Download citation
Download citation
link to html
The title compound, [Co(C2N3)(NO3)(C14H12N2)]n, exhibits a zigzag chain structure. The CoII atom has a slightly distorted octa­hedral geometry formed by two N atoms of a 2,9-dimethyl-1,10-phenanthroline ligand, two N atoms from two different dicyanamide ligands and two O atoms of a nitrate anion. A one-dimensional chain is formed through the dicyanamides, which act as end-to-end bridging ligands. The chains are linked into a three-dimensional network via weak C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030279/hy2068sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030279/hy2068Isup2.hkl
Contains datablock I

CCDC reference: 654815

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.033
  • wR factor = 0.098
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for N3
Alert level C PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Co (2) 1.79
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Due to the stabilization of relatively strong magnetic coupling, multi-dimensional coordination polymers consisting of transition metal ions and dicyanamide ligand are currently being studied (Batten & Murray, 2003). Although the addition of ancillary ligands (e.g. pyridine, pyrazine, pyrimidine, 2,2'-bipyrimidine, 4,4'-bipyridine and 2,2'-bipyridine, etc.) into these binary systems frequently alters the bridging mode of the dicyanamide ligand from µ-1,3 to µ-1,5 and therefore leads to a paramagnetic behavior, a wide variety of molecular architectures subsequently obtained conduce to establish a better understanding of the relationship between structure and magnetic behavior (Burčák et al., 2004; Potočňák et al., 2002; Vangdal et al., 2002; Wu et al., 2003). Here we describe the structure of an end-to-end dicyanamide-bridged cobalt(II) complex, (I), incorporating 2,9-dimethyl-1,10-phenanthroline (dmphen) as an ancillay ligand.

The structure of compound (I) consists of well isolated chains of CoII atoms bridged by end-to-end dicyanamide ligands (Fig.1). In the chain structure, each CoII atom is coordinated by one dmphen ligand, one nitrate anion and two dicyanamide ligands in an octahedral geometry. The Co—N bond distances are in the range of 2.069 (2) to 2.123 (2)Å (Table 1). The nitrate ion binds in a bidentate fashion and the distances of Co—O are 2.1466 (17) and 2.2268 (18) Å. The shortest Co···Co distance is 7.169 (7)Å in the chain and 7.348 (2)Å between the chains.

An N1—O1···Cg(aryl ring) interaction is observed [Cg is the centroid of the ring C5, C6, C7, C8, C9 and C10 at 1/2 - x, 1/2 + y, 1/2 - z) with O1···Cg = 3.296 Å. No significant ππ interaction between the dmphen rings is observed (the shortest centroid-to-centroid distance is 4.364 Å). The weak C—H···O hydrogen bonds link the chains into a three-dimensional structure (Fig. 2, Table 2).

Related literature top

For general background, see: Batten & Murray (2003); Burčák et al. (2004); Potočňák et al. (2002); Vangdal et al. (2002); Wu et al. (2003).

Experimental top

Co(NO3)2.6H2O (0.073 g, 0.25 mmol) and sodium dicyanamide (0.022 g, 0.25 mmol) were dissolved in water (10 ml). A methanol solution (10 ml) of dmphen (0.052 g, 0.25 mmol) was added with continuous stirring. The resulting solution was filtrated and allowed to slowly evaporate at room temperature. After one month, red single crystals suitable for X-ray diffraction appeared. The crystals were collected, washed with water and dried in air (0.059 g, yield 60%). IR (KBr, cm-1): 2318 (ms), 2293 (ms), 2269 (ms), 2247 (m), 2211 (s), 2180 (s).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic rings, and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups.

Structure description top

Due to the stabilization of relatively strong magnetic coupling, multi-dimensional coordination polymers consisting of transition metal ions and dicyanamide ligand are currently being studied (Batten & Murray, 2003). Although the addition of ancillary ligands (e.g. pyridine, pyrazine, pyrimidine, 2,2'-bipyrimidine, 4,4'-bipyridine and 2,2'-bipyridine, etc.) into these binary systems frequently alters the bridging mode of the dicyanamide ligand from µ-1,3 to µ-1,5 and therefore leads to a paramagnetic behavior, a wide variety of molecular architectures subsequently obtained conduce to establish a better understanding of the relationship between structure and magnetic behavior (Burčák et al., 2004; Potočňák et al., 2002; Vangdal et al., 2002; Wu et al., 2003). Here we describe the structure of an end-to-end dicyanamide-bridged cobalt(II) complex, (I), incorporating 2,9-dimethyl-1,10-phenanthroline (dmphen) as an ancillay ligand.

The structure of compound (I) consists of well isolated chains of CoII atoms bridged by end-to-end dicyanamide ligands (Fig.1). In the chain structure, each CoII atom is coordinated by one dmphen ligand, one nitrate anion and two dicyanamide ligands in an octahedral geometry. The Co—N bond distances are in the range of 2.069 (2) to 2.123 (2)Å (Table 1). The nitrate ion binds in a bidentate fashion and the distances of Co—O are 2.1466 (17) and 2.2268 (18) Å. The shortest Co···Co distance is 7.169 (7)Å in the chain and 7.348 (2)Å between the chains.

An N1—O1···Cg(aryl ring) interaction is observed [Cg is the centroid of the ring C5, C6, C7, C8, C9 and C10 at 1/2 - x, 1/2 + y, 1/2 - z) with O1···Cg = 3.296 Å. No significant ππ interaction between the dmphen rings is observed (the shortest centroid-to-centroid distance is 4.364 Å). The weak C—H···O hydrogen bonds link the chains into a three-dimensional structure (Fig. 2, Table 2).

For general background, see: Batten & Murray (2003); Burčák et al. (2004); Potočňák et al. (2002); Vangdal et al. (2002); Wu et al. (2003).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the CoII coordination. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1/2 - x, 1/2 + y, 1/2 - z; (ii) 1/2 - x, -1/2 + y, 1/2 - z.]
[Figure 2] Fig. 2. Hydrogen bonds (dashed lines) between neighboring chains create a three-dimensional structure.
catena-Poly[[(2,9-dimethyl-1,10-phenanthroline-κ2N,N')(nitrato- κ2O,O')cobalt(II)]-µ-dicyanamido-κ2N1:N5] top
Crystal data top
[Co(C2N3)(NO3)(C14H12N2)]F(000) = 804
Mr = 395.25Dx = 1.583 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 16421 reflections
a = 7.3481 (15) Åθ = 3.4–27.5°
b = 13.925 (3) ŵ = 1.07 mm1
c = 16.531 (3) ÅT = 153 K
β = 101.42 (3)°Block, red
V = 1658.0 (6) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker KappaCCD area-detector
diffractometer
3784 independent reflections
Radiation source: sealed tube2450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.815, Tmax = 0.901k = 1818
7407 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0613P)2]
where P = (Fo2 + 2Fc2)/3
3784 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Co(C2N3)(NO3)(C14H12N2)]V = 1658.0 (6) Å3
Mr = 395.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3481 (15) ŵ = 1.07 mm1
b = 13.925 (3) ÅT = 153 K
c = 16.531 (3) Å0.20 × 0.15 × 0.10 mm
β = 101.42 (3)°
Data collection top
Bruker KappaCCD area-detector
diffractometer
3784 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2450 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.901Rint = 0.022
7407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 0.94Δρmax = 0.44 e Å3
3784 reflectionsΔρmin = 0.32 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.17457 (4)0.86364 (2)0.203521 (18)0.03941 (12)
C10.5626 (4)0.9754 (2)0.1736 (2)0.0718 (8)
H1A0.57900.94780.22780.108*
H1B0.47171.02570.16840.108*
H1C0.67851.00130.16530.108*
C20.4981 (3)0.8998 (2)0.11066 (16)0.0550 (6)
C30.5930 (4)0.8817 (2)0.0460 (2)0.0689 (8)
H30.69730.91780.04190.083*
C40.5327 (4)0.8119 (2)0.01033 (18)0.0710 (9)
H40.59740.79970.05220.085*
C50.3748 (4)0.75839 (19)0.00591 (15)0.0564 (7)
C60.2852 (3)0.77972 (16)0.05976 (13)0.0432 (5)
C70.3025 (5)0.6845 (2)0.06323 (16)0.0685 (9)
H70.36400.66900.10550.082*
C80.1478 (5)0.63745 (19)0.05684 (16)0.0683 (9)
H80.10210.59050.09560.082*
C90.0506 (4)0.65740 (17)0.00819 (15)0.0544 (7)
C100.1201 (3)0.72828 (15)0.06690 (13)0.0422 (5)
C110.1105 (4)0.60941 (19)0.01902 (18)0.0640 (8)
H110.16470.56380.01940.077*
C120.1875 (4)0.62898 (18)0.08485 (19)0.0644 (8)
H120.29180.59510.09270.077*
C130.1113 (3)0.69973 (17)0.14120 (15)0.0498 (6)
C140.1931 (4)0.7203 (2)0.21529 (18)0.0675 (8)
H14A0.20270.78840.22190.101*
H14B0.11480.69360.26350.101*
H14C0.31440.69190.20810.101*
C150.0563 (3)1.05722 (17)0.12152 (13)0.0429 (5)
C160.1296 (4)1.20845 (18)0.16598 (16)0.0506 (6)
N10.1251 (3)0.97749 (16)0.32013 (12)0.0586 (6)
N20.0411 (3)0.97627 (14)0.12771 (12)0.0497 (5)
N30.0722 (4)1.14768 (15)0.10658 (14)0.0778 (8)
N40.1824 (3)1.26809 (16)0.21111 (13)0.0608 (6)
N50.3482 (3)0.84869 (13)0.11715 (12)0.0433 (5)
N60.0384 (2)0.74995 (12)0.13134 (11)0.0398 (4)
O10.0919 (3)1.03262 (17)0.37294 (13)0.0953 (8)
O20.0128 (3)0.91132 (14)0.29068 (11)0.0593 (5)
O30.2731 (3)0.98178 (13)0.29219 (11)0.0595 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0450 (2)0.03348 (18)0.03892 (18)0.00008 (14)0.00622 (13)0.00058 (13)
C10.0499 (17)0.0674 (19)0.098 (2)0.0148 (14)0.0133 (16)0.0054 (17)
C20.0438 (15)0.0568 (15)0.0646 (16)0.0035 (12)0.0112 (13)0.0095 (13)
C30.0508 (17)0.079 (2)0.082 (2)0.0055 (15)0.0261 (15)0.0217 (17)
C40.076 (2)0.084 (2)0.0608 (18)0.0249 (18)0.0327 (16)0.0142 (16)
C50.0659 (17)0.0580 (16)0.0472 (14)0.0186 (14)0.0160 (13)0.0087 (12)
C60.0515 (14)0.0397 (12)0.0372 (12)0.0117 (11)0.0063 (11)0.0031 (10)
C70.105 (3)0.0627 (19)0.0404 (14)0.0280 (18)0.0199 (16)0.0004 (13)
C80.111 (3)0.0458 (16)0.0421 (14)0.0168 (17)0.0005 (16)0.0048 (12)
C90.077 (2)0.0366 (13)0.0416 (13)0.0102 (12)0.0073 (13)0.0002 (10)
C100.0514 (14)0.0315 (11)0.0399 (12)0.0059 (10)0.0004 (10)0.0000 (9)
C110.079 (2)0.0379 (14)0.0621 (17)0.0032 (14)0.0180 (16)0.0042 (12)
C120.0582 (17)0.0427 (15)0.084 (2)0.0113 (13)0.0060 (16)0.0039 (14)
C130.0478 (15)0.0369 (13)0.0602 (15)0.0010 (11)0.0001 (12)0.0078 (11)
C140.0626 (18)0.0605 (18)0.084 (2)0.0099 (14)0.0253 (16)0.0085 (15)
C150.0458 (14)0.0410 (14)0.0391 (12)0.0005 (10)0.0018 (10)0.0000 (10)
C160.0627 (16)0.0350 (13)0.0492 (14)0.0038 (12)0.0003 (12)0.0057 (11)
N10.0713 (17)0.0570 (14)0.0440 (12)0.0149 (12)0.0030 (12)0.0053 (10)
N20.0554 (13)0.0367 (12)0.0545 (12)0.0012 (9)0.0051 (10)0.0024 (9)
N30.128 (2)0.0393 (13)0.0535 (14)0.0122 (13)0.0121 (15)0.0048 (11)
N40.0799 (17)0.0452 (13)0.0506 (12)0.0086 (11)0.0034 (12)0.0024 (10)
N50.0407 (11)0.0412 (11)0.0475 (11)0.0039 (9)0.0077 (9)0.0024 (9)
N60.0428 (11)0.0325 (10)0.0419 (10)0.0005 (8)0.0033 (9)0.0017 (8)
O10.1099 (19)0.0995 (18)0.0737 (14)0.0292 (14)0.0117 (13)0.0411 (13)
O20.0649 (12)0.0634 (12)0.0513 (10)0.0039 (10)0.0160 (9)0.0018 (9)
O30.0559 (11)0.0576 (12)0.0617 (11)0.0011 (9)0.0039 (10)0.0098 (8)
Geometric parameters (Å, º) top
Co—N4i2.069 (2)C8—C91.431 (4)
Co—N52.105 (2)C8—H80.9300
Co—N62.1116 (18)C9—C111.402 (4)
Co—N22.123 (2)C9—C101.407 (3)
Co—O22.1466 (17)C10—N61.357 (3)
Co—O32.2268 (18)C11—C121.350 (4)
C1—C21.490 (4)C11—H110.9300
C1—H1A0.9600C12—C131.395 (4)
C1—H1B0.9600C12—H120.9300
C1—H1C0.9600C13—N61.340 (3)
C2—N51.333 (3)C13—C141.495 (3)
C2—C31.409 (4)C14—H14A0.9600
C3—C41.359 (4)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—C51.393 (4)C15—N21.139 (3)
C4—H40.9300C15—N31.293 (3)
C5—C61.408 (3)C16—N41.132 (3)
C5—C71.428 (4)C16—N31.302 (3)
C6—N51.365 (3)N1—O11.223 (3)
C6—C101.433 (3)N1—O31.264 (3)
C7—C81.334 (4)N1—O21.268 (3)
C7—H70.9300N4—Coii2.069 (2)
N4i—Co—N596.01 (8)C7—C8—H8119.2
N4i—Co—N691.33 (8)C9—C8—H8119.2
N5—Co—N679.97 (7)C11—C9—C10116.5 (2)
N4i—Co—N2172.30 (8)C11—C9—C8124.3 (3)
N5—Co—N286.78 (8)C10—C9—C8119.2 (3)
N6—Co—N296.23 (8)N6—C10—C9122.7 (2)
N4i—Co—O290.87 (8)N6—C10—C6117.84 (19)
N5—Co—O2167.53 (7)C9—C10—C6119.4 (2)
N6—Co—O2110.34 (7)C12—C11—C9120.4 (2)
N2—Co—O285.14 (7)C12—C11—H11119.8
N4i—Co—O388.35 (8)C9—C11—H11119.8
N5—Co—O3110.97 (7)C11—C12—C13120.3 (3)
N6—Co—O3169.04 (7)C11—C12—H12119.9
N2—Co—O383.96 (8)C13—C12—H12119.9
O2—Co—O358.71 (7)N6—C13—C12121.2 (2)
C2—C1—H1A109.5N6—C13—C14118.2 (2)
C2—C1—H1B109.5C12—C13—C14120.6 (2)
H1A—C1—H1B109.5C13—C14—H14A109.5
C2—C1—H1C109.5C13—C14—H14B109.5
H1A—C1—H1C109.5H14A—C14—H14B109.5
H1B—C1—H1C109.5C13—C14—H14C109.5
N5—C2—C3120.4 (3)H14A—C14—H14C109.5
N5—C2—C1118.3 (2)H14B—C14—H14C109.5
C3—C2—C1121.3 (2)N2—C15—N3174.2 (3)
C4—C3—C2120.3 (3)N4—C16—N3172.5 (3)
C4—C3—H3119.9O1—N1—O3122.6 (3)
C2—C3—H3119.9O1—N1—O2121.6 (2)
C3—C4—C5120.6 (3)O3—N1—O2115.82 (19)
C3—C4—H4119.7C15—N2—Co137.9 (2)
C5—C4—H4119.7C15—N3—C16121.1 (2)
C4—C5—C6116.7 (3)C16—N4—Coii169.3 (2)
C4—C5—C7123.7 (3)C2—N5—C6119.5 (2)
C6—C5—C7119.6 (3)C2—N5—Co128.54 (17)
N5—C6—C5122.5 (2)C6—N5—Co111.90 (15)
N5—C6—C10118.09 (19)C13—N6—C10118.8 (2)
C5—C6—C10119.4 (2)C13—N6—Co129.13 (16)
C8—C7—C5120.8 (3)C10—N6—Co112.11 (14)
C8—C7—H7119.6N1—O2—Co94.46 (14)
C5—C7—H7119.6N1—O3—Co90.83 (14)
C7—C8—C9121.6 (3)
N5—C2—C3—C40.1 (4)N2—Co—N5—C281.6 (2)
C1—C2—C3—C4179.4 (3)O2—Co—N5—C231.9 (5)
C2—C3—C4—C51.1 (4)O3—Co—N5—C20.7 (2)
C3—C4—C5—C60.9 (4)N4i—Co—N5—C692.44 (16)
C3—C4—C5—C7179.5 (3)N6—Co—N5—C62.15 (14)
C4—C5—C6—N50.4 (4)N2—Co—N5—C694.76 (16)
C7—C5—C6—N5179.3 (2)O2—Co—N5—C6144.4 (3)
C4—C5—C6—C10179.0 (2)O3—Co—N5—C6177.03 (14)
C7—C5—C6—C101.4 (3)C12—C13—N6—C102.6 (3)
C4—C5—C7—C8178.3 (3)C14—C13—N6—C10176.3 (2)
C6—C5—C7—C82.1 (4)C12—C13—N6—Co177.26 (18)
C5—C7—C8—C91.3 (4)C14—C13—N6—Co3.8 (3)
C7—C8—C9—C11178.9 (3)C9—C10—N6—C132.3 (3)
C7—C8—C9—C100.1 (4)C6—C10—N6—C13177.1 (2)
C11—C9—C10—N60.3 (3)C9—C10—N6—Co177.60 (17)
C8—C9—C10—N6178.6 (2)C6—C10—N6—Co3.1 (2)
C11—C9—C10—C6179.6 (2)N4i—Co—N6—C1381.5 (2)
C8—C9—C10—C60.8 (3)N5—Co—N6—C13177.3 (2)
N5—C6—C10—N61.3 (3)N2—Co—N6—C1397.05 (19)
C5—C6—C10—N6179.4 (2)O2—Co—N6—C139.9 (2)
N5—C6—C10—C9179.4 (2)O3—Co—N6—C136.7 (5)
C5—C6—C10—C90.0 (3)N4i—Co—N6—C1098.67 (15)
C10—C9—C11—C122.6 (4)N5—Co—N6—C102.80 (15)
C8—C9—C11—C12176.2 (3)N2—Co—N6—C1082.81 (16)
C9—C11—C12—C132.4 (4)O2—Co—N6—C10169.91 (14)
C11—C12—C13—N60.3 (4)O3—Co—N6—C10173.2 (3)
C11—C12—C13—C14178.6 (3)O1—N1—O2—Co176.7 (2)
N5—Co—N2—C1589.6 (3)O3—N1—O2—Co4.1 (2)
N6—Co—N2—C15169.1 (3)N4i—Co—O2—N190.02 (15)
O2—Co—N2—C1580.9 (3)N5—Co—O2—N133.6 (4)
O3—Co—N2—C1521.9 (3)N6—Co—O2—N1178.24 (13)
C3—C2—N5—C61.2 (4)N2—Co—O2—N183.39 (15)
C1—C2—N5—C6179.3 (2)O3—Co—O2—N12.48 (13)
C3—C2—N5—Co177.25 (19)O1—N1—O3—Co176.8 (2)
C1—C2—N5—Co3.2 (3)O2—N1—O3—Co4.0 (2)
C5—C6—N5—C21.4 (3)N4i—Co—O3—N194.50 (14)
C10—C6—N5—C2177.9 (2)N5—Co—O3—N1169.70 (13)
C5—C6—N5—Co178.11 (18)N6—Co—O3—N16.0 (4)
C10—C6—N5—Co1.2 (2)N2—Co—O3—N185.49 (14)
N4i—Co—N5—C291.2 (2)O2—Co—O3—N12.48 (13)
N6—Co—N5—C2178.5 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O20.962.453.190 (4)133
C12—H12···O1iii0.932.543.455 (4)169
C7—H7···O2iv0.932.483.388 (3)167
Symmetry codes: (iii) x1/2, y1/2, z+1/2; (iv) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C2N3)(NO3)(C14H12N2)]
Mr395.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)153
a, b, c (Å)7.3481 (15), 13.925 (3), 16.531 (3)
β (°) 101.42 (3)
V3)1658.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker KappaCCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.815, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
7407, 3784, 2450
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.098, 0.94
No. of reflections3784
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.32

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2003), SHELXTL.

Selected bond lengths (Å) top
Co—N4i2.069 (2)Co—N22.123 (2)
Co—N52.105 (2)Co—O22.1466 (17)
Co—N62.1116 (18)Co—O32.2268 (18)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O20.962.453.190 (4)133
C12—H12···O1ii0.932.543.455 (4)169
C7—H7···O2iii0.932.483.388 (3)167
Symmetry codes: (ii) x1/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds