Download citation
Download citation
link to html
In the title centrosymmetric complex, [Cu2(C15H18N3O3)2(H2O)2Cl2], the bridging Cu2Cl2 ring, which is exactly planar by virtue of a crystallographic inversion center, has two different Cu—Cl distances. The dihedral angle between the pyridine and imidazole ring planes is 2.49 (4)°. In the crystal structure, inter­molecular O—H...O hydrogen bonds link dimer mol­ecules into a one-dimensional chain in the c-axis direction. The atoms of the isopropyl and ethyl groups are disordered over two sites with approximate occupancies of 0.75:0.25 and 0.5:0.5, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029819/lh2432sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029819/lh2432Isup2.hkl
Contains datablock I

CCDC reference: 654807

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in main residue
  • R factor = 0.049
  • wR factor = 0.088
  • Data-to-parameter ratio = 14.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.12 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.88 Ratio PLAT301_ALERT_3_C Main Residue Disorder ......................... 17.00 Perc. PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C1 - C2 ... 1.38 Ang. PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C2 - C3 ... 1.36 Ang. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C4 - C11 ... 1.53 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 177
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The synthesis and characterization of binuclear copper(II) complexes has made an impact on bio-inorganic chemistry (Solomon et al., 1996). The exchange mechanism of bridged copper(II) complexes has been published (Johnson et al., 1984). An excellent treatise on the orbital interaction in metal dimer complexes was also published (Hoffman et al., 1975).

The molecular structure is shown in Fig. 1. The bridging Cu2Cl2 unit is exactly planar. The Cu1—Cl1 and Cu1—Cl1i [symmetry code: (i) 1 - x, 1 - y, 1 - z] distances are not equal [2.2301 (11) and 2.7249 (11) Å]. The distance between Cu and Cu1i is less than the value in di-u-chloro- bis{chloro[1,2-diphenyl-2-(phenylamino)ethanoximato]copper(II)} (Puschmann, Batsanov et al., 2001) [3.4275 (4) versus 3.5172 (4) Å] and is longer than that in di-[µ]-chloro-bis{chloro[1,2-diphenyl-2-(4-chlorophenylamino) ethanoximato]copper(II)} [3.3514 (3) Å] [Puschmann, Howard et al., 2001]. In the asymmetric unit, the dihedral angle between the plane of the pyridine ring and the imidazole group plane is 2.49 (4) °. In the crystal structure, there is a O4—H4B···O1ii [symmetry code: (ii) x, y, z + 1] hydrogen bond (H4B···O1 = 1.70 Å), which links molecules into chains in the c axis direction.

Related literature top

For background information, see: Solomon et al. (1996); Hay et al. (1995); Johnson et al. (1984). For related structures, see: Puschmann, Batsanov et al. (2001); Puschmann, Howard et al. (2001).

Experimental top

A heavy-walled Pyrex tube containing a mixture of CuCl2.2H2O (0.02 g), 5-Ethyl-2-(5-isopropyl-5-methyl-4-oxo-4,5-dihydro-1H-imidazol-2-yl)- nicotinic acid (0.03 g), 0.65 mol/l NaOH solution (0.3 ml) and H2O (2 ml) was frozen in liquid N2, sealed under vacuum and placed in an oven at 423 K. Blue single crystals suitable for X-ray analysis were then obtained after heating for one month.

Refinement top

The water H atoms were located in a difference Fourier map and included in the 'as found' positions with with Uiso(H)= 1.5Ueq(O); All other H atoms were included in calculated positions and refined as riding (C—H= 0.93–0.98 Å; N—H = 0.86 Å), with Uiso(H)= 1.5 Ueq(C) for methyl and 1.2 Ueq(C,N) for all other H atoms. Atoms C9 and C10 of the ethyl group are disordered over two sites with refined occupancies of 0.503 (7) and 0.497 (7) for the major and minor components, respectively. Atoms C13, C14 and C15 of the isopropyl group are disordered, with the ratio between the major and minor components refining to 75 (3):25 (3).

Structure description top

The synthesis and characterization of binuclear copper(II) complexes has made an impact on bio-inorganic chemistry (Solomon et al., 1996). The exchange mechanism of bridged copper(II) complexes has been published (Johnson et al., 1984). An excellent treatise on the orbital interaction in metal dimer complexes was also published (Hoffman et al., 1975).

The molecular structure is shown in Fig. 1. The bridging Cu2Cl2 unit is exactly planar. The Cu1—Cl1 and Cu1—Cl1i [symmetry code: (i) 1 - x, 1 - y, 1 - z] distances are not equal [2.2301 (11) and 2.7249 (11) Å]. The distance between Cu and Cu1i is less than the value in di-u-chloro- bis{chloro[1,2-diphenyl-2-(phenylamino)ethanoximato]copper(II)} (Puschmann, Batsanov et al., 2001) [3.4275 (4) versus 3.5172 (4) Å] and is longer than that in di-[µ]-chloro-bis{chloro[1,2-diphenyl-2-(4-chlorophenylamino) ethanoximato]copper(II)} [3.3514 (3) Å] [Puschmann, Howard et al., 2001]. In the asymmetric unit, the dihedral angle between the plane of the pyridine ring and the imidazole group plane is 2.49 (4) °. In the crystal structure, there is a O4—H4B···O1ii [symmetry code: (ii) x, y, z + 1] hydrogen bond (H4B···O1 = 1.70 Å), which links molecules into chains in the c axis direction.

For background information, see: Solomon et al. (1996); Hay et al. (1995); Johnson et al. (1984). For related structures, see: Puschmann, Batsanov et al. (2001); Puschmann, Howard et al. (2001).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Berndt (2005); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. : The molecular structure, showing 30% probability displacement ellipsoids. Hydrogen atoms and the minor components of disorder have been omitted [Symmetry code: (A) 1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. : The crystal packing, viewed approximately along the a axis, showing the hydrogen bonded chain formed along the c axis. Hydrogen bonds are shown as dashed lines.
Di-µ-chloro-bis{aqua[5-ethyl-2-(5-isopropyl-5-methyl-4-oxo-4,5-dihydro- 1H-imidazol-2-yl)nicotinato]copper(II)} top
Crystal data top
[Cu2(C15H18N3O3)2(H2O)2Cl2]F(000) = 836
Mr = 810.68Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2342 reflections
a = 12.960 (2) Åθ = 2.3–22.5°
b = 13.2235 (19) ŵ = 1.40 mm1
c = 10.4526 (16) ÅT = 291 K
β = 97.012 (3)°Block, blue
V = 1778.0 (5) Å30.34 × 0.30 × 0.28 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
3487 independent reflections
Radiation source: fine-focus sealed tube2260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1115
Tmin = 0.647, Tmax = 0.695k = 1316
9418 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0218P)2]
where P = (Fo2 + 2Fc2)/3
3487 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.60 e Å3
177 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cu2(C15H18N3O3)2(H2O)2Cl2]V = 1778.0 (5) Å3
Mr = 810.68Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.960 (2) ŵ = 1.40 mm1
b = 13.2235 (19) ÅT = 291 K
c = 10.4526 (16) Å0.34 × 0.30 × 0.28 mm
β = 97.012 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3487 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2260 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.695Rint = 0.047
9418 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049177 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.01Δρmax = 0.60 e Å3
3487 reflectionsΔρmin = 0.28 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C90.2667 (15)0.6115 (10)0.0561 (13)0.070 (2)0.503 (7)
H9A0.26190.60020.03610.084*0.503 (7)
H9B0.23420.55530.09540.084*0.503 (7)
C100.2156 (7)0.7105 (7)0.0849 (12)0.093 (2)0.503 (7)
H10A0.21630.71780.17640.139*0.503 (7)
H10B0.14500.71080.04420.139*0.503 (7)
H10C0.25290.76560.05220.139*0.503 (7)
C9'0.2633 (15)0.6291 (11)0.0901 (12)0.070 (2)0.497 (7)
H9'10.23570.56140.07540.084*0.497 (7)
H9'20.23700.65570.16640.084*0.497 (7)
C10'0.2247 (8)0.6943 (8)0.0233 (12)0.093 (2)0.497 (7)
H10D0.23770.76400.00160.139*0.497 (7)
H10E0.15140.68400.04530.139*0.497 (7)
H10F0.26030.67650.09540.139*0.497 (7)
C130.9367 (14)0.5454 (8)0.3180 (14)0.0696 (14)0.75 (3)
H130.99380.54880.38860.084*0.75 (3)
C140.8774 (9)0.4486 (4)0.3335 (11)0.0709 (19)0.75 (3)
H14A0.82480.44040.26120.106*0.75 (3)
H14B0.84530.45170.41140.106*0.75 (3)
H14C0.92440.39230.33760.106*0.75 (3)
C150.9844 (10)0.5461 (10)0.1909 (8)0.091 (3)0.75 (3)
H15A1.03680.49460.19310.136*0.75 (3)
H15B1.01520.61100.17920.136*0.75 (3)
H15C0.93110.53320.12060.136*0.75 (3)
C13'0.944 (4)0.564 (2)0.316 (4)0.0696 (14)0.25 (3)
H13'0.98810.56550.39840.084*0.25 (3)
C14'0.905 (3)0.4542 (8)0.305 (3)0.0709 (19)0.25 (3)
H14D0.88540.43260.38620.106*0.25 (3)
H14E0.95870.41130.28050.106*0.25 (3)
H14F0.84510.45020.24030.106*0.25 (3)
C15'1.019 (2)0.585 (3)0.216 (3)0.091 (3)0.25 (3)
H15D0.98030.58700.13120.136*0.25 (3)
H15E1.06990.53250.21950.136*0.25 (3)
H15F1.05220.64900.23450.136*0.25 (3)
Cu10.57594 (3)0.60289 (3)0.47672 (4)0.04189 (16)
Cl10.42446 (7)0.60139 (7)0.55756 (9)0.0512 (3)
N10.5182 (2)0.6183 (2)0.2872 (3)0.0371 (7)
N20.7035 (2)0.6214 (2)0.4018 (3)0.0390 (7)
N30.7798 (2)0.6384 (2)0.2244 (3)0.0524 (9)
H3A0.78530.64390.14350.063*
O10.5822 (2)0.6509 (2)0.1448 (3)0.0809 (10)
O20.7255 (2)0.6343 (2)0.0127 (2)0.0674 (9)
O30.8461 (2)0.6231 (2)0.5567 (2)0.0669 (9)
O40.6551 (2)0.6095 (2)0.6469 (2)0.0786 (9)
H4A0.71790.61160.63970.118*
H4B0.63230.62760.71480.118*
C10.4177 (3)0.6166 (3)0.2445 (4)0.0473 (10)
H10.37020.61060.30390.057*
C20.3808 (3)0.6234 (3)0.1149 (4)0.0527 (11)
C30.4533 (3)0.6309 (3)0.0314 (4)0.0501 (11)
H30.43030.63560.05620.060*
C40.5595 (3)0.6318 (2)0.0701 (3)0.0386 (9)
C50.5886 (3)0.6261 (2)0.2032 (3)0.0325 (9)
C60.6938 (3)0.6284 (2)0.2732 (3)0.0366 (9)
C70.8071 (3)0.6269 (3)0.4445 (4)0.0492 (10)
C80.8673 (3)0.6389 (3)0.3283 (4)0.0537 (11)
C110.6306 (4)0.6391 (3)0.0363 (4)0.0498 (11)
C120.9234 (3)0.7421 (3)0.3368 (4)0.0748 (14)
H12A0.95450.75350.25930.112*
H12B0.97640.74220.40950.112*
H12C0.87410.79480.34700.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C90.053 (3)0.089 (4)0.066 (5)0.001 (3)0.000 (4)0.000 (4)
C100.073 (4)0.099 (4)0.103 (5)0.001 (3)0.006 (4)0.008 (4)
C9'0.053 (3)0.089 (4)0.066 (5)0.001 (3)0.000 (4)0.000 (4)
C10'0.073 (4)0.099 (4)0.103 (5)0.001 (3)0.006 (4)0.008 (4)
C130.057 (3)0.089 (4)0.063 (3)0.012 (3)0.010 (2)0.008 (3)
C140.063 (5)0.077 (3)0.075 (4)0.017 (3)0.018 (3)0.000 (3)
C150.072 (4)0.114 (5)0.091 (4)0.004 (4)0.033 (3)0.009 (4)
C13'0.057 (3)0.089 (4)0.063 (3)0.012 (3)0.010 (2)0.008 (3)
C14'0.063 (5)0.077 (3)0.075 (4)0.017 (3)0.018 (3)0.000 (3)
C15'0.072 (4)0.114 (5)0.091 (4)0.004 (4)0.033 (3)0.009 (4)
Cu10.0406 (3)0.0545 (3)0.0317 (3)0.0056 (3)0.0091 (2)0.0009 (2)
Cl10.0510 (6)0.0529 (6)0.0537 (7)0.0025 (5)0.0230 (5)0.0001 (5)
N10.0360 (18)0.0410 (19)0.0342 (18)0.0005 (15)0.0035 (14)0.0028 (13)
N20.0292 (17)0.058 (2)0.0291 (17)0.0044 (15)0.0026 (13)0.0047 (14)
N30.0369 (19)0.091 (3)0.0300 (19)0.0031 (18)0.0070 (15)0.0113 (16)
O10.076 (2)0.137 (3)0.0288 (17)0.016 (2)0.0030 (15)0.0025 (17)
O20.0510 (18)0.116 (3)0.0367 (17)0.0012 (18)0.0123 (14)0.0056 (15)
O30.0456 (18)0.118 (2)0.0346 (17)0.0046 (17)0.0075 (14)0.0030 (15)
O40.0585 (19)0.148 (3)0.0307 (16)0.0201 (19)0.0088 (13)0.0151 (17)
C10.035 (2)0.059 (3)0.048 (3)0.002 (2)0.0064 (19)0.007 (2)
C20.035 (2)0.062 (3)0.059 (3)0.001 (2)0.006 (2)0.010 (2)
C30.053 (3)0.055 (3)0.038 (2)0.001 (2)0.012 (2)0.0102 (19)
C40.042 (2)0.038 (2)0.034 (2)0.0002 (18)0.0023 (18)0.0021 (16)
C50.034 (2)0.031 (2)0.031 (2)0.0009 (16)0.0002 (16)0.0023 (15)
C60.033 (2)0.045 (2)0.032 (2)0.0050 (18)0.0061 (17)0.0036 (16)
C70.045 (3)0.065 (3)0.037 (2)0.003 (2)0.0028 (19)0.000 (2)
C80.036 (2)0.084 (3)0.041 (3)0.003 (2)0.0043 (19)0.006 (2)
C110.067 (3)0.049 (3)0.033 (2)0.001 (2)0.005 (2)0.0013 (18)
C120.054 (3)0.097 (4)0.072 (3)0.035 (3)0.002 (2)0.015 (3)
Geometric parameters (Å, º) top
C9—C101.513 (9)C15'—H15F0.9600
C9—C21.538 (19)Cu1—N21.930 (3)
C9—H9A0.9700Cu1—O41.944 (2)
C9—H9B0.9700Cu1—N12.041 (3)
C10—H10A0.9600Cu1—Cl12.2301 (11)
C10—H10B0.9600Cu1—Cl1i2.7249 (11)
C10—H10C0.9600Cl1—Cu1i2.7249 (11)
C9'—C10'1.501 (9)N1—C11.325 (4)
C9'—C21.51 (2)N1—C51.345 (4)
C9'—H9'10.9700N2—C61.338 (4)
C9'—H9'20.9700N2—C71.364 (4)
C10'—H10D0.9600N3—C61.287 (4)
C10'—H10E0.9600N3—C81.472 (4)
C10'—H10F0.9600N3—H3A0.8600
C13—C141.511 (6)O1—C111.237 (4)
C13—C151.532 (7)O2—C111.227 (5)
C13—C81.540 (15)O3—C71.220 (4)
C13—H130.9800O4—H4A0.8257
C14—H14A0.9600O4—H4B0.8371
C14—H14B0.9600C1—C21.384 (5)
C14—H14C0.9600C1—H10.9300
C15—H15A0.9600C2—C31.362 (5)
C15—H15B0.9600C3—C41.387 (5)
C15—H15C0.9600C3—H30.9300
C13'—C81.42 (4)C4—C51.398 (4)
C13'—C14'1.533 (10)C4—C111.531 (5)
C13'—C15'1.536 (10)C5—C61.467 (4)
C13'—H13'0.9800C7—C81.530 (5)
C14'—H14D0.9600C8—C121.544 (5)
C14'—H14E0.9600C12—H12A0.9600
C14'—H14F0.9600C12—H12B0.9600
C15'—H15D0.9600C12—H12C0.9600
C15'—H15E0.9600
C10—C9—C2104.8 (10)C1—N1—C5119.9 (3)
C10—C9—H9A110.8C1—N1—Cu1123.7 (3)
C2—C9—H9A110.8C5—N1—Cu1116.4 (2)
C10—C9—H9B110.8C6—N2—C7107.1 (3)
C2—C9—H9B110.8C6—N2—Cu1115.9 (2)
H9A—C9—H9B108.9C7—N2—Cu1137.0 (3)
C10'—C9'—C2113.3 (13)C6—N3—C8109.5 (3)
C10'—C9'—H9'1108.9C6—N3—H3A125.2
C2—C9'—H9'1108.9C8—N3—H3A125.2
C10'—C9'—H9'2108.9Cu1—O4—H4A109.5
C2—C9'—H9'2108.9Cu1—O4—H4B126.0
H9'1—C9'—H9'2107.7H4A—O4—H4B121.4
C9'—C10'—H10D109.5N1—C1—C2122.5 (4)
C9'—C10'—H10E109.5N1—C1—H1118.8
H10D—C10'—H10E109.5C2—C1—H1118.8
C9'—C10'—H10F109.5C3—C2—C1116.7 (4)
H10D—C10'—H10F109.5C3—C2—C9'130.1 (6)
H10E—C10'—H10F109.5C1—C2—C9'113.0 (6)
C14—C13—C15111.2 (6)C3—C2—C9117.1 (7)
C14—C13—C8111.3 (9)C1—C2—C9125.8 (7)
C15—C13—C8110.9 (10)C2—C3—C4123.5 (4)
C14—C13—H13107.8C2—C3—H3118.3
C15—C13—H13107.8C4—C3—H3118.3
C8—C13—H13107.8C3—C4—C5115.3 (4)
C8—C13'—C14'116 (3)C3—C4—C11116.9 (3)
C8—C13'—C15'116 (3)C5—C4—C11127.8 (3)
C14'—C13'—C15'110.7 (10)N1—C5—C4122.1 (3)
C8—C13'—H13'104.0N1—C5—C6109.8 (3)
C14'—C13'—H13'104.0C4—C5—C6128.0 (3)
C15'—C13'—H13'104.0N3—C6—N2115.2 (3)
C13'—C14'—H14D109.5N3—C6—C5127.0 (3)
C13'—C14'—H14E109.5N2—C6—C5117.8 (3)
H14D—C14'—H14E109.5O3—C7—N2126.0 (4)
C13'—C14'—H14F109.5O3—C7—C8125.2 (4)
H14D—C14'—H14F109.5N2—C7—C8108.8 (3)
H14E—C14'—H14F109.5C13'—C8—N3114 (2)
C13'—C15'—H15D109.5C13'—C8—C7115.5 (13)
C13'—C15'—H15E109.5N3—C8—C799.4 (3)
H15D—C15'—H15E109.5N3—C8—C13110.4 (7)
C13'—C15'—H15F109.5C7—C8—C13109.4 (5)
H15D—C15'—H15F109.5C13'—C8—C12107.2 (11)
H15E—C15'—H15F109.5N3—C8—C12111.2 (3)
N2—Cu1—O489.01 (11)C7—C8—C12109.1 (3)
N2—Cu1—N179.86 (12)C13—C8—C12116.0 (6)
O4—Cu1—N1166.85 (11)O2—C11—O1125.1 (4)
N2—Cu1—Cl1172.96 (9)O2—C11—C4121.9 (3)
O4—Cu1—Cl192.56 (9)O1—C11—C4113.0 (4)
N1—Cu1—Cl197.67 (9)C8—C12—H12A109.5
N2—Cu1—Cl1i93.48 (9)C8—C12—H12B109.5
O4—Cu1—Cl1i99.06 (9)H12A—C12—H12B109.5
N1—Cu1—Cl1i88.66 (8)C8—C12—H12C109.5
Cl1—Cu1—Cl1i93.06 (3)H12A—C12—H12C109.5
Cu1—Cl1—Cu1i86.94 (3)H12B—C12—H12C109.5
O4—Cu1—Cl1—Cu1i99.22 (9)Cu1—N2—C6—N3178.5 (2)
N1—Cu1—Cl1—Cu1i89.06 (8)C7—N2—C6—C5179.0 (3)
Cl1i—Cu1—Cl1—Cu1i0.0Cu1—N2—C6—C52.8 (4)
N2—Cu1—N1—C1178.6 (3)N1—C5—C6—N3177.8 (3)
O4—Cu1—N1—C1146.0 (5)C4—C5—C6—N31.7 (6)
Cl1—Cu1—N1—C15.2 (3)N1—C5—C6—N20.8 (4)
Cl1i—Cu1—N1—C187.7 (3)C4—C5—C6—N2179.7 (3)
N2—Cu1—N1—C54.3 (2)C6—N2—C7—O3179.8 (4)
O4—Cu1—N1—C536.9 (6)Cu1—N2—C7—O32.2 (7)
Cl1—Cu1—N1—C5177.6 (2)C6—N2—C7—C80.1 (4)
Cl1i—Cu1—N1—C589.4 (2)Cu1—N2—C7—C8177.8 (3)
O4—Cu1—N2—C6176.7 (3)C14'—C13'—C8—N356 (3)
N1—Cu1—N2—C63.7 (2)C15'—C13'—C8—N377 (3)
Cl1i—Cu1—N2—C684.3 (2)C14'—C13'—C8—C759 (4)
O4—Cu1—N2—C75.9 (4)C15'—C13'—C8—C7169 (3)
N1—Cu1—N2—C7178.8 (4)C14'—C13'—C8—C1310 (14)
Cl1i—Cu1—N2—C793.2 (4)C15'—C13'—C8—C13143 (19)
C5—N1—C1—C20.5 (5)C14'—C13'—C8—C12180 (3)
Cu1—N1—C1—C2177.5 (3)C15'—C13'—C8—C1247 (4)
N1—C1—C2—C30.8 (6)C6—N3—C8—C13'123.5 (10)
N1—C1—C2—C9'175.0 (7)C6—N3—C8—C70.1 (4)
N1—C1—C2—C9173.5 (6)C6—N3—C8—C13114.7 (4)
C10'—C9'—C2—C329.3 (16)C6—N3—C8—C12115.0 (4)
C10'—C9'—C2—C1145.7 (9)O3—C7—C8—C13'57 (2)
C10'—C9'—C2—C970 (3)N2—C7—C8—C13'123 (2)
C10—C9—C2—C3110.5 (10)O3—C7—C8—N3180.0 (4)
C10—C9—C2—C176.7 (12)N2—C7—C8—N30.0 (4)
C10—C9—C2—C9'36 (3)O3—C7—C8—C1364.3 (8)
C1—C2—C3—C40.0 (6)N2—C7—C8—C13115.7 (7)
C9'—C2—C3—C4174.9 (8)O3—C7—C8—C1263.6 (5)
C9—C2—C3—C4173.4 (6)N2—C7—C8—C12116.4 (3)
C2—C3—C4—C51.0 (5)C14—C13—C8—C13'179 (17)
C2—C3—C4—C11179.2 (3)C15—C13—C8—C13'55 (16)
C1—N1—C5—C40.6 (5)C14—C13—C8—N362.2 (10)
Cu1—N1—C5—C4176.6 (2)C15—C13—C8—N362.2 (10)
C1—N1—C5—C6178.9 (3)C14—C13—C8—C746.3 (12)
Cu1—N1—C5—C63.9 (3)C15—C13—C8—C7170.6 (8)
C3—C4—C5—N11.3 (5)C14—C13—C8—C12170.2 (8)
C11—C4—C5—N1178.9 (3)C15—C13—C8—C1265.5 (12)
C3—C4—C5—C6178.1 (3)C3—C4—C11—O2175.5 (4)
C11—C4—C5—C61.7 (6)C5—C4—C11—O24.7 (6)
C8—N3—C6—N20.3 (5)C3—C4—C11—O15.0 (5)
C8—N3—C6—C5178.9 (3)C5—C4—C11—O1174.8 (3)
C7—N2—C6—N30.2 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1ii0.841.702.537 (4)174
O4—H4A···O30.831.972.759 (4)159
N3—H3A···O20.861.722.493 (4)148
Symmetry code: (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C15H18N3O3)2(H2O)2Cl2]
Mr810.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)12.960 (2), 13.2235 (19), 10.4526 (16)
β (°) 97.012 (3)
V3)1778.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.34 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.647, 0.695
No. of measured, independent and
observed [I > 2σ(I)] reflections
9418, 3487, 2260
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.088, 1.01
No. of reflections3487
No. of parameters241
No. of restraints177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.28

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Berndt (2005), SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
Cu1—N21.930 (3)Cu1—Cl12.2301 (11)
Cu1—O41.944 (2)Cu1—Cl1i2.7249 (11)
Cu1—N12.041 (3)
N2—Cu1—O489.01 (11)N2—Cu1—Cl1i93.48 (9)
N2—Cu1—N179.86 (12)O4—Cu1—Cl1i99.06 (9)
O4—Cu1—N1166.85 (11)N1—Cu1—Cl1i88.66 (8)
N2—Cu1—Cl1172.96 (9)Cl1—Cu1—Cl1i93.06 (3)
O4—Cu1—Cl192.56 (9)Cu1—Cl1—Cu1i86.94 (3)
N1—Cu1—Cl197.67 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1ii0.841.702.537 (4)173.7
O4—H4A···O30.831.972.759 (4)159.1
N3—H3A···O20.861.722.493 (4)147.5
Symmetry code: (ii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds