Download citation
Download citation
link to html
In the title compound, C27H41ClO5, all rings adopt chair conformations, giving the mol­ecule the shape of a bow. In the crystal structure, the Cl atom is not involved in inter­molecular inter­actions, as the packing is governed by C=O...H—C hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026487/lh2400sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026487/lh2400Isup2.hkl
Contains datablock I

CCDC reference: 654906

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.096
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT431_ALERT_2_C Short Inter HL..A Contact Cl1 .. O4 .. 3.24 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 4302 Count of symmetry unique reflns 2387 Completeness (_total/calc) 180.23% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1915 Fraction of Friedel pairs measured 0.802 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C3 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C5 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C9 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C10 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C13 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C14 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C17 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 10 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Efforts have recently been exerted in order to synthesize new derivatives of natural compounds, especially terpenoides (Dzubak et al., 2006; Kim et al., 1998) with large number of functional groups (Kim et al., 1998; Biedermann et al., 2005; Urban et al., 2005). Several years ago a group of new compounds called betulinines (Šarek et al., 2003), was described. Betulinines have significant cytotoxic activity on broad scale of tumor lines including multidrug resistance. Among the most effective belulinines are β-ketoacids (1, Fig. 3) (Šarek et al., 2003). The search for new degradable analogs of 1 with similar high cytotoxity resulted in a hexanorlupane derivatives (I) (Fig. 3) with cytotoxicity two times higher than 1. The structure of I has been determined as a part of large study of structure-activity relationships.

The bond lengths and angles in I are unexceptional and very close to the pertinent ones in the parent molecule 1. In both molecules the oxygen atom of the carbonyl substituent on D ring is slightly bend towards adjoining carboxyl moiety as follows from comparison of the angle around C18 (see Table I). All rings adopts chair conformations (Cremer & Pople, 1975) (Fig. 1), the deviation from ideal geometry (τ = 0, 180 °) can be discerned on ring D due its carbonyl substituent (τ = 164.6 (2) °). Without the possibility of classical hydrogen bonds, the role of weak C—H···O contacts in crystal packing is clearly revealed. Molecules are packed by C(methyl)-H···O(acetyl) hydrogen bonds forming columns along the b axis. Second parallel column related by operation of a 21 screw is attached to the first one in a zip-like way via a CH2···O(carbonyl) interaction (see Fig. 2).

Related literature top

For general background, see: Kim et al. (1998); Biedermann et al. (2005); Urban et al. (2005). For a related structure, see: Šarek et al. (2003).

For related literature, see: Cremer & Pople (1975); Dzubak et al. (2006).

Experimental top

A mixture of diketone (2) (Fig. 3) (0.93 mmol) and AcOOH (20 ml of a 32%aq soln) and Ru(IV)O2.H2O (0.15 mmol) in CHCL3 (55 mL) was stirred at room temperature for one day. The extract was washed and evaporated. The resulting pale-yellow oil crystalization from CHCl3/MeOH afforded chloroketone I as a colourless crystals. Yield 52%,

Refinement top

All H atoms were positioned geometrically and refined as riding on their parent C atoms, with C—H = 0.98 Å, for CH, C—H = 0.97Å for –CH2 and Uiso(H) = 1.2Ueq(C) or C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The absolute configuration was assigned from the known absolute structure of parent compound and was confirmed by the Flack (1983) parameter. Optical rotation [α]D +105o. m.p. 495–498 K.

Structure description top

Efforts have recently been exerted in order to synthesize new derivatives of natural compounds, especially terpenoides (Dzubak et al., 2006; Kim et al., 1998) with large number of functional groups (Kim et al., 1998; Biedermann et al., 2005; Urban et al., 2005). Several years ago a group of new compounds called betulinines (Šarek et al., 2003), was described. Betulinines have significant cytotoxic activity on broad scale of tumor lines including multidrug resistance. Among the most effective belulinines are β-ketoacids (1, Fig. 3) (Šarek et al., 2003). The search for new degradable analogs of 1 with similar high cytotoxity resulted in a hexanorlupane derivatives (I) (Fig. 3) with cytotoxicity two times higher than 1. The structure of I has been determined as a part of large study of structure-activity relationships.

The bond lengths and angles in I are unexceptional and very close to the pertinent ones in the parent molecule 1. In both molecules the oxygen atom of the carbonyl substituent on D ring is slightly bend towards adjoining carboxyl moiety as follows from comparison of the angle around C18 (see Table I). All rings adopts chair conformations (Cremer & Pople, 1975) (Fig. 1), the deviation from ideal geometry (τ = 0, 180 °) can be discerned on ring D due its carbonyl substituent (τ = 164.6 (2) °). Without the possibility of classical hydrogen bonds, the role of weak C—H···O contacts in crystal packing is clearly revealed. Molecules are packed by C(methyl)-H···O(acetyl) hydrogen bonds forming columns along the b axis. Second parallel column related by operation of a 21 screw is attached to the first one in a zip-like way via a CH2···O(carbonyl) interaction (see Fig. 2).

For general background, see: Kim et al. (1998); Biedermann et al. (2005); Urban et al. (2005). For a related structure, see: Šarek et al. (2003).

For related literature, see: Cremer & Pople (1975); Dzubak et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A section of the crystal structure, showing hydrogen bonds as dashed lines.
[Figure 3] Fig. 3. Reagents and conditions: a AcO2H, RuO2,CHCl3, r.t.
(3S,5R,8R,9R,10R,13S,14R,17S)-Methyl 3β-acetoxy-17β-chloro-18-oxo-19,20,21,22,29,30-hexanorlupan-28-oate top
Crystal data top
C27H41ClO5F(000) = 520
Mr = 481.05Dx = 1.286 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2233 reflections
a = 11.331 (3) Åθ = 1–25°
b = 6.738 (1) ŵ = 0.19 mm1
c = 16.366 (3) ÅT = 150 K
β = 96.275 (10)°Bar, colourless
V = 1242.0 (4) Å30.55 × 0.2 × 0.03 mm
Z = 2
Data collection top
Bruker Nonius KappaCCD
diffractometer
3899 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
Detector resolution: 9.091 pixels mm-1h = 1313
φ and ω scans to fill the Ewald spherek = 78
8942 measured reflectionsl = 1919
4320 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.2905P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4320 reflectionsΔρmax = 0.20 e Å3
305 parametersΔρmin = 0.22 e Å3
1 restraintAbsolute structure: Flack (1983), with 1923 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C27H41ClO5V = 1242.0 (4) Å3
Mr = 481.05Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.331 (3) ŵ = 0.19 mm1
b = 6.738 (1) ÅT = 150 K
c = 16.366 (3) Å0.55 × 0.2 × 0.03 mm
β = 96.275 (10)°
Data collection top
Bruker Nonius KappaCCD
diffractometer
3899 reflections with I > 2σ(I)
8942 measured reflectionsRint = 0.034
4320 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.20 e Å3
S = 1.10Δρmin = 0.22 e Å3
4320 reflectionsAbsolute structure: Flack (1983), with 1923 Friedel pairs
305 parametersAbsolute structure parameter: 0.01 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1096 (2)0.3185 (4)0.67922 (13)0.0296 (5)
H1A0.03790.23980.67900.035*
H1B0.09640.44350.70620.035*
C20.1329 (2)0.3596 (4)0.59006 (13)0.0315 (5)
H2A0.14150.23510.56150.038*
H2B0.06620.43100.56170.038*
C30.2446 (2)0.4811 (4)0.58938 (14)0.0296 (5)
H30.23350.60680.61770.036*
C40.3569 (2)0.3797 (4)0.63145 (13)0.0290 (5)
C50.32918 (19)0.3257 (4)0.72020 (13)0.0247 (5)
H50.31680.45400.74610.030*
C60.4344 (2)0.2339 (4)0.77348 (14)0.0292 (5)
H6A0.44320.09600.75820.035*
H6B0.50670.30360.76440.035*
C70.4148 (2)0.2469 (4)0.86420 (14)0.0299 (6)
H7A0.41300.38560.87990.036*
H7B0.48160.18540.89680.036*
C80.29946 (19)0.1467 (3)0.88479 (13)0.0235 (5)
C90.19388 (19)0.2178 (3)0.82254 (13)0.0228 (5)
H90.18620.35970.83400.027*
C100.2134 (2)0.2076 (3)0.72883 (14)0.0243 (5)
C110.0761 (2)0.1264 (4)0.84232 (13)0.0276 (5)
H11A0.01180.17780.80420.033*
H11B0.07890.01630.83510.033*
C120.05115 (19)0.1728 (4)0.93012 (13)0.0256 (5)
H12A0.03710.31410.93520.031*
H12B0.02020.10360.94170.031*
C130.15378 (19)0.1115 (3)0.99265 (13)0.0230 (5)
H130.16290.03250.98770.028*
C140.2738 (2)0.2072 (3)0.97524 (14)0.0243 (5)
C150.3710 (2)0.1300 (4)1.04065 (14)0.0285 (5)
H15A0.37480.01351.03700.034*
H15B0.44720.18261.02910.034*
C160.3494 (2)0.1879 (4)1.12772 (14)0.0316 (6)
H16A0.35410.33111.13320.038*
H16B0.41130.13071.16620.038*
C170.2285 (2)0.1178 (4)1.14980 (14)0.0288 (5)
C180.1275 (2)0.1525 (3)1.07962 (14)0.0259 (5)
C220.1959 (2)0.2277 (4)1.22574 (15)0.0335 (6)
C230.3937 (2)0.2028 (4)0.58118 (15)0.0379 (6)
H23A0.42120.24980.53120.057*
H23B0.32680.11670.56820.057*
H23C0.45630.13090.61260.057*
C240.4572 (2)0.5360 (4)0.63727 (16)0.0383 (6)
H24A0.53030.47580.66020.057*
H24B0.43760.64340.67190.057*
H24C0.46620.58590.58340.057*
C250.2135 (2)0.0073 (4)0.69583 (14)0.0321 (6)
H25A0.16170.08780.72470.048*
H25B0.29260.06000.70410.048*
H25C0.18620.00770.63820.048*
C260.3176 (2)0.0803 (4)0.88048 (15)0.0338 (6)
H26A0.34400.11440.82850.051*
H26B0.24390.14640.88620.051*
H26C0.37620.12100.92410.051*
C270.2652 (2)0.4347 (3)0.98586 (15)0.0290 (5)
H27A0.22950.46371.03510.044*
H27B0.21750.49010.93930.044*
H27C0.34330.49140.98980.044*
C280.2175 (2)0.6906 (4)0.47046 (16)0.0355 (6)
C290.2527 (3)0.7223 (5)0.38621 (16)0.0434 (7)
H29A0.18340.71700.34690.065*
H29B0.30740.62040.37400.065*
H29C0.28990.84980.38350.065*
C300.1176 (3)0.2194 (5)1.35275 (17)0.0531 (8)
H30A0.18750.27891.38090.080*
H30B0.08470.12671.38860.080*
H30C0.06020.32091.33670.080*
Cl10.23243 (5)0.14730 (8)1.16448 (3)0.03141 (15)
O10.26597 (15)0.5253 (3)0.50489 (9)0.0340 (4)
O20.15200 (19)0.7987 (3)0.50365 (12)0.0512 (5)
O30.03047 (15)0.2038 (3)1.09674 (10)0.0339 (4)
O40.2100 (2)0.4038 (3)1.23222 (11)0.0525 (6)
O50.14850 (17)0.1160 (3)1.27991 (10)0.0406 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0247 (11)0.0379 (15)0.0257 (11)0.0015 (11)0.0013 (9)0.0014 (11)
C20.0314 (12)0.0386 (14)0.0243 (11)0.0007 (13)0.0028 (9)0.0019 (12)
C30.0366 (13)0.0333 (13)0.0197 (11)0.0025 (12)0.0066 (10)0.0007 (10)
C40.0279 (12)0.0330 (14)0.0271 (11)0.0006 (11)0.0069 (9)0.0020 (11)
C50.0255 (11)0.0250 (12)0.0239 (11)0.0013 (10)0.0046 (9)0.0020 (10)
C60.0251 (12)0.0330 (13)0.0301 (12)0.0004 (10)0.0062 (10)0.0019 (11)
C70.0225 (12)0.0384 (14)0.0284 (12)0.0004 (11)0.0015 (10)0.0054 (11)
C80.0222 (11)0.0234 (12)0.0248 (11)0.0015 (10)0.0018 (9)0.0021 (10)
C90.0243 (11)0.0193 (11)0.0246 (11)0.0012 (9)0.0020 (9)0.0003 (9)
C100.0255 (11)0.0254 (12)0.0225 (11)0.0012 (10)0.0044 (9)0.0007 (10)
C110.0250 (12)0.0316 (13)0.0255 (11)0.0046 (10)0.0001 (9)0.0034 (10)
C120.0243 (11)0.0258 (12)0.0265 (11)0.0010 (10)0.0024 (9)0.0035 (10)
C130.0238 (11)0.0210 (11)0.0242 (11)0.0002 (9)0.0023 (9)0.0021 (9)
C140.0250 (12)0.0233 (12)0.0240 (11)0.0006 (10)0.0009 (9)0.0030 (10)
C150.0251 (12)0.0309 (12)0.0288 (12)0.0019 (11)0.0007 (10)0.0037 (10)
C160.0345 (13)0.0310 (13)0.0279 (12)0.0044 (11)0.0023 (10)0.0060 (10)
C170.0350 (13)0.0237 (12)0.0269 (12)0.0015 (11)0.0003 (10)0.0042 (10)
C180.0334 (13)0.0165 (11)0.0280 (12)0.0002 (10)0.0044 (10)0.0034 (9)
C220.0420 (15)0.0326 (15)0.0256 (13)0.0030 (12)0.0020 (11)0.0029 (11)
C230.0407 (15)0.0422 (16)0.0329 (13)0.0077 (13)0.0135 (11)0.0021 (12)
C240.0361 (14)0.0447 (16)0.0351 (14)0.0056 (12)0.0078 (12)0.0064 (12)
C250.0375 (14)0.0309 (14)0.0283 (12)0.0038 (12)0.0049 (11)0.0053 (11)
C260.0402 (15)0.0277 (13)0.0338 (13)0.0071 (11)0.0052 (11)0.0010 (10)
C270.0365 (14)0.0231 (12)0.0275 (12)0.0045 (10)0.0031 (10)0.0006 (10)
C280.0418 (14)0.0331 (14)0.0301 (13)0.0047 (13)0.0022 (11)0.0005 (11)
C290.0464 (16)0.0484 (17)0.0358 (15)0.0052 (14)0.0061 (12)0.0093 (13)
C300.072 (2)0.0530 (18)0.0378 (15)0.0152 (17)0.0215 (15)0.0093 (14)
Cl10.0375 (3)0.0236 (3)0.0324 (3)0.0000 (3)0.0006 (2)0.0054 (2)
O10.0445 (10)0.0351 (10)0.0236 (8)0.0032 (8)0.0099 (8)0.0034 (7)
O20.0684 (13)0.0474 (13)0.0364 (10)0.0190 (11)0.0002 (10)0.0016 (9)
O30.0365 (10)0.0343 (10)0.0314 (9)0.0079 (8)0.0062 (7)0.0007 (8)
O40.0908 (16)0.0313 (11)0.0377 (10)0.0103 (10)0.0169 (10)0.0042 (8)
O50.0574 (12)0.0367 (10)0.0297 (9)0.0097 (9)0.0140 (8)0.0025 (8)
Geometric parameters (Å, º) top
C1—C21.536 (3)C14—C271.547 (3)
C1—C101.547 (3)C15—C161.523 (3)
C1—H1A0.9700C15—H15A0.9700
C1—H1B0.9700C15—H15B0.9700
C2—C31.508 (3)C16—C171.529 (3)
C2—H2A0.9700C16—H16A0.9700
C2—H2B0.9700C16—H16B0.9700
C3—O11.460 (3)C17—C221.526 (4)
C3—C41.539 (3)C17—C181.549 (3)
C3—H30.9800C17—Cl11.802 (2)
C4—C231.532 (4)C18—O31.214 (3)
C4—C241.545 (4)C22—O41.200 (3)
C4—C51.562 (3)C22—O51.321 (3)
C5—C61.529 (3)C23—H23A0.9600
C5—C101.554 (3)C23—H23B0.9600
C5—H50.9800C23—H23C0.9600
C6—C71.528 (3)C24—H24A0.9600
C6—H6A0.9700C24—H24B0.9600
C6—H6B0.9700C24—H24C0.9600
C7—C81.541 (3)C25—H25A0.9600
C7—H7A0.9700C25—H25B0.9600
C7—H7B0.9700C25—H25C0.9600
C8—C261.546 (3)C26—H26A0.9600
C8—C91.560 (3)C26—H26B0.9600
C8—C141.593 (3)C26—H26C0.9600
C9—C111.536 (3)C27—H27A0.9600
C9—C101.575 (3)C27—H27B0.9600
C9—H90.9800C27—H27C0.9600
C10—C251.546 (3)C28—O21.210 (3)
C11—C121.527 (3)C28—O11.339 (3)
C11—H11A0.9700C28—C291.492 (4)
C11—H11B0.9700C29—H29A0.9600
C12—C131.520 (3)C29—H29B0.9600
C12—H12A0.9700C29—H29C0.9600
C12—H12B0.9700C30—O51.456 (3)
C13—C181.511 (3)C30—H30A0.9600
C13—C141.559 (3)C30—H30B0.9600
C13—H130.9800C30—H30C0.9600
C14—C151.540 (3)
C2—C1—C10112.70 (18)C15—C14—C27107.8 (2)
C2—C1—H1A109.1C15—C14—C13107.78 (18)
C10—C1—H1A109.1C27—C14—C13108.8 (2)
C2—C1—H1B109.1C15—C14—C8111.72 (18)
C10—C1—H1B109.1C27—C14—C8112.23 (19)
H1A—C1—H1B107.8C13—C14—C8108.40 (18)
C3—C2—C1109.66 (19)C16—C15—C14112.8 (2)
C3—C2—H2A109.7C16—C15—H15A109.0
C1—C2—H2A109.7C14—C15—H15A109.0
C3—C2—H2B109.7C16—C15—H15B109.0
C1—C2—H2B109.7C14—C15—H15B109.0
H2A—C2—H2B108.2H15A—C15—H15B107.8
O1—C3—C2110.11 (19)C15—C16—C17112.46 (19)
O1—C3—C4107.44 (17)C15—C16—H16A109.1
C2—C3—C4114.2 (2)C17—C16—H16A109.1
O1—C3—H3108.3C15—C16—H16B109.1
C2—C3—H3108.3C17—C16—H16B109.1
C4—C3—H3108.3H16A—C16—H16B107.8
C23—C4—C3111.4 (2)C22—C17—C16110.2 (2)
C23—C4—C24108.74 (19)C22—C17—C18107.8 (2)
C3—C4—C24107.0 (2)C16—C17—C18112.78 (19)
C23—C4—C5114.3 (2)C22—C17—Cl1112.13 (17)
C3—C4—C5106.22 (17)C16—C17—Cl1109.15 (18)
C24—C4—C5108.83 (19)C18—C17—Cl1104.69 (16)
C6—C5—C10110.76 (19)O3—C18—C13123.1 (2)
C6—C5—C4113.66 (17)O3—C18—C17119.1 (2)
C10—C5—C4117.46 (18)C13—C18—C17117.7 (2)
C6—C5—H5104.5O4—C22—O5124.3 (2)
C10—C5—H5104.5O4—C22—C17120.6 (2)
C4—C5—H5104.5O5—C22—C17115.0 (2)
C7—C6—C5110.10 (18)C4—C23—H23A109.5
C7—C6—H6A109.6C4—C23—H23B109.5
C5—C6—H6A109.6H23A—C23—H23B109.5
C7—C6—H6B109.6C4—C23—H23C109.5
C5—C6—H6B109.6H23A—C23—H23C109.5
H6A—C6—H6B108.2H23B—C23—H23C109.5
C6—C7—C8113.9 (2)C4—C24—H24A109.5
C6—C7—H7A108.8C4—C24—H24B109.5
C8—C7—H7A108.8H24A—C24—H24B109.5
C6—C7—H7B108.8C4—C24—H24C109.5
C8—C7—H7B108.8H24A—C24—H24C109.5
H7A—C7—H7B107.7H24B—C24—H24C109.5
C7—C8—C26107.7 (2)C10—C25—H25A109.5
C7—C8—C9109.31 (18)C10—C25—H25B109.5
C26—C8—C9111.75 (19)H25A—C25—H25B109.5
C7—C8—C14109.66 (18)C10—C25—H25C109.5
C26—C8—C14109.55 (18)H25A—C25—H25C109.5
C9—C8—C14108.87 (17)H25B—C25—H25C109.5
C11—C9—C8111.18 (18)C8—C26—H26A109.5
C11—C9—C10113.93 (18)C8—C26—H26B109.5
C8—C9—C10116.33 (17)H26A—C26—H26B109.5
C11—C9—H9104.7C8—C26—H26C109.5
C8—C9—H9104.7H26A—C26—H26C109.5
C10—C9—H9104.7H26B—C26—H26C109.5
C25—C10—C1107.38 (19)C14—C27—H27A109.5
C25—C10—C5114.52 (18)C14—C27—H27B109.5
C1—C10—C5107.82 (18)H27A—C27—H27B109.5
C25—C10—C9112.74 (19)C14—C27—H27C109.5
C1—C10—C9108.09 (17)H27A—C27—H27C109.5
C5—C10—C9106.03 (17)H27B—C27—H27C109.5
C12—C11—C9111.76 (19)O2—C28—O1123.7 (2)
C12—C11—H11A109.3O2—C28—C29124.6 (2)
C9—C11—H11A109.3O1—C28—C29111.7 (2)
C12—C11—H11B109.3C28—C29—H29A109.5
C9—C11—H11B109.3C28—C29—H29B109.5
H11A—C11—H11B107.9H29A—C29—H29B109.5
C13—C12—C11111.81 (18)C28—C29—H29C109.5
C13—C12—H12A109.3H29A—C29—H29C109.5
C11—C12—H12A109.3H29B—C29—H29C109.5
C13—C12—H12B109.3O5—C30—H30A109.5
C11—C12—H12B109.3O5—C30—H30B109.5
H12A—C12—H12B107.9H30A—C30—H30B109.5
C18—C13—C12111.67 (18)O5—C30—H30C109.5
C18—C13—C14111.25 (18)H30A—C30—H30C109.5
C12—C13—C14112.51 (18)H30B—C30—H30C109.5
C18—C13—H13107.0C28—O1—C3117.74 (19)
C12—C13—H13107.0C22—O5—C30115.4 (2)
C14—C13—H13107.0
C10—C1—C2—C358.5 (3)C11—C12—C13—C1455.6 (3)
C1—C2—C3—O1178.6 (2)C18—C13—C14—C1555.4 (2)
C1—C2—C3—C460.5 (3)C12—C13—C14—C15178.43 (18)
O1—C3—C4—C2352.4 (3)C18—C13—C14—C2761.2 (2)
C2—C3—C4—C2370.1 (2)C12—C13—C14—C2765.0 (2)
O1—C3—C4—C2466.4 (2)C18—C13—C14—C8176.50 (17)
C2—C3—C4—C24171.20 (19)C12—C13—C14—C857.3 (2)
O1—C3—C4—C5177.48 (19)C7—C8—C14—C1564.0 (2)
C2—C3—C4—C555.1 (3)C26—C8—C14—C1554.0 (3)
C23—C4—C5—C660.1 (3)C9—C8—C14—C15176.47 (19)
C3—C4—C5—C6176.5 (2)C7—C8—C14—C2757.2 (3)
C24—C4—C5—C661.6 (3)C26—C8—C14—C27175.2 (2)
C23—C4—C5—C1071.4 (3)C9—C8—C14—C2762.3 (3)
C3—C4—C5—C1051.9 (3)C7—C8—C14—C13177.42 (19)
C24—C4—C5—C10166.8 (2)C26—C8—C14—C1364.6 (2)
C10—C5—C6—C763.3 (2)C9—C8—C14—C1357.9 (2)
C4—C5—C6—C7161.9 (2)C27—C14—C15—C1655.6 (3)
C5—C6—C7—C857.3 (3)C13—C14—C15—C1661.7 (3)
C6—C7—C8—C2672.8 (2)C8—C14—C15—C16179.35 (18)
C6—C7—C8—C948.8 (3)C14—C15—C16—C1756.4 (3)
C6—C7—C8—C14168.11 (19)C15—C16—C17—C22163.6 (2)
C7—C8—C9—C11178.25 (18)C15—C16—C17—C1843.1 (3)
C26—C8—C9—C1162.7 (2)C15—C16—C17—Cl172.8 (2)
C14—C8—C9—C1158.5 (2)C12—C13—C18—O38.8 (3)
C7—C8—C9—C1049.1 (3)C14—C13—C18—O3135.5 (2)
C26—C8—C9—C1070.0 (2)C12—C13—C18—C17173.91 (19)
C14—C8—C9—C10168.91 (18)C14—C13—C18—C1747.3 (3)
C2—C1—C10—C2571.1 (3)C22—C17—C18—O320.2 (3)
C2—C1—C10—C552.8 (3)C16—C17—C18—O3142.1 (2)
C2—C1—C10—C9167.0 (2)Cl1—C17—C18—O399.4 (2)
C6—C5—C10—C2565.2 (2)C22—C17—C18—C13162.45 (19)
C4—C5—C10—C2567.7 (3)C16—C17—C18—C1340.5 (3)
C6—C5—C10—C1175.40 (18)Cl1—C17—C18—C1378.0 (2)
C4—C5—C10—C151.7 (3)C16—C17—C22—O444.6 (4)
C6—C5—C10—C959.8 (2)C18—C17—C22—O478.9 (3)
C4—C5—C10—C9167.29 (19)Cl1—C17—C22—O4166.4 (2)
C11—C9—C10—C2559.8 (2)C16—C17—C22—O5137.7 (2)
C8—C9—C10—C2571.6 (2)C18—C17—C22—O598.8 (2)
C11—C9—C10—C158.8 (2)Cl1—C17—C22—O515.9 (3)
C8—C9—C10—C1169.87 (19)O2—C28—O1—C34.3 (4)
C11—C9—C10—C5174.18 (18)C29—C28—O1—C3176.7 (2)
C8—C9—C10—C554.5 (2)C2—C3—O1—C2889.2 (3)
C8—C9—C11—C1256.5 (2)C4—C3—O1—C28145.9 (2)
C10—C9—C11—C12169.71 (19)O4—C22—O5—C302.7 (4)
C9—C11—C12—C1354.1 (3)C17—C22—O5—C30179.7 (2)
C11—C12—C13—C18178.44 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···O2i0.962.553.407 (3)148
C11—H11B···O3ii0.972.583.290 (3)130
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+2.

Experimental details

Crystal data
Chemical formulaC27H41ClO5
Mr481.05
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)11.331 (3), 6.738 (1), 16.366 (3)
β (°) 96.275 (10)
V3)1242.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.55 × 0.2 × 0.03
Data collection
DiffractometerBruker Nonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8942, 4320, 3899
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.10
No. of reflections4320
No. of parameters305
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22
Absolute structureFlack (1983), with 1923 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: COLLECT (Nonius, 1998) and DENZO (Otwinowski & Minor, 1997), COLLECT and DENZO, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25C···O2i0.962.553.407 (3)148.4
C11—H11B···O3ii0.972.583.290 (3)130.4
Symmetry codes: (i) x, y1, z; (ii) x, y1/2, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds