Download citation
Download citation
link to html
In the title compound, [CuK(C17H15N2O4)(CH3OH)]n, the CuII ion has a square-planar coordination geometry and is coordinated by two N and two O atoms. One phenoxo and the amide O atom also inter­act with the methanol-coordinated K+ ion along with the meth­oxy O atom of the trianion. Two bridging inter­actions to K+ give rise to a linear chain structure. The chains are further linked by hydrogen bonds involving the amido methanol O atoms into a two-dimensional network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027717/ng2273sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027717/ng2273Isup2.hkl
Contains datablock I

CCDC reference: 654730

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.042
  • wR factor = 0.091
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level A DIFF019_ALERT_1_A _diffrn_standards_number is missing Number of standards used in measurement.
Author Response: We used an IP diffractometer to collect the data. Therefore, no standard reflections have been used during the measurement.
DIFF020_ALERT_1_A  _diffrn_standards_interval_count and
            _diffrn_standards_interval_time are missing. Number of measurements
            between standards or time (min) between standards.
Author Response: We used an IP diffractometer to collect the data. Therefore, no standard reflections have been used during the measurement.

Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 1.02 PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 600 Ang. PLAT601_ALERT_2_C Structure Contains Solvent Accessible VOIDS of . 37.00 A   3
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.29
2 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

1-(2-hydroxybenzamido)-2-(2-hydroxy-3-methoxybenzylideneamino)ethane, abbreviated as H3L, is an excellent bridging ligand that can link two metal atoms via the phenolato and the amido oxgen atoms to form polynuclear complexes (Kido et al., 2000). A few cyclic heterometallic tetranuclear complexes have been synthesize and their structures have been characterized by diffraction analysis and magnetic studies (Hamamatsu et al., 2007; Kido et al., 2003; Osa et al., 2003). The syntheses requires K[CuL] as the starting reactant. This compound crystallizes from methanol as the title compound.

The structure consists of [CuL]- and [K(MeOH)]+ moieties connected by the phenolato and amido oxygen atoms (Fig. 1). The coordination geometry of potassium is an octahedron, and that of copper is a square plane. Two N atoms and two O atoms are linked to the copper atom. The coordination environment is similar to those found in other cyclic heterometallic tetranuclear complexes.

The phenolato oxygen and amido oxgen atoms are involving in bridging to form a ladder structure (Fig. 2). Adjacent ladders are further linked by hydrogen bonds (involving the amido group and the methanol molecule) (O···O 2.702 (4) Å) to form a two-dimensional, hydrogen-bonded network.

Related literature top

For other polynuclear complexes, see Kido et al. (2003, 2007); Osa et al., 2003. For related literature, see: Hamamatsu et al. (2007); Kido et al. (2000).

Experimental top

The compound was prepared according to the literature method (Kido et al., 2003), and recrystallization from methanol afforded violet, block-shaped crystals.

Refinement top

The H atoms bound to C atoms were placed in caculated positions with C—H = 0.93–0.77 Å and included in the refinement with Uiso(H) = 1.2Ueq(C). The H atom attached to the methanol O atom were found from E-map, and was fixed with O—H = 0.85 Å and refined isotropically.

Structure description top

1-(2-hydroxybenzamido)-2-(2-hydroxy-3-methoxybenzylideneamino)ethane, abbreviated as H3L, is an excellent bridging ligand that can link two metal atoms via the phenolato and the amido oxgen atoms to form polynuclear complexes (Kido et al., 2000). A few cyclic heterometallic tetranuclear complexes have been synthesize and their structures have been characterized by diffraction analysis and magnetic studies (Hamamatsu et al., 2007; Kido et al., 2003; Osa et al., 2003). The syntheses requires K[CuL] as the starting reactant. This compound crystallizes from methanol as the title compound.

The structure consists of [CuL]- and [K(MeOH)]+ moieties connected by the phenolato and amido oxygen atoms (Fig. 1). The coordination geometry of potassium is an octahedron, and that of copper is a square plane. Two N atoms and two O atoms are linked to the copper atom. The coordination environment is similar to those found in other cyclic heterometallic tetranuclear complexes.

The phenolato oxygen and amido oxgen atoms are involving in bridging to form a ladder structure (Fig. 2). Adjacent ladders are further linked by hydrogen bonds (involving the amido group and the methanol molecule) (O···O 2.702 (4) Å) to form a two-dimensional, hydrogen-bonded network.

For other polynuclear complexes, see Kido et al. (2003, 2007); Osa et al., 2003. For related literature, see: Hamamatsu et al. (2007); Kido et al. (2000).

Computing details top

Data collection: CrystalStructure (Rigaku/MSC, 2004); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP.

Figures top
[Figure 1] Fig. 1. A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Symmetry code: i -x, 1 - y, -z; ii 1 - x, 1 - y, -z.
[Figure 2] Fig. 2. The hydrogen-bonded layer structure.
catena-Poly[[methanolcopper(II)potassium(I)]-µ3– 1-(3-methoxy-2-oxidobenzylideneamino)-2-(2-oxidobenzamido)ethane] top
Crystal data top
[CuK(C17H15N2O4)(CH4O)]Z = 2
Mr = 445.99F(000) = 458
Triclinic, P1Dx = 1.596 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.851 (6) ÅCell parameters from 4201 reflections
b = 9.139 (6) Åθ = 3.0–27.5°
c = 12.458 (6) ŵ = 1.43 mm1
α = 72.19 (2)°T = 293 K
β = 77.68 (3)°Block, violet
γ = 78.69 (2)°0.2 × 0.2 × 0.18 mm
V = 928.0 (10) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4201 independent reflections
Radiation source: fine-focus sealed tube3241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 0.1 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1111
Tmin = 0.732, Tmax = 0.759l = 1614
9074 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.01P)2 + P]
where P = (Fo2 + 2Fc2)/3
4201 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[CuK(C17H15N2O4)(CH4O)]γ = 78.69 (2)°
Mr = 445.99V = 928.0 (10) Å3
Triclinic, P1Z = 2
a = 8.851 (6) ÅMo Kα radiation
b = 9.139 (6) ŵ = 1.43 mm1
c = 12.458 (6) ÅT = 293 K
α = 72.19 (2)°0.2 × 0.2 × 0.18 mm
β = 77.68 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4201 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3241 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.759Rint = 0.045
9074 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.02Δρmax = 0.55 e Å3
4201 reflectionsΔρmin = 0.40 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27702 (4)0.27166 (4)0.12226 (3)0.03185 (11)
K10.03569 (8)0.65451 (7)0.05460 (6)0.03864 (17)
O10.2426 (2)0.4267 (2)0.01471 (17)0.0358 (5)
O20.0917 (2)0.3708 (2)0.20129 (17)0.0358 (5)
N20.3005 (3)0.0990 (3)0.2574 (2)0.0325 (5)
N10.4802 (3)0.1843 (3)0.0599 (2)0.0344 (6)
C160.3546 (3)0.4689 (3)0.1033 (2)0.0311 (6)
C110.5110 (3)0.3922 (3)0.1150 (3)0.0324 (6)
O30.7203 (2)0.2010 (3)0.0501 (2)0.0442 (5)
C10.0455 (3)0.3377 (3)0.3110 (3)0.0314 (6)
C20.0732 (4)0.4438 (3)0.3569 (3)0.0350 (7)
C70.2269 (4)0.0894 (3)0.3583 (3)0.0359 (7)
H7A0.25560.00120.41530.043*
C120.6138 (4)0.4529 (4)0.2151 (3)0.0414 (7)
H12A0.71630.40380.22410.050*
C80.4203 (4)0.0246 (3)0.2303 (3)0.0413 (7)
H8A0.37580.09050.20100.050*
H8B0.46130.08790.29870.050*
C100.5754 (3)0.2510 (3)0.0307 (3)0.0328 (6)
C60.1032 (3)0.2026 (3)0.3925 (3)0.0336 (6)
C40.0790 (5)0.2770 (4)0.5471 (3)0.0513 (9)
H4A0.12210.25570.62430.062*
C150.3135 (4)0.6004 (4)0.1913 (3)0.0394 (7)
H15A0.21200.65240.18400.047*
C130.5699 (4)0.5814 (4)0.3001 (3)0.0477 (8)
H13A0.64150.61790.36500.057*
C90.5501 (4)0.0481 (4)0.1414 (3)0.0411 (7)
H9A0.62020.07910.17800.049*
H9B0.60980.02640.10170.049*
C50.0393 (4)0.1755 (4)0.5088 (3)0.0438 (8)
H5A0.07840.08650.56080.053*
C30.1347 (4)0.4125 (4)0.4699 (3)0.0489 (8)
H3A0.21480.48230.49580.059*
C140.4183 (4)0.6552 (4)0.2879 (3)0.0445 (8)
H14A0.38680.74210.34490.053*
C170.2533 (4)0.6761 (4)0.3077 (3)0.0544 (9)
H17A0.33960.61780.33500.082*
H17B0.27510.76120.24270.082*
H17C0.23770.71540.36720.082*
O40.1159 (3)0.5782 (2)0.27564 (19)0.0434 (5)
O50.1113 (3)0.9268 (3)0.06939 (19)0.0465 (6)
C180.0008 (4)0.9855 (4)0.1635 (3)0.0485 (8)
H18C0.04471.08160.21030.073*
H18D0.03580.91190.20760.073*
H18A0.08801.00310.13690.073*
H50.16660.99960.04310.051 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02267 (18)0.0323 (2)0.0352 (2)0.00534 (14)0.00369 (14)0.00796 (15)
K10.0325 (4)0.0315 (3)0.0475 (4)0.0003 (3)0.0073 (3)0.0071 (3)
O10.0230 (10)0.0383 (11)0.0373 (11)0.0031 (9)0.0011 (8)0.0051 (9)
O20.0295 (11)0.0350 (11)0.0335 (11)0.0051 (9)0.0009 (9)0.0060 (9)
N20.0260 (13)0.0281 (12)0.0404 (14)0.0042 (10)0.0064 (11)0.0094 (10)
N10.0241 (12)0.0313 (13)0.0436 (15)0.0057 (10)0.0048 (11)0.0109 (11)
C160.0279 (15)0.0329 (15)0.0333 (15)0.0044 (12)0.0013 (12)0.0145 (12)
C110.0268 (15)0.0351 (15)0.0390 (16)0.0021 (12)0.0017 (12)0.0196 (13)
O30.0213 (11)0.0412 (13)0.0683 (15)0.0018 (9)0.0018 (10)0.0223 (11)
C10.0239 (14)0.0300 (14)0.0384 (16)0.0044 (11)0.0005 (12)0.0094 (12)
C20.0331 (16)0.0312 (15)0.0394 (17)0.0031 (13)0.0032 (13)0.0105 (13)
C70.0370 (17)0.0283 (15)0.0382 (17)0.0015 (13)0.0096 (13)0.0029 (12)
C120.0313 (17)0.0494 (19)0.0463 (19)0.0108 (14)0.0043 (14)0.0213 (15)
C80.0355 (17)0.0314 (16)0.053 (2)0.0070 (13)0.0089 (15)0.0121 (14)
C100.0244 (14)0.0320 (15)0.0464 (18)0.0024 (12)0.0046 (13)0.0218 (13)
C60.0314 (16)0.0311 (15)0.0365 (16)0.0056 (12)0.0026 (12)0.0082 (12)
C40.060 (2)0.053 (2)0.0355 (18)0.0069 (18)0.0074 (16)0.0154 (16)
C150.0357 (17)0.0386 (17)0.0408 (17)0.0005 (14)0.0030 (14)0.0121 (14)
C130.048 (2)0.053 (2)0.0407 (19)0.0169 (17)0.0088 (15)0.0162 (16)
C90.0300 (16)0.0368 (17)0.052 (2)0.0101 (13)0.0085 (14)0.0142 (15)
C50.050 (2)0.0398 (18)0.0374 (17)0.0071 (15)0.0047 (15)0.0060 (14)
C30.050 (2)0.047 (2)0.047 (2)0.0006 (16)0.0064 (16)0.0215 (16)
C140.054 (2)0.0429 (18)0.0345 (17)0.0118 (16)0.0017 (15)0.0080 (14)
C170.041 (2)0.047 (2)0.069 (2)0.0122 (16)0.0041 (18)0.0220 (18)
O40.0370 (13)0.0357 (12)0.0485 (13)0.0106 (10)0.0024 (10)0.0113 (10)
O50.0439 (14)0.0376 (13)0.0495 (14)0.0036 (11)0.0018 (11)0.0096 (11)
C180.0379 (19)0.048 (2)0.053 (2)0.0013 (16)0.0014 (16)0.0107 (16)
Geometric parameters (Å, º) top
Cu1—O11.893 (2)C7—H7A0.9300
Cu1—N11.922 (3)C12—C131.374 (5)
Cu1—O21.937 (2)C12—H12A0.9300
Cu1—N21.940 (3)C8—C91.515 (5)
K1—O22.701 (3)C8—H8A0.9700
K1—O12.714 (2)C8—H8B0.9700
K1—O3i2.726 (3)C6—C51.402 (4)
K1—O42.736 (3)C4—C51.364 (5)
K1—O52.740 (3)C4—C31.392 (5)
K1—O1ii2.886 (3)C4—H4A0.9300
O1—C161.331 (3)C15—C141.377 (5)
O1—K1ii2.886 (3)C15—H15A0.9300
O2—C11.298 (4)C13—C141.378 (5)
N2—C71.272 (4)C13—H13A0.9300
N2—C81.457 (4)C9—H9A0.9700
N1—C101.315 (4)C9—H9B0.9700
N1—C91.469 (4)C5—H5A0.9300
C16—C151.403 (4)C3—H3A0.9300
C16—C111.423 (4)C14—H14A0.9300
C11—C121.407 (4)C17—O41.422 (4)
C11—C101.494 (4)C17—H17A0.9600
O3—C101.272 (3)C17—H17B0.9600
O3—K1i2.726 (3)C17—H17C0.9600
C1—C61.422 (4)O5—C181.406 (4)
C1—C21.433 (4)O5—H50.8521
C2—C31.358 (5)C18—H18C0.9600
C2—O41.377 (4)C18—H18D0.9600
C7—C61.441 (4)C18—H18A0.9600
O1—Cu1—N195.19 (10)N2—C8—C9108.7 (3)
O1—Cu1—O288.75 (9)N2—C8—H8A110.0
N1—Cu1—O2169.99 (10)C9—C8—H8A110.0
O1—Cu1—N2173.78 (10)N2—C8—H8B110.0
N1—Cu1—N285.22 (11)C9—C8—H8B110.0
O2—Cu1—N291.86 (10)H8A—C8—H8B108.3
O2—K1—O159.32 (7)O3—C10—N1123.1 (3)
O2—K1—O3i104.21 (8)O3—C10—C11118.2 (3)
O1—K1—O3i89.14 (8)N1—C10—C11118.7 (2)
O2—K1—O457.36 (7)C5—C6—C1120.4 (3)
O1—K1—O4116.65 (7)C5—C6—C7118.2 (3)
O3i—K1—O4107.21 (8)C1—C6—C7121.4 (3)
O2—K1—O5162.88 (7)C5—C4—C3119.4 (3)
O1—K1—O5130.64 (8)C5—C4—H4A120.3
O3i—K1—O590.63 (9)C3—C4—H4A120.3
O4—K1—O5110.44 (8)C14—C15—C16122.3 (3)
O2—K1—O1ii90.43 (7)C14—C15—H15A118.8
O1—K1—O1ii97.52 (7)C16—C15—H15A118.8
O3i—K1—O1ii165.31 (7)C12—C13—C14119.0 (3)
O4—K1—O1ii81.53 (8)C12—C13—H13A120.5
O5—K1—O1ii75.08 (8)C14—C13—H13A120.5
C16—O1—Cu1124.07 (18)N1—C9—C8108.6 (2)
C16—O1—K1117.80 (17)N1—C9—H9A110.0
Cu1—O1—K1104.65 (9)C8—C9—H9A110.0
C16—O1—K1ii118.66 (17)N1—C9—H9B110.0
Cu1—O1—K1ii100.64 (9)C8—C9—H9B110.0
K1—O1—K1ii82.48 (7)H9A—C9—H9B108.4
C1—O2—Cu1126.37 (18)C4—C5—C6121.4 (3)
C1—O2—K1124.59 (17)C4—C5—H5A119.3
Cu1—O2—K1103.83 (9)C6—C5—H5A119.3
C7—N2—C8122.0 (3)C2—C3—C4120.7 (3)
C7—N2—Cu1127.1 (2)C2—C3—H3A119.7
C8—N2—Cu1110.9 (2)C4—C3—H3A119.7
C10—N1—C9116.5 (2)C15—C14—C13120.0 (3)
C10—N1—Cu1127.7 (2)C15—C14—H14A120.0
C9—N1—Cu1113.3 (2)C13—C14—H14A120.0
O1—C16—C15116.7 (3)O4—C17—H17A109.5
O1—C16—C11125.2 (3)O4—C17—H17B109.5
C15—C16—C11118.1 (3)H17A—C17—H17B109.5
C12—C11—C16117.5 (3)O4—C17—H17C109.5
C12—C11—C10117.0 (3)H17A—C17—H17C109.5
C16—C11—C10125.6 (3)H17B—C17—H17C109.5
C10—O3—K1i127.29 (18)C2—O4—C17117.3 (3)
O2—C1—C6125.4 (3)C2—O4—K1123.72 (17)
O2—C1—C2118.9 (3)C17—O4—K1118.8 (2)
C6—C1—C2115.7 (3)C18—O5—K1105.91 (19)
C3—C2—O4124.5 (3)C18—O5—H5110.9
C3—C2—C1122.2 (3)K1—O5—H5126.3
O4—C2—C1113.2 (3)O5—C18—H18C109.5
N2—C7—C6126.0 (3)O5—C18—H18D109.5
N2—C7—H7A117.0H18C—C18—H18D109.5
C6—C7—H7A117.0O5—C18—H18A109.5
C13—C12—C11123.1 (3)H18C—C18—H18A109.5
C13—C12—H12A118.4H18D—C18—H18A109.5
C11—C12—H12A118.4
N1—Cu1—O1—C1615.7 (2)K1—O2—C1—C6164.0 (2)
O2—Cu1—O1—C16155.1 (2)Cu1—O2—C1—C2166.0 (2)
K1ii—Cu1—O1—C16135.7 (2)K1—O2—C1—C215.8 (4)
N1—Cu1—O1—K1155.04 (10)O2—C1—C2—C3175.7 (3)
O2—Cu1—O1—K115.73 (9)C6—C1—C2—C34.5 (4)
N1—Cu1—O1—K1ii120.04 (10)O2—C1—C2—O44.8 (4)
O2—Cu1—O1—K1ii69.19 (9)C6—C1—C2—O4175.1 (3)
O2—K1—O1—C16155.5 (2)C8—N2—C7—C6177.6 (3)
O3i—K1—O1—C1648.4 (2)Cu1—N2—C7—C63.8 (5)
O4—K1—O1—C16157.23 (18)C16—C11—C12—C130.2 (5)
O5—K1—O1—C1641.7 (2)C10—C11—C12—C13179.5 (3)
O1ii—K1—O1—C16118.5 (2)C7—N2—C8—C9142.6 (3)
O3i—K1—O1—Cu194.05 (10)Cu1—N2—C8—C936.3 (3)
O4—K1—O1—Cu114.83 (12)K1i—O3—C10—N1114.3 (3)
O5—K1—O1—Cu1175.86 (8)K1i—O3—C10—C1165.8 (3)
O1ii—K1—O1—Cu199.09 (10)C9—N1—C10—O31.4 (4)
O2—K1—O1—K1ii86.02 (8)Cu1—N1—C10—O3162.2 (2)
O3i—K1—O1—K1ii166.86 (7)C9—N1—C10—C11178.6 (2)
O4—K1—O1—K1ii84.26 (8)Cu1—N1—C10—C1117.8 (4)
O5—K1—O1—K1ii76.77 (10)C12—C11—C10—O34.8 (4)
O1ii—K1—O1—K1ii0.0C16—C11—C10—O3176.0 (3)
Cu1ii—K1—O1—K1ii29.86 (5)C12—C11—C10—N1175.2 (3)
O1—Cu1—O2—C1170.9 (2)C16—C11—C10—N14.1 (4)
N1—Cu1—O2—C157.5 (7)O2—C1—C6—C5177.1 (3)
N2—Cu1—O2—C115.3 (2)C2—C1—C6—C53.1 (4)
K1ii—Cu1—O2—C1141.3 (2)O2—C1—C6—C72.2 (5)
O1—Cu1—O2—K115.75 (9)C2—C1—C6—C7177.6 (3)
N1—Cu1—O2—K197.6 (6)N2—C7—C6—C5177.6 (3)
N2—Cu1—O2—K1170.44 (9)N2—C7—C6—C13.1 (5)
O1—K1—O2—C1168.4 (2)O1—C16—C15—C14179.5 (3)
O3i—K1—O2—C188.1 (2)C11—C16—C15—C140.9 (5)
O4—K1—O2—C113.4 (2)C11—C12—C13—C140.0 (5)
O5—K1—O2—C161.3 (3)C10—N1—C9—C8172.4 (3)
O1ii—K1—O2—C193.1 (2)Cu1—N1—C9—C824.0 (3)
K1ii—K1—O2—C1135.3 (2)N2—C8—C9—N138.5 (3)
Cu1ii—K1—O2—C1102.8 (2)C3—C4—C5—C61.8 (6)
O1—K1—O2—Cu112.72 (7)C1—C6—C5—C40.1 (5)
O3i—K1—O2—Cu167.59 (10)C7—C6—C5—C4179.4 (3)
O4—K1—O2—Cu1169.14 (12)O4—C2—C3—C4176.7 (3)
O5—K1—O2—Cu1143.0 (2)C1—C2—C3—C42.8 (5)
O1ii—K1—O2—Cu1111.21 (10)C5—C4—C3—C20.5 (6)
N1—Cu1—N2—C7159.9 (3)C16—C15—C14—C130.7 (5)
O2—Cu1—N2—C710.5 (3)C12—C13—C14—C150.3 (5)
O2—Cu1—N2—C8170.7 (2)C3—C2—O4—C1712.8 (5)
K1ii—Cu1—N2—C899.6 (2)C1—C2—O4—C17167.7 (3)
O1—Cu1—N1—C1021.4 (3)C3—C2—O4—K1171.7 (3)
O2—Cu1—N1—C1091.5 (6)C1—C2—O4—K17.8 (3)
N2—Cu1—N1—C10164.9 (3)O2—K1—O4—C210.4 (2)
O1—Cu1—N1—C9177.3 (2)O1—K1—O4—C212.2 (2)
O2—Cu1—N1—C969.8 (6)O3i—K1—O4—C285.7 (2)
N2—Cu1—N1—C93.5 (2)O5—K1—O4—C2177.0 (2)
Cu1—O1—C16—C15171.1 (2)O1ii—K1—O4—C2106.4 (2)
K1—O1—C16—C1536.5 (3)O2—K1—O4—C17165.0 (3)
K1ii—O1—C16—C1560.3 (3)O1—K1—O4—C17163.2 (2)
Cu1—O1—C16—C118.5 (4)O3i—K1—O4—C1798.9 (2)
K1—O1—C16—C11143.1 (2)O5—K1—O4—C171.6 (2)
K1ii—O1—C16—C11120.0 (3)O1ii—K1—O4—C1769.0 (2)
O1—C16—C11—C12179.8 (3)O2—K1—O5—C18159.7 (2)
C15—C16—C11—C120.6 (4)O1—K1—O5—C1839.6 (2)
O1—C16—C11—C100.6 (4)O3i—K1—O5—C1849.8 (2)
C15—C16—C11—C10179.8 (3)O4—K1—O5—C18158.47 (19)
Cu1—O2—C1—C613.8 (4)O1ii—K1—O5—C18126.7 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O3iii0.851.902.703 (4)156
Symmetry code: (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[CuK(C17H15N2O4)(CH4O)]
Mr445.99
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.851 (6), 9.139 (6), 12.458 (6)
α, β, γ (°)72.19 (2), 77.68 (3), 78.69 (2)
V3)928.0 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.2 × 0.2 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.732, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
9074, 4201, 3241
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.091, 1.02
No. of reflections4201
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.40

Computer programs: CrystalStructure (Rigaku/MSC, 2004), CrystalStructure, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Sheldrick, 1998), XP.

Selected geometric parameters (Å, º) top
Cu1—O11.893 (2)K1—O12.714 (2)
Cu1—N11.922 (3)K1—O3i2.726 (3)
Cu1—O21.937 (2)K1—O42.736 (3)
Cu1—N21.940 (3)K1—O52.740 (3)
K1—O22.701 (3)K1—O1ii2.886 (3)
O1—Cu1—N195.19 (10)O2—K1—O5162.88 (7)
O1—Cu1—O288.75 (9)O1—K1—O5130.64 (8)
N1—Cu1—O2169.99 (10)O3i—K1—O590.63 (9)
O1—Cu1—N2173.78 (10)O4—K1—O5110.44 (8)
N1—Cu1—N285.22 (11)O2—K1—O1ii90.43 (7)
O2—Cu1—N291.86 (10)O1—K1—O1ii97.52 (7)
O2—K1—O159.32 (7)O3i—K1—O1ii165.31 (7)
O2—K1—O3i104.21 (8)O4—K1—O1ii81.53 (8)
O1—K1—O3i89.14 (8)O5—K1—O1ii75.08 (8)
O2—K1—O457.36 (7)Cu1—O1—K1ii100.64 (9)
O1—K1—O4116.65 (7)K1—O1—K1ii82.48 (7)
O3i—K1—O4107.21 (8)Cu1—O2—K1103.83 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O3iii0.8521.9012.703 (4)156.4
Symmetry code: (iii) x1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds