Download citation
Download citation
link to html
The title compound, [Mo2O2S2(C2H6NS)2], was obtained by the reaction of sodium molybdate, H2S, sodium hydro­sulfite and 2-amino­ethanethiol. In the crystal structure, each MoV atom, in a square-pyramidal geometry, is coordinated by two μ-S atoms, one terminal O atom, one S atom and one N atom of the 2-amino­ethanethiol­ate ligand. A three-dimensional hydrogen-bonding network is constructed by inter­molecular N—H...O and N—H...S hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026384/hy2065sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026384/hy2065Isup2.hkl
Contains datablock I

CCDC reference: 654745

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.015 Å
  • R factor = 0.057
  • wR factor = 0.115
  • Data-to-parameter ratio = 17.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 15
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo1 (5) 5.01 PLAT794_ALERT_5_G Check Predicted Bond Valency for Mo2 (5) 5.01
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Molybdenum chalcogenides have been extensively studied due to their applications in modelling of molybdoenzymes in biological systems. During the course of exploring polynuclear molybdenum clusters, dinuclear molybdenum complexes are always considered as excellent starting materials. Many compounds containing a [Mo2O2(µ-S)2] structural unit have been isolated and structurally characterized (Bunzey et al., 1977; Drew & Kay, 1971; Dulebohn et al., 1991; Howlader et al., 1984; Li et al., 2005; Llusar et al., 2005; Müller et al., 1982; Spivack & Dori,1970). Herein, we report the crystal structure of a new dinuclear molybdenum complex, (I).

In the structure of (I) (Fig. 1), the two Mo atoms are not crystallographically equivalent, which are linked by two µ-S atoms. Each Mo atom is chelated by one 2-aminoethanethiolate (aet) ligand in the equatorial plane. The two aet ligands are in a trans form. Each Mo atom is also bonded to one terminal O atom in the axial position, resulting in a five-coordinated square-pyramidal coordination geometry. In virtue of weak intermolecular N—H···O and N—H···S hydrogen bonds, a three-dimensional hydrogen-bonding network is constructed (Fig. 2).

Related literature top

For related structures, see: Bunzey et al. (1977); Drew & Kay (1971); Dulebohn et al. (1991); Howlader et al. (1984); Li et al. (2005); Llusar et al. (2005); Müller et al. (1982); Spivack & Dori (1970).

Experimental top

The compound (I) was synthesized by bubbling H2S gas into a 20 ml aqueous solution of Na2MoO4.2H2O (4.84 g, 20 mmol). The solids of Na2S2O4 (0.469 g, 2.7 mmol) and 2-aminoethanethiol (2 g, 26 mmol) were added to the red solution with stirring for about 4 h at 358 K. After cooling to room temperature, the solution was filtered and the residue was dissolved in 10 ml DMF. Orange prism crystals of (I) were obtained by slow evaporation of the orange solution for several weeks.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 and N—H = 0.90 Å and Uiso(H) = 1.2Ueq(C, N).

Structure description top

Molybdenum chalcogenides have been extensively studied due to their applications in modelling of molybdoenzymes in biological systems. During the course of exploring polynuclear molybdenum clusters, dinuclear molybdenum complexes are always considered as excellent starting materials. Many compounds containing a [Mo2O2(µ-S)2] structural unit have been isolated and structurally characterized (Bunzey et al., 1977; Drew & Kay, 1971; Dulebohn et al., 1991; Howlader et al., 1984; Li et al., 2005; Llusar et al., 2005; Müller et al., 1982; Spivack & Dori,1970). Herein, we report the crystal structure of a new dinuclear molybdenum complex, (I).

In the structure of (I) (Fig. 1), the two Mo atoms are not crystallographically equivalent, which are linked by two µ-S atoms. Each Mo atom is chelated by one 2-aminoethanethiolate (aet) ligand in the equatorial plane. The two aet ligands are in a trans form. Each Mo atom is also bonded to one terminal O atom in the axial position, resulting in a five-coordinated square-pyramidal coordination geometry. In virtue of weak intermolecular N—H···O and N—H···S hydrogen bonds, a three-dimensional hydrogen-bonding network is constructed (Fig. 2).

For related structures, see: Bunzey et al. (1977); Drew & Kay (1971); Dulebohn et al. (1991); Howlader et al. (1984); Li et al. (2005); Llusar et al. (2005); Müller et al. (1982); Spivack & Dori (1970).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Siemens, 1996); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the crystal packing along the c axis. Hydrogen bonds are shown as dashed lines.
Di-µ-sulfido-bis[(2-aminoethanethiolato-κ2N,S)oxidomolybdate(V)](Mo—Mo) top
Crystal data top
[Mo2O2S2(C2H6NS)2]F(000) = 856
Mr = 440.28Dx = 2.281 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 245 reflections
a = 10.2359 (9) Åθ = 2.1–25.1°
b = 12.5935 (11) ŵ = 2.59 mm1
c = 10.2596 (9) ÅT = 293 K
β = 104.166 (2)°Prism, orange
V = 1282.30 (19) Å30.30 × 0.22 × 0.18 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2268 independent reflections
Radiation source: fine-focus sealed tube1753 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
φ and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.492, Tmax = 0.633k = 1415
6415 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0177P)2 + 11.6194P]
where P = (Fo2 + 2Fc2)/3
2268 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Mo2O2S2(C2H6NS)2]V = 1282.30 (19) Å3
Mr = 440.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2359 (9) ŵ = 2.59 mm1
b = 12.5935 (11) ÅT = 293 K
c = 10.2596 (9) Å0.30 × 0.22 × 0.18 mm
β = 104.166 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2268 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1753 reflections with I > 2σ(I)
Tmin = 0.492, Tmax = 0.633Rint = 0.073
6415 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0177P)2 + 11.6194P]
where P = (Fo2 + 2Fc2)/3
2268 reflectionsΔρmax = 0.75 e Å3
127 parametersΔρmin = 0.77 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.24088 (8)0.28563 (7)0.23707 (8)0.0308 (2)
Mo20.26812 (8)0.50741 (7)0.21672 (8)0.0314 (2)
S10.0614 (2)0.1740 (2)0.1200 (3)0.0390 (6)
S20.0689 (2)0.4136 (2)0.1873 (3)0.0398 (6)
S30.3706 (3)0.5979 (2)0.0634 (3)0.0428 (6)
S40.4155 (2)0.3758 (2)0.1811 (3)0.0446 (7)
O10.2747 (8)0.2657 (6)0.4035 (7)0.057 (2)
O20.3266 (8)0.5483 (6)0.3766 (7)0.0517 (19)
N10.3497 (7)0.1462 (6)0.1863 (8)0.0345 (18)
H1C0.35880.15350.10170.041*
H1D0.43290.14450.24160.041*
N20.1333 (8)0.6454 (6)0.1567 (8)0.041 (2)
H2C0.07760.63320.07550.050*
H2D0.08260.65440.21620.050*
C10.1444 (9)0.0480 (8)0.1021 (10)0.038 (2)
H1A0.09110.01050.12240.046*
H1B0.15220.04000.01030.046*
C20.2825 (9)0.0463 (8)0.1971 (10)0.042 (2)
H2A0.27470.03620.28860.050*
H2B0.33470.01210.17430.050*
C30.2878 (11)0.7277 (9)0.0442 (10)0.049 (3)
H3A0.35480.78330.05160.059*
H3B0.22620.73270.04410.059*
C40.2115 (12)0.7426 (8)0.1509 (11)0.048 (3)
H4A0.27370.75530.23730.058*
H4B0.15150.80310.12930.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0347 (5)0.0266 (5)0.0306 (4)0.0024 (4)0.0070 (3)0.0003 (4)
Mo20.0363 (4)0.0267 (5)0.0305 (4)0.0013 (4)0.0068 (3)0.0026 (3)
S10.0306 (12)0.0306 (14)0.0560 (16)0.0003 (10)0.0108 (11)0.0003 (12)
S20.0340 (13)0.0301 (14)0.0586 (16)0.0021 (11)0.0176 (12)0.0041 (12)
S30.0438 (14)0.0433 (16)0.0441 (15)0.0091 (12)0.0159 (12)0.0018 (12)
S40.0309 (13)0.0344 (16)0.0696 (18)0.0044 (11)0.0142 (12)0.0091 (13)
O10.083 (5)0.054 (5)0.036 (4)0.014 (4)0.016 (4)0.001 (4)
O20.076 (5)0.040 (5)0.037 (4)0.000 (4)0.008 (4)0.005 (3)
N10.029 (4)0.025 (4)0.047 (5)0.004 (3)0.005 (3)0.001 (4)
N20.050 (5)0.034 (5)0.043 (5)0.004 (4)0.017 (4)0.001 (4)
C10.043 (6)0.025 (5)0.050 (6)0.001 (4)0.015 (5)0.003 (5)
C20.041 (6)0.036 (6)0.046 (6)0.002 (5)0.008 (5)0.005 (5)
C30.054 (6)0.046 (7)0.050 (6)0.005 (5)0.015 (5)0.011 (5)
C40.073 (7)0.018 (5)0.050 (6)0.000 (5)0.007 (6)0.002 (4)
Geometric parameters (Å, º) top
Mo1—O11.676 (7)N1—H1D0.9000
Mo1—N12.209 (7)N2—C41.471 (12)
Mo1—S42.306 (3)N2—H2C0.9000
Mo1—S22.349 (3)N2—H2D0.9000
Mo1—S12.391 (3)C1—C21.508 (13)
Mo1—Mo22.8197 (12)C1—H1A0.9700
Mo2—O21.683 (7)C1—H1B0.9700
Mo2—N22.211 (8)C2—H2A0.9700
Mo2—S22.312 (3)C2—H2B0.9700
Mo2—S42.329 (3)C3—C41.505 (14)
Mo2—S32.383 (3)C3—H3A0.9700
S1—C11.829 (10)C3—H3B0.9700
S3—C31.830 (11)C4—H4A0.9700
N1—C21.451 (12)C4—H4B0.9700
N1—H1C0.9000
O1—Mo1—N197.5 (3)C2—N1—H1C108.9
O1—Mo1—S4110.4 (3)Mo1—N1—H1C108.9
N1—Mo1—S482.3 (2)C2—N1—H1D108.9
O1—Mo1—S2106.4 (3)Mo1—N1—H1D108.9
N1—Mo1—S2152.7 (2)H1C—N1—H1D107.7
S4—Mo1—S2101.13 (10)C4—N2—Mo2110.9 (6)
O1—Mo1—S1111.4 (3)C4—N2—H2C109.5
N1—Mo1—S177.5 (2)Mo2—N2—H2C109.5
S4—Mo1—S1135.38 (10)C4—N2—H2D109.5
S2—Mo1—S181.46 (9)Mo2—N2—H2D109.5
O1—Mo1—Mo2103.0 (3)H2C—N2—H2D108.1
N1—Mo1—Mo2134.8 (2)C2—C1—S1109.5 (7)
S4—Mo1—Mo252.90 (7)C2—C1—H1A109.8
S2—Mo1—Mo252.17 (6)S1—C1—H1A109.8
S1—Mo1—Mo2128.55 (7)C2—C1—H1B109.8
O2—Mo2—N294.6 (3)S1—C1—H1B109.8
O2—Mo2—S2112.1 (3)H1A—C1—H1B108.2
N2—Mo2—S284.0 (2)N1—C2—C1109.0 (8)
O2—Mo2—S4106.3 (3)N1—C2—H2A109.9
N2—Mo2—S4154.1 (2)C1—C2—H2A109.9
S2—Mo2—S4101.55 (9)N1—C2—H2B109.9
O2—Mo2—S3112.8 (3)C1—C2—H2B109.9
N2—Mo2—S377.6 (2)H2A—C2—H2B108.3
S2—Mo2—S3132.44 (10)C4—C3—S3110.0 (7)
S4—Mo2—S380.21 (10)C4—C3—H3A109.7
O2—Mo2—Mo1104.4 (3)S3—C3—H3A109.7
N2—Mo2—Mo1137.1 (2)C4—C3—H3B109.7
S2—Mo2—Mo153.37 (7)S3—C3—H3B109.7
S4—Mo2—Mo152.15 (7)H3A—C3—H3B108.2
S3—Mo2—Mo1126.15 (8)N2—C4—C3108.1 (8)
C1—S1—Mo1104.0 (3)N2—C4—H4A110.1
Mo2—S2—Mo174.46 (8)C3—C4—H4A110.1
C3—S3—Mo2103.4 (3)N2—C4—H4B110.1
Mo1—S4—Mo274.95 (8)C3—C4—H4B110.1
C2—N1—Mo1113.3 (6)H4A—C4—H4B108.4
O1—Mo1—Mo2—O26.2 (4)N1—Mo1—S2—Mo2116.2 (4)
N1—Mo1—Mo2—O2108.5 (4)S4—Mo1—S2—Mo221.39 (10)
S4—Mo1—Mo2—O299.7 (3)S1—Mo1—S2—Mo2156.15 (9)
S2—Mo1—Mo2—O2107.0 (3)O2—Mo2—S3—C376.3 (5)
S1—Mo1—Mo2—O2137.7 (3)N2—Mo2—S3—C313.5 (4)
O1—Mo1—Mo2—N2107.2 (4)S2—Mo2—S3—C383.3 (4)
N1—Mo1—Mo2—N2138.1 (4)S4—Mo2—S3—C3180.0 (4)
S4—Mo1—Mo2—N2146.9 (3)Mo1—Mo2—S3—C3153.8 (4)
S2—Mo1—Mo2—N26.5 (3)O1—Mo1—S4—Mo291.1 (3)
S1—Mo1—Mo2—N224.3 (3)N1—Mo1—S4—Mo2173.7 (2)
O1—Mo1—Mo2—S2100.8 (3)S2—Mo1—S4—Mo221.17 (10)
N1—Mo1—Mo2—S2144.5 (3)S1—Mo1—S4—Mo2110.25 (12)
S4—Mo1—Mo2—S2153.34 (13)O2—Mo2—S4—Mo195.8 (3)
S1—Mo1—Mo2—S230.75 (12)N2—Mo2—S4—Mo1121.7 (5)
O1—Mo1—Mo2—S4105.9 (3)S2—Mo2—S4—Mo121.56 (10)
N1—Mo1—Mo2—S48.8 (3)S3—Mo2—S4—Mo1153.14 (10)
S2—Mo1—Mo2—S4153.34 (13)O1—Mo1—N1—C272.4 (7)
S1—Mo1—Mo2—S4122.59 (13)S4—Mo1—N1—C2177.9 (6)
O1—Mo1—Mo2—S3139.3 (3)S2—Mo1—N1—C278.5 (8)
N1—Mo1—Mo2—S324.6 (3)S1—Mo1—N1—C238.0 (6)
S4—Mo1—Mo2—S333.46 (12)Mo2—Mo1—N1—C2170.9 (5)
S2—Mo1—Mo2—S3119.88 (12)O2—Mo2—N2—C470.5 (7)
S1—Mo1—Mo2—S389.13 (12)S2—Mo2—N2—C4177.7 (6)
O1—Mo1—S1—C183.6 (4)S4—Mo2—N2—C473.7 (9)
N1—Mo1—S1—C19.7 (4)S3—Mo2—N2—C441.9 (6)
S4—Mo1—S1—C174.9 (4)Mo1—Mo2—N2—C4172.5 (5)
S2—Mo1—S1—C1172.2 (3)Mo1—S1—C1—C215.9 (7)
Mo2—Mo1—S1—C1148.0 (3)Mo1—N1—C2—C159.9 (9)
O2—Mo2—S2—Mo191.9 (3)S1—C1—C2—N146.7 (9)
N2—Mo2—S2—Mo1175.6 (2)Mo2—S3—C3—C413.0 (8)
S4—Mo2—S2—Mo121.20 (10)Mo2—N2—C4—C362.8 (9)
S3—Mo2—S2—Mo1108.43 (12)S3—C3—C4—N246.8 (11)
O1—Mo1—S2—Mo293.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.902.253.025 (11)144
N1—H1D···S3ii0.902.533.400 (8)161
N2—H2C···S2iii0.902.813.704 (9)173
N2—H2D···S1iv0.902.503.403 (8)178
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo2O2S2(C2H6NS)2]
Mr440.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.2359 (9), 12.5935 (11), 10.2596 (9)
β (°) 104.166 (2)
V3)1282.30 (19)
Z4
Radiation typeMo Kα
µ (mm1)2.59
Crystal size (mm)0.30 × 0.22 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.492, 0.633
No. of measured, independent and
observed [I > 2σ(I)] reflections
6415, 2268, 1753
Rint0.073
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.115, 1.18
No. of reflections2268
No. of parameters127
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0177P)2 + 11.6194P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.75, 0.77

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Siemens, 1996), SHELXTL.

Selected bond lengths (Å) top
Mo1—O11.676 (7)Mo2—O21.683 (7)
Mo1—N12.209 (7)Mo2—N22.211 (8)
Mo1—S42.306 (3)Mo2—S22.312 (3)
Mo1—S22.349 (3)Mo2—S42.329 (3)
Mo1—S12.391 (3)Mo2—S32.383 (3)
Mo1—Mo22.8197 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.902.253.025 (11)144
N1—H1D···S3ii0.902.533.400 (8)161
N2—H2C···S2iii0.902.813.704 (9)173
N2—H2D···S1iv0.902.503.403 (8)178
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds