Download citation
Download citation
link to html
The title compound, C18H17BrN2O2, is a chiral indole derivative. The crystal structure shows both intra- and inter­molecular hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025767/om2117sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025767/om2117Isup2.hkl
Contains datablock I

CCDC reference: 645292

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.029
  • wR factor = 0.063
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.54 Ratio
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.99 From the CIF: _reflns_number_total 3482 Count of symmetry unique reflns 2026 Completeness (_total/calc) 171.87% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1456 Fraction of Friedel pairs measured 0.719 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C16 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Derivatives of indole have received much attention because of their widespread applications in materials science, agrichemicals, and pharmaceuticals (Ramirez & Garcia-Rubio, 2003). Their preparation and functionalization continues to be a fascinating subject in organic synthesis due to the frequent appearance of indoles in biologically interesting compounds (Bandini et al., 2005). The title compound, an example of a derivatized indole core, is shown in Figure 1. In the crystal, C—H···O hydrogen bonds, (Table 1) link the molecules in rows along the c axis (Fig. 2)

Related literature top

For related literature, see: Bandini et al. (2005); Ramirez & Garcia-Rubio (2003); Yuan et al. (2004).

Experimental top

The title compound was synthesized according to procedure of Yuan et al., 2004. Crystals appropriate for data collection were obtained by slow evaporation of a CH3COCH3/C6H6 (100:1, v/v) solution at 283 K.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C bond. All other H atoms bonded to carbon were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C). The O—H and N—H H atom coordinates were allowed to refine but the thermal parameters were fixed.

Structure description top

Derivatives of indole have received much attention because of their widespread applications in materials science, agrichemicals, and pharmaceuticals (Ramirez & Garcia-Rubio, 2003). Their preparation and functionalization continues to be a fascinating subject in organic synthesis due to the frequent appearance of indoles in biologically interesting compounds (Bandini et al., 2005). The title compound, an example of a derivatized indole core, is shown in Figure 1. In the crystal, C—H···O hydrogen bonds, (Table 1) link the molecules in rows along the c axis (Fig. 2)

For related literature, see: Bandini et al. (2005); Ramirez & Garcia-Rubio (2003); Yuan et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001b) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme and thermal ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of (I) viewed along the c axis. Hydrogen bonds are drawn as dashed lines.
(S)-2-(1-Benzyl-5-bromo-1H-indol-3-yl)-2-hydroxy-N- methylacetamide top
Crystal data top
C18H17BrN2O2F(000) = 380
Mr = 373.25Dx = 1.558 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2442 reflections
a = 4.5759 (6) Åθ = 0.0–0.0°
b = 9.4134 (11) ŵ = 2.60 mm1
c = 18.540 (2) ÅT = 296 K
β = 95.049 (2)°Block, colorless
V = 795.51 (17) Å30.20 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3482 independent reflections
Radiation source: fine-focus sealed tube2936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001a)
h = 65
Tmin = 0.625, Tmax = 0.781k = 1112
5321 measured reflectionsl = 2224
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.002
3482 reflectionsΔρmax = 0.40 e Å3
215 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 1456 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (7)
Crystal data top
C18H17BrN2O2V = 795.51 (17) Å3
Mr = 373.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.5759 (6) ŵ = 2.60 mm1
b = 9.4134 (11) ÅT = 296 K
c = 18.540 (2) Å0.20 × 0.20 × 0.10 mm
β = 95.049 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3482 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001a)
2936 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.781Rint = 0.021
5321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.063Δρmax = 0.40 e Å3
S = 0.95Δρmin = 0.32 e Å3
3482 reflectionsAbsolute structure: Flack (1983), 1456 Friedel pairs
215 parametersAbsolute structure parameter: 0.015 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.14694 (7)0.31988 (3)0.737099 (16)0.06370 (11)
C10.6534 (6)0.0039 (3)0.81575 (12)0.0391 (6)
H1A0.54250.01800.85480.047*
C20.8019 (6)0.1216 (3)0.80734 (13)0.0433 (6)
H20.79320.19360.84140.052*
C30.9654 (6)0.1411 (3)0.74796 (13)0.0391 (5)
C40.9924 (5)0.0383 (2)0.69649 (12)0.0341 (5)
H41.10620.05340.65800.041*
C50.8429 (5)0.0900 (2)0.70371 (11)0.0298 (5)
C60.6757 (5)0.1082 (3)0.76376 (12)0.0318 (5)
C70.8163 (5)0.2179 (2)0.66256 (11)0.0317 (5)
C80.6355 (5)0.3059 (3)0.69713 (12)0.0357 (5)
H80.57950.39670.68170.043*
C90.3612 (5)0.3018 (3)0.81004 (12)0.0403 (5)
H9A0.22100.23060.82250.048*
H9B0.25180.38060.78740.048*
C100.5304 (5)0.3531 (3)0.87805 (12)0.0362 (5)
C110.7243 (6)0.4648 (3)0.87613 (14)0.0482 (6)
H110.75120.50780.83200.058*
C120.8776 (7)0.5135 (4)0.93757 (19)0.0689 (9)
H121.00810.58870.93500.083*
C130.8399 (8)0.4520 (5)1.00341 (18)0.0757 (11)
H130.94370.48581.04530.091*
C140.6496 (9)0.3411 (4)1.00709 (15)0.0733 (11)
H140.62460.29851.05140.088*
C150.4936 (7)0.2922 (3)0.94434 (13)0.0545 (7)
H150.36240.21730.94700.065*
C160.9457 (5)0.2509 (2)0.59302 (12)0.0352 (5)
H161.14490.21200.59510.042*
C170.7595 (5)0.1810 (3)0.53065 (10)0.0338 (4)
C180.3941 (7)0.2177 (3)0.42835 (13)0.0538 (8)
H18A0.50830.17860.39210.081*
H18B0.27870.29550.40810.081*
H18C0.26670.14570.44460.081*
H11.088 (8)0.418 (4)0.5528 (18)0.081*
H2A0.572 (7)0.358 (3)0.4998 (16)0.065*
N10.5491 (5)0.2407 (2)0.75786 (10)0.0357 (5)
N20.5881 (5)0.2677 (2)0.48896 (11)0.0400 (5)
O10.9600 (4)0.40069 (17)0.58655 (9)0.0473 (4)
O20.7673 (4)0.05083 (18)0.52216 (9)0.0470 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0778 (2)0.03513 (14)0.0805 (2)0.01527 (16)0.02007 (15)0.01439 (16)
C10.0485 (15)0.0387 (14)0.0309 (11)0.0056 (11)0.0081 (11)0.0018 (10)
C20.0576 (16)0.0373 (14)0.0348 (12)0.0030 (12)0.0021 (11)0.0105 (10)
C30.0440 (14)0.0296 (12)0.0428 (13)0.0029 (10)0.0012 (11)0.0021 (10)
C40.0362 (12)0.0327 (12)0.0333 (11)0.0003 (9)0.0023 (10)0.0031 (9)
C50.0320 (12)0.0310 (12)0.0260 (11)0.0047 (9)0.0010 (9)0.0029 (9)
C60.0364 (14)0.0324 (13)0.0262 (11)0.0044 (10)0.0001 (10)0.0015 (10)
C70.0372 (12)0.0282 (13)0.0295 (11)0.0015 (8)0.0017 (9)0.0013 (8)
C80.0437 (14)0.0301 (12)0.0329 (12)0.0022 (10)0.0010 (10)0.0012 (10)
C90.0381 (13)0.0436 (14)0.0400 (13)0.0040 (11)0.0082 (10)0.0024 (11)
C100.0405 (13)0.0346 (13)0.0347 (12)0.0062 (10)0.0096 (10)0.0053 (10)
C110.0534 (17)0.0466 (16)0.0447 (14)0.0031 (13)0.0046 (13)0.0055 (12)
C120.0581 (19)0.065 (2)0.081 (2)0.0043 (16)0.0046 (17)0.0260 (18)
C130.078 (2)0.086 (3)0.058 (2)0.036 (2)0.0207 (18)0.0336 (19)
C140.113 (3)0.077 (3)0.0312 (15)0.044 (2)0.0104 (17)0.0035 (15)
C150.075 (2)0.0504 (17)0.0411 (15)0.0064 (16)0.0212 (14)0.0033 (13)
C160.0404 (13)0.0287 (12)0.0371 (12)0.0001 (10)0.0070 (10)0.0034 (9)
C170.0456 (11)0.0293 (10)0.0283 (9)0.0020 (13)0.0135 (9)0.0016 (12)
C180.0660 (17)0.058 (2)0.0360 (12)0.0011 (13)0.0042 (12)0.0037 (11)
N10.0426 (12)0.0356 (11)0.0297 (10)0.0011 (10)0.0072 (9)0.0021 (8)
N20.0551 (13)0.0321 (11)0.0327 (10)0.0015 (10)0.0028 (9)0.0017 (9)
O10.0682 (12)0.0299 (10)0.0453 (9)0.0101 (9)0.0148 (9)0.0029 (7)
O20.0721 (13)0.0283 (9)0.0405 (9)0.0045 (9)0.0045 (9)0.0032 (7)
Geometric parameters (Å, º) top
Br1—C31.895 (2)C10—C151.380 (3)
C1—C21.378 (4)C11—C121.363 (4)
C1—C61.386 (3)C11—H110.9300
C1—H1A0.9300C12—C131.376 (5)
C2—C31.397 (4)C12—H120.9300
C2—H20.9300C13—C141.365 (5)
C3—C41.372 (3)C13—H130.9300
C4—C51.400 (3)C14—C151.389 (5)
C4—H40.9300C14—H140.9300
C5—C61.416 (3)C15—H150.9300
C5—C71.425 (3)C16—O11.418 (3)
C6—N11.375 (3)C16—C171.524 (3)
C7—C81.369 (3)C16—H160.9800
C7—C161.498 (3)C17—O21.236 (4)
C8—N11.371 (3)C17—N21.331 (3)
C8—H80.9300C18—N21.448 (3)
C9—N11.467 (3)C18—H18A0.9600
C9—C101.500 (3)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C9—H9B0.9700N2—H2A0.87 (3)
C10—C111.378 (4)O1—H10.91 (4)
C2—C1—C6117.5 (2)C10—C11—H11119.3
C2—C1—H1A121.3C11—C12—C13120.3 (3)
C6—C1—H1A121.3C11—C12—H12119.9
C1—C2—C3120.4 (2)C13—C12—H12119.9
C1—C2—H2119.8C14—C13—C12119.8 (3)
C3—C2—H2119.8C14—C13—H13120.1
C4—C3—C2122.9 (2)C12—C13—H13120.1
C4—C3—Br1119.02 (18)C13—C14—C15119.6 (3)
C2—C3—Br1118.10 (18)C13—C14—H14120.2
C3—C4—C5117.9 (2)C15—C14—H14120.2
C3—C4—H4121.1C10—C15—C14121.0 (3)
C5—C4—H4121.1C10—C15—H15119.5
C4—C5—C6118.8 (2)C14—C15—H15119.5
C4—C5—C7134.2 (2)O1—C16—C7107.67 (18)
C6—C5—C7107.0 (2)O1—C16—C17113.1 (2)
N1—C6—C1129.9 (2)C7—C16—C17109.08 (18)
N1—C6—C5107.5 (2)O1—C16—H16109.0
C1—C6—C5122.6 (2)C7—C16—H16109.0
C8—C7—C5106.69 (19)C17—C16—H16109.0
C8—C7—C16125.3 (2)O2—C17—N2123.8 (2)
C5—C7—C16127.91 (19)O2—C17—C16120.3 (2)
C7—C8—N1110.1 (2)N2—C17—C16116.0 (2)
C7—C8—H8125.0N2—C18—H18A109.5
N1—C8—H8125.0N2—C18—H18B109.5
N1—C9—C10113.0 (2)H18A—C18—H18B109.5
N1—C9—H9A109.0N2—C18—H18C109.5
C10—C9—H9A109.0H18A—C18—H18C109.5
N1—C9—H9B109.0H18B—C18—H18C109.5
C10—C9—H9B109.0C8—N1—C6108.7 (2)
H9A—C9—H9B107.8C8—N1—C9126.5 (2)
C11—C10—C15118.0 (2)C6—N1—C9124.8 (2)
C11—C10—C9120.7 (2)C17—N2—C18122.7 (2)
C15—C10—C9121.3 (2)C17—N2—H2A121 (2)
C12—C11—C10121.3 (3)C18—N2—H2A116 (2)
C12—C11—H11119.3C16—O1—H1106 (2)
C6—C1—C2—C30.5 (4)C11—C12—C13—C140.4 (5)
C1—C2—C3—C41.3 (4)C12—C13—C14—C150.6 (5)
C1—C2—C3—Br1176.7 (2)C11—C10—C15—C140.7 (4)
C2—C3—C4—C51.4 (4)C9—C10—C15—C14179.5 (2)
Br1—C3—C4—C5176.59 (17)C13—C14—C15—C100.7 (4)
C3—C4—C5—C60.8 (3)C8—C7—C16—O125.1 (3)
C3—C4—C5—C7179.7 (2)C5—C7—C16—O1158.0 (2)
C2—C1—C6—N1178.8 (2)C8—C7—C16—C1797.9 (3)
C2—C1—C6—C50.0 (4)C5—C7—C16—C1778.9 (3)
C4—C5—C6—N1179.2 (2)O1—C16—C17—O2167.5 (2)
C7—C5—C6—N11.2 (2)C7—C16—C17—O272.7 (3)
C4—C5—C6—C10.1 (3)O1—C16—C17—N214.3 (3)
C7—C5—C6—C1179.7 (2)C7—C16—C17—N2105.5 (2)
C4—C5—C7—C8179.5 (2)C7—C8—N1—C60.4 (3)
C6—C5—C7—C81.0 (3)C7—C8—N1—C9178.4 (2)
C4—C5—C7—C162.1 (4)C1—C6—N1—C8180.0 (2)
C6—C5—C7—C16178.3 (2)C5—C6—N1—C81.0 (2)
C5—C7—C8—N10.4 (3)C1—C6—N1—C91.9 (4)
C16—C7—C8—N1177.8 (2)C5—C6—N1—C9179.1 (2)
N1—C9—C10—C1165.1 (3)C10—C9—N1—C8101.6 (3)
N1—C9—C10—C15116.1 (3)C10—C9—N1—C676.2 (3)
C15—C10—C11—C120.5 (4)O2—C17—N2—C180.7 (3)
C9—C10—C11—C12179.4 (3)C16—C17—N2—C18178.8 (2)
C10—C11—C12—C130.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.87 (3)2.32 (3)2.682 (3)105 (2)
C18—H18C···O1i0.962.573.395 (3)144
N2—H2A···O2ii0.87 (3)2.40 (3)3.119 (3)139 (3)
O1—H1···O2iii0.91 (4)2.02 (4)2.839 (2)149 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1; (iii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC18H17BrN2O2
Mr373.25
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)4.5759 (6), 9.4134 (11), 18.540 (2)
β (°) 95.049 (2)
V3)795.51 (17)
Z2
Radiation typeMo Kα
µ (mm1)2.60
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001a)
Tmin, Tmax0.625, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
5321, 3482, 2936
Rint0.021
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.063, 0.95
No. of reflections3482
No. of parameters215
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.32
Absolute structureFlack (1983), 1456 Friedel pairs
Absolute structure parameter0.015 (7)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2001b) and PLATON (Spek, 2003), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.87 (3)2.32 (3)2.682 (3)105 (2)
C18—H18C···O1i0.962.573.395 (3)143.7
N2—H2A···O2ii0.87 (3)2.40 (3)3.119 (3)139 (3)
O1—H1···O2iii0.91 (4)2.02 (4)2.839 (2)149 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y+1/2, z+1; (iii) x+2, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds