Download citation
Download citation
link to html
The title compound, C10H11N5O3S, was obtained unintentionally when our group attempted to synthesize a precursor of a copper corrosion inhibitor using p-acetyl­amidobenzene­sulfonyl chloride and 3-amino-1-H-1,2,4-triazole. In the mol­ecule the dihedral angle between the benzene ring and the triazole ring is 85.10 (6)°. In the crystal structure, mol­ecules are linked by N—H...O and N—H...N hydrogen bonds to form a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026931/lh2398sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026931/lh2398Isup2.hkl
Contains datablock I

CCDC reference: 654884

Key indicators

  • Single-crystal X-ray study
  • T = 299 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.040
  • wR factor = 0.112
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title molecule can easily form complexes with copper due to it containing many hetero atoms, so it can act as a type of copper corrosion inhibitor (Sherif et al., 2007). Theoretically, the protons on atom N5 are more active than the proton on atom N2, therefore, when p-acetylamidobenzenesulfonyl chloride reacts with 3-amino-1,2,4-trizole, it should be the active proton which reacts first react (Mai, 2001), but in our experiment, the proton at atom N2 is involved in the reaction. This X-ray study denied the previously molecular structure referred to in the literature. Therefore, the activity of proton N5 under this condition is more active than the proton N2.

Related literature top

For related literature, see: Mai (2001); Sherif et al. (2007).

Experimental top

The title compound was prepared by 3-amino-1-H-1,2,4-trizole (22 mmol) and p-acetamino benzene solfonyl chloride (25 mmol) in dry pyridine for 3 h. 3-amino-1-H -1,2,4-trizole was prepared by reacting aminoguanidine bicarbonate (250 mmol) and formic acid (17 mL) for 5 h. Then p-acetamino benzene solfonyl chloride was prepared from chlorosofonic acid (0.2 mol) and acetanilide (0.07 mol) in ice water bath. The solid product was collected by filtration. Single crystals suitable for crystallographic analysis were obtained by slow evaporation of a saturated THF-CH3OH(1:1) solution of the title compound at room temperature.

Refinement top

All the H-atoms were discernible in the difference Fourier map but H atoms bound to C atoms were included in calculated positions and allowed to ride during refinement, with C–H = 0.93—0.96 Å and U iso(H) = 1.2U eq (C of aromatic) or 1.5U eq(C of methyl). H atoms bound to N atoms were located in a difference Fourier map and refined with restraints for N—H = 0.86 (1) Å, and Uiso(H) = 1.2Ueq(N).

Structure description top

The title molecule can easily form complexes with copper due to it containing many hetero atoms, so it can act as a type of copper corrosion inhibitor (Sherif et al., 2007). Theoretically, the protons on atom N5 are more active than the proton on atom N2, therefore, when p-acetylamidobenzenesulfonyl chloride reacts with 3-amino-1,2,4-trizole, it should be the active proton which reacts first react (Mai, 2001), but in our experiment, the proton at atom N2 is involved in the reaction. This X-ray study denied the previously molecular structure referred to in the literature. Therefore, the activity of proton N5 under this condition is more active than the proton N2.

For related literature, see: Mai (2001); Sherif et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the title molecule with hydrogen bonds shown as dashed lines.
4-Acetamido-N-(3-amino-1,2,4-triazol-1-yl)benzenesulfonamide top
Crystal data top
C10H11N5O3SF(000) = 584
Mr = 281.30Dx = 1.547 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6534 reflections
a = 7.6520 (5) Åθ = 2.3–28.2°
b = 11.2724 (8) ŵ = 0.28 mm1
c = 14.0331 (10) ÅT = 299 K
β = 94.047 (1)°Block, colorless
V = 1207.43 (14) Å30.30 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2744 independent reflections
Radiation source: fine-focus sealed tube2513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 99
Tmin = 0.920, Tmax = 0.933k = 814
9872 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0659P)2 + 0.3863P]
where P = (Fo2 + 2Fc2)/3
2744 reflections(Δ/σ)max = 0.045
182 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.35 e Å3
Crystal data top
C10H11N5O3SV = 1207.43 (14) Å3
Mr = 281.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6520 (5) ŵ = 0.28 mm1
b = 11.2724 (8) ÅT = 299 K
c = 14.0331 (10) Å0.30 × 0.30 × 0.25 mm
β = 94.047 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2744 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
2513 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.933Rint = 0.022
9872 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
2744 reflectionsΔρmin = 0.35 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4554 (3)0.16048 (18)0.09977 (14)0.0562 (5)
H1A0.57140.12770.09650.084*
H1B0.43470.20400.15830.084*
H1C0.37130.09750.09770.084*
C20.4378 (2)0.24186 (16)0.01687 (11)0.0408 (3)
C30.29405 (19)0.43052 (14)0.02422 (10)0.0373 (3)
C40.3081 (3)0.41761 (19)0.12380 (12)0.0566 (5)
H40.35790.34960.15160.068*
C50.2474 (3)0.50655 (19)0.18019 (11)0.0571 (5)
H50.25680.49840.24630.069*
C60.1727 (2)0.60772 (14)0.13931 (10)0.0373 (3)
C70.1588 (2)0.62137 (14)0.04080 (10)0.0392 (3)
H70.10780.68920.01330.047*
C80.2210 (2)0.53344 (15)0.01580 (10)0.0402 (3)
H80.21420.54310.08180.048*
C90.00719 (19)0.60099 (13)0.37182 (9)0.0336 (3)
C100.2654 (2)0.56760 (16)0.31668 (12)0.0456 (4)
H100.37980.53930.31380.055*
N10.34335 (18)0.34180 (13)0.03806 (9)0.0421 (3)
H10.306 (3)0.3514 (19)0.0966 (8)0.051*
N20.03538 (17)0.65192 (12)0.28261 (8)0.0366 (3)
N30.20576 (18)0.62626 (13)0.24615 (9)0.0423 (3)
N40.15328 (17)0.54938 (13)0.39494 (9)0.0417 (3)
N50.14407 (18)0.60225 (14)0.42474 (9)0.0437 (3)
H5A0.229 (2)0.6426 (17)0.4060 (14)0.052*
H5B0.152 (3)0.5649 (16)0.4789 (9)0.052*
O10.50430 (17)0.21926 (12)0.06242 (9)0.0529 (3)
O20.23927 (18)0.76165 (12)0.27614 (9)0.0534 (3)
O30.00441 (18)0.80197 (11)0.15504 (9)0.0508 (3)
S10.09973 (5)0.72107 (3)0.21183 (2)0.03818 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0618 (11)0.0550 (11)0.0515 (10)0.0085 (9)0.0010 (8)0.0103 (8)
C20.0335 (7)0.0481 (9)0.0405 (8)0.0008 (6)0.0015 (6)0.0006 (7)
C30.0349 (7)0.0459 (8)0.0307 (7)0.0005 (6)0.0005 (5)0.0010 (6)
C40.0801 (12)0.0578 (11)0.0315 (8)0.0267 (10)0.0008 (8)0.0082 (7)
C50.0819 (13)0.0631 (11)0.0261 (7)0.0244 (10)0.0012 (7)0.0068 (7)
C60.0406 (7)0.0423 (8)0.0291 (7)0.0013 (6)0.0019 (5)0.0021 (6)
C70.0479 (8)0.0387 (8)0.0306 (7)0.0020 (6)0.0005 (6)0.0085 (6)
C80.0476 (8)0.0466 (9)0.0260 (6)0.0036 (7)0.0003 (6)0.0056 (6)
C90.0435 (7)0.0310 (7)0.0263 (6)0.0021 (6)0.0022 (5)0.0011 (5)
C100.0410 (8)0.0545 (10)0.0407 (8)0.0060 (7)0.0015 (6)0.0078 (7)
N10.0452 (7)0.0503 (8)0.0300 (6)0.0050 (6)0.0035 (5)0.0010 (6)
N20.0399 (6)0.0422 (7)0.0273 (6)0.0029 (5)0.0006 (5)0.0037 (5)
N30.0406 (7)0.0517 (8)0.0337 (6)0.0033 (6)0.0035 (5)0.0044 (6)
N40.0430 (7)0.0478 (8)0.0341 (6)0.0019 (6)0.0019 (5)0.0072 (5)
N50.0452 (7)0.0522 (8)0.0325 (6)0.0082 (6)0.0046 (5)0.0081 (6)
O10.0503 (7)0.0638 (8)0.0435 (6)0.0151 (6)0.0052 (5)0.0021 (6)
O20.0607 (8)0.0573 (8)0.0416 (6)0.0213 (6)0.0002 (6)0.0023 (6)
O30.0710 (8)0.0382 (6)0.0436 (6)0.0053 (6)0.0060 (6)0.0099 (5)
S10.0479 (2)0.0357 (2)0.0309 (2)0.00552 (15)0.00257 (16)0.00326 (13)
Geometric parameters (Å, º) top
C1—C21.495 (2)C7—H70.9300
C1—H1A0.9600C8—H80.9300
C1—H1B0.9600C9—N41.321 (2)
C1—H1C0.9600C9—N51.3304 (19)
C2—O11.217 (2)C9—N21.3803 (17)
C2—N11.360 (2)C10—N31.299 (2)
C3—C81.389 (2)C10—N41.361 (2)
C3—N11.397 (2)C10—H100.9300
C3—C41.402 (2)N1—H10.857 (9)
C4—C51.378 (3)N2—N31.3968 (18)
C4—H40.9300N2—S11.6757 (13)
C5—C61.382 (2)N5—H5A0.852 (9)
C5—H50.9300N5—H5B0.867 (9)
C6—C71.3876 (19)O2—S11.4240 (13)
C6—S11.7494 (16)O3—S11.4185 (12)
C7—C81.376 (2)
C2—C1—H1A109.5C7—C8—H8119.5
C2—C1—H1B109.5C3—C8—H8119.5
H1A—C1—H1B109.5N4—C9—N5125.85 (13)
C2—C1—H1C109.5N4—C9—N2108.98 (13)
H1A—C1—H1C109.5N5—C9—N2125.16 (14)
H1B—C1—H1C109.5N3—C10—N4117.16 (15)
O1—C2—N1123.68 (16)N3—C10—H10121.4
O1—C2—C1121.88 (16)N4—C10—H10121.4
N1—C2—C1114.44 (14)C2—N1—C3128.23 (13)
C8—C3—N1117.61 (13)C2—N1—H1116.7 (14)
C8—C3—C4119.35 (15)C3—N1—H1115.0 (14)
N1—C3—C4122.97 (15)C9—N2—N3109.16 (12)
C5—C4—C3119.46 (16)C9—N2—S1131.89 (11)
C5—C4—H4120.3N3—N2—S1118.56 (9)
C3—C4—H4120.3C10—N3—N2101.25 (12)
C4—C5—C6120.55 (14)C9—N4—C10103.39 (13)
C4—C5—H5119.7C9—N5—H5A119.2 (14)
C6—C5—H5119.7C9—N5—H5B119.4 (13)
C5—C6—C7120.37 (15)H5A—N5—H5B121.3 (19)
C5—C6—S1120.06 (11)O3—S1—O2121.05 (8)
C7—C6—S1119.55 (12)O3—S1—N2106.64 (7)
C8—C7—C6119.32 (14)O2—S1—N2103.89 (7)
C8—C7—H7120.3O3—S1—C6109.43 (7)
C6—C7—H7120.3O2—S1—C6110.33 (8)
C7—C8—C3120.93 (13)N2—S1—C6103.93 (7)
C8—C3—C4—C50.7 (3)N4—C10—N3—N21.2 (2)
N1—C3—C4—C5176.32 (19)C9—N2—N3—C102.35 (17)
C3—C4—C5—C60.2 (3)S1—N2—N3—C10176.00 (12)
C4—C5—C6—C70.4 (3)N5—C9—N4—C10176.97 (16)
C4—C5—C6—S1178.89 (17)N2—C9—N4—C101.91 (18)
C5—C6—C7—C80.4 (2)N3—C10—N4—C90.4 (2)
S1—C6—C7—C8178.12 (12)C9—N2—S1—O3152.26 (14)
C6—C7—C8—C31.4 (2)N3—N2—S1—O335.81 (13)
N1—C3—C8—C7175.68 (14)C9—N2—S1—O223.32 (16)
C4—C3—C8—C71.5 (3)N3—N2—S1—O2164.76 (12)
O1—C2—N1—C34.9 (3)C9—N2—S1—C692.15 (15)
C1—C2—N1—C3175.40 (16)N3—N2—S1—C679.77 (13)
C8—C3—N1—C2170.17 (15)C5—C6—S1—O3167.40 (15)
C4—C3—N1—C212.7 (3)C7—C6—S1—O314.06 (15)
N4—C9—N2—N32.79 (17)C5—C6—S1—O257.04 (17)
N5—C9—N2—N3176.09 (15)C7—C6—S1—O2121.49 (13)
N4—C9—N2—S1175.29 (12)C5—C6—S1—N253.79 (16)
N5—C9—N2—S13.6 (2)C7—C6—S1—N2127.67 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.86 (1)2.20 (1)3.0547 (18)179 (2)
N5—H5A···O1ii0.85 (1)2.23 (1)2.9906 (19)149 (2)
N5—H5B···N4iii0.87 (1)2.19 (1)3.0503 (18)172 (2)
N5—H5A···O20.85 (1)2.27 (2)2.8848 (19)129 (2)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H11N5O3S
Mr281.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)7.6520 (5), 11.2724 (8), 14.0331 (10)
β (°) 94.047 (1)
V3)1207.43 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.920, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
9872, 2744, 2513
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.04
No. of reflections2744
No. of parameters182
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.35

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.857 (9)2.198 (10)3.0547 (18)179 (2)
N5—H5A···O1ii0.852 (9)2.230 (13)2.9906 (19)148.8 (18)
N5—H5B···N4iii0.867 (9)2.189 (10)3.0503 (18)172.0 (19)
N5—H5A···O20.852 (9)2.269 (17)2.8848 (19)129.3 (17)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds