N1127.54 (9)C11—C12—H12119.0
O1—La1—N275.05 (9)O1—C13—O2121.9 (4)
O2—La1—N2118.42 (8)O1—C13—C14121.0 (4)
O3—La1—N295.92 (9)O2—C13—C14117.1 (4)
O4—La1—N281.57 (9)O7—C14—C13113.8 (3)
N1—La1—N259.76 (11)O7—C14—H14A108.8
O3—La1—O2i88.40 (10)C13—C14—H14A108.8
O2i—La1—O477.79 (9)O7—C14—H14B108.8
O3—La1—O5i76.50 (9)C13—C14—H14B108.8
O2i—La1—O5i74.64 (9)H14A—C14—H14B107.7
O4—La1—O5i127.51 (9)O7—C15—C16116.5 (10)
O3—La1—O8ii76.33 (9)O7—C15—N4121.3 (9)
O2i—La1—O8ii78.41 (10)C16—C15—N4122.2 (8)
O4—La1—O8ii70.52 (9)C17—C16—C15120.7 (10)
O5i—La1—O8ii141.91 (9)C17—C16—H16119.7
O2i—La1—O1119.91 (10)C15—C16—H16119.7
O5i—La1—O183.46 (9)C16—C17—C18118.2 (10)
O8ii—La1—O1133.88 (8)C16—C17—H17120.9
O2i—La1—N2148.68 (10)C18—C17—H17120.9
O5i—La1—N2136.54 (10)C19—C18—C17124.6 (9)
O8ii—La1—N272.59 (10)C19—C18—H18117.7
O2i—La1—N1150.37 (10)C17—C18—H18117.7
O5i—La1—N176.93 (10)C18—C19—N4118.9 (9)
O8ii—La1—N1121.53 (11)C18—C19—H19120.5
O2i—La1—O272.79 (10)N4—C19—H19120.5
O5i—La1—O265.01 (8)O8—C20—O3127.5 (4)
O8ii—La1—O2130.39 (9)O8—C20—C21119.8 (4)
C13—O1—La1102.1 (2)O3—C20—C21112.6 (3)
C13—O2—La1i162.5 (3)O9—C21—C20110.9 (3)
C13—O2—La188.4 (2)O9—C21—H21A109.5
La1i—O2—La1107.21 (10)C20—C21—H21A109.5
C20—O3—La1151.7 (3)O9—C21—H21B109.5
C27—O4—La1130.4 (2)C20—C21—H21B109.5
C27—O5—La1i137.6 (3)H21A—C21—H21B108.0
C29—O6—C28116.9 (3)O9—C22—C23115.4 (4)
C15—O7—C14118.9 (6)O9—C22—N5123.2 (4)
C20—O8—La1ii150.1 (3)C23—C22—N5121.4 (4)
C22—O9—C21117.3 (3)C24—C23—C22119.6 (5)
C1—N1—C5117.9 (4)C24—C23—H23120.2
C1—N1—La1120.4 (3)C22—C23—H23120.2
C5—N1—La1120.1 (3)C23—C24—C25120.2 (5)
C12—N2—C9118.6 (4)C23—C24—H24119.9
C12—N2—La1119.6 (3)C25—C24—H24119.9
C9—N2—La1121.5 (3)C26—C25—C24120.2 (5)
C29—N3—C33116.0 (6)C26—C25—H25119.9
C15—N4—C19115.2 (8)C24—C25—H25119.9
C22—N5—C26116.7 (5)C25—C26—N5121.9 (6)
N1—C1—C2122.7 (5)C25—C26—H26119.1
N1—C1—H1118.6N5—C26—H26119.1
C2—C1—H1118.6O4—C27—O5128.4 (4)
C3—C2—C1119.9 (5)O4—C27—C28112.5 (3)
C3—C2—H2120.1O5—C27—C28119.1 (4)
C1—C2—H2120.1O6—C28—C27110.6 (3)
C2—C3—C4120.1 (5)O6—C28—H28B109.5
C2—C3—H3120.0C27—C28—H28B109.5
C4—C3—H3120.0O6—C28—H28A109.5
C3—C4—C5117.3 (5)C27—C28—H28A109.5
C3—C4—C6125.0 (6)H28B—C28—H28A108.1
C5—C4—C6117.7 (6)O6—C29—C30115.1 (4)
N1—C5—C4122.1 (5)O6—C29—N3123.6 (5)
N1—C5—C9118.3 (4)C30—C29—N3121.3 (5)
C4—C5—C9119.5 (4)C29—C30—C31120.1 (6)
C7—C6—C4122.3 (6)C29—C30—H30119.9
C7—C6—H6118.8C31—C30—H30120.0
C4—C6—H6118.8C32—C31—C30120.2 (6)
C6—C7—C8121.2 (6)C32—C31—H31119.9
C6—C7—H7119.4C30—C31—H31119.9
C8—C7—H7119.4C33—C32—C31120.4 (6)
C10—C8—C7123.2 (5)C33—C32—H32119.8
C10—C8—C9116.8 (5)C31—C32—H32119.8
C7—C8—C9120.0 (6)C32—C33—N3122.1 (6)
N2—C9—C8122.3 (5)C32—C33—H33119.0
N2—C9—C5118.6 (3)N3—C33—H33119.0
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1iii0.932.353.224 (6)156
C14—H14B···O3iv0.972.453.394 (5)165
C12—H12···O8ii0.932.483.076 (6)122
C1—H1···O5i0.932.483.163 (6)130
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x+3/2, y+1/2, z+3/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[La2(C7H6NO3)6(C12H8N2)2]
Mr1551.00
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)20.312 (3), 8.721 (2), 20.915 (3)
β (°) 107.332 (9)
V3)3536.8 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.33 × 0.13 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.682, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
27369, 7585, 5008
Rint0.043
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.00
No. of reflections7585
No. of parameters403
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.59

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
La1—O12.608 (3)La1—O42.517 (3)
La1—O22.887 (3)La1—N12.769 (3)
La1—O32.457 (3)La1—N22.739 (3)
O1—La1—O247.35 (8)O3—La1—N176.96 (10)
O1—La1—O3139.39 (9)O4—La1—N1127.54 (9)
O1—La1—O473.00 (9)O1—La1—N275.05 (9)
O2—La1—O3140.28 (8)O2—La1—N2118.42 (8)
O2—La1—O464.52 (8)O3—La1—N295.92 (9)
O3—La1—O4145.97 (9)O4—La1—N281.57 (9)
O1—La1—N164.18 (9)N1—La1—N259.76 (11)
O2—La1—N1102.42 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.353.224 (6)156
C14—H14B···O3ii0.972.453.394 (5)165
C12—H12···O8iii0.932.483.076 (6)122
C1—H1···O5iv0.932.483.163 (6)130
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x, y1, z; (iii) x+2, y+1, z+2; (iv) x+2, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds