Download citation
Download citation
link to html
The title compound, (C4H12N2)[Co(H2O)6][Co(C7H3O4)2]2·8H2O, was obtained by the reaction of cobalt(II) nitrate hexa­hydrate with the proton-transfer compound piperazinediium pyridine-2,6-dicarboxyl­ate or (pipzH2)(pydc) (where pipz is piperazine and pydcH2 is pyridine-2,6-dicarboxylic acid) in aqueous solution. The anionic complex, [Co(pydc)2]2−, features six-coordinate CoII with a distorted octa­hedral geometry. The structure also contains hexa­aqua­cobalt(II) cations (site symmetry \overline{1}), and piperazinium (site symmetry \overline{1}) as counter-ions and eight uncoordinated water mol­ecules. The torsion angles indicate that the (pydc)2− units are almost perpendicular to each other. In the crystal structure, extensive O—H...O, N—H...O and C—H...O hydrogen bonds, as well as ion pairing and distances for π–π interactions between anion fragments, play an important role in stabilizing the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025640/om2127sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025640/om2127Isup2.hkl
Contains datablock I

CCDC reference: 654699

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.036
  • wR factor = 0.097
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT417_ALERT_2_C Short Inter D-H..H-D H10B .. H14A .. 2.11 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact C8 .. C10 .. 3.10 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 7 H2 O
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C32 H52 Co3 N6 O30 Atom count from _chemical_formula_moiety:C32 H52 Co3 N2 O30 PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (2) 2.11 PLAT794_ALERT_5_G Check Predicted Bond Valency for Co2 (2) 1.88
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Non-covalent interactions including hydrogen bonds are of great importance in stabilizing the structures of different compounds in solid state. We have so far synthesized several proton transfer compounds (Aghabozorg et al., 2006b; Manteghi et al., 2007) and their metal-organic complexes (Aghabozorg et al., 2006c; Aghabozorg et al., 2006 d; Aghabozorg et al., 2006 e; Aghabozorg et al., 2007). A wide range of various hydrogen bonds was observed in these compounds and water molecules were involved in hydrogen bonding formation of some of these structures.

Here, we report on the synthesis and X-ray crystal structure of the title compound, (I). The molecular structure of the compound (I) is shown in Fig. 1. The intermolecular hydrogen bond distances are listed in Table 1. This compound crystallizes in the triclinic system, space group P 1 with one formula in the unit cell. The most important feature of the title compound is the formation of both anionic [Co(pydc)2]2- and cationic [Co(H2O)6]2+ complexes (site symmetry 1), and (pipzH2)2+ ion (site symmetry 1), simultaneously. In the anionic complex, [Co(pydc)2]2-, the metal ion is hexacoordinated by two nitrogen atoms N1, and N2 and four oxygen atoms O2, O3, O6 and O7 of carboxylate groups of two (pydc)2- fragments which act as tridentate ligands. N1 and N2 atoms of the two (pydc)2- fragments occupy the axial positions, while oxygen atoms form the equatorial plane. The N1—Co2—N2 angle revealed with a 14.88° deviation from linearity.

The mean Co—N and Co—O bond lengths for Co2 are 2.0147 (18) and 2.1575 (17) Å, respectively and are consistent with the corresponding data reported in the literature (Aghabozorg et al., 2006a). According to bond lengths, bond and torsion angles, arrangement of the six donor atoms around Co2 is distorted octahedral.

The dihedral angel between the two planes of Co2N2O6 and N2Co2O2 [86.81 (9)°] indicate that two dianionic (pydc)2- units are almost perpendicular to each other.

In the cationic complex, [Co(H2O)6]2+, the metal ion is hexacoordinated by six oxygen atoms of water molecules with a nearly octahedral geometry around the central atom. The extensive O—H···O, N—H···O and C—H···O hydrogen bonds between [Co(H2O)6]2+, [Co(pydc)2]2-, (pipzH2)2+ and uncoordinated water molecules play an important role in stabilizing and architecture of the crystal (Table 1). The intermolecular forces in this compound consist of hydrogen bonding and ion pairing as well as π-π stacking between anion-anion fragments (3.5277 (15) Å -x, -y + 2, -z + 1) (Fig. 2) (Aghabozorg, et al., 2006f). These interactions result in the formation of a supramolecular structure based on a hydrogen-bonded network.

Related literature top

The reaction between Co(NO3)2·6H2O and the proton-transfer compound (GH)2(pydc) (G is guanidine) in a 1:2 molar ratio leads to the formation of red crystals of (GH)2[Co(H2O)6][Co(pydc)2]2 (Aghabozorg et al., 2006a).

For related literature, see: Aghabozorg et al. (2006b, 2006c, 2006d, 2006e, 2006f, 2007); Manteghi et al. (2007).

Experimental top

The proton transfer compound, (pipzH2)(pydc), was prepared by the reaction of pyridine-2,6-dicarboxylic acid, pydcH2, with piperazine, (pipz). The reaction between Co(NO3)2·6H2O (143 mg, 0.5 mmol) in water (25 ml) and the proton transfer compound, (pipzH2)(pydc) (253 mg, 1.0 mmol) in water (25 ml), in a 1:2 molar ratio was carried out and a purple crystalline compound was obtained by the slow evaporation of the solvent at room temperature.

Refinement top

Hydrogen atoms were positioned geometrically and refined with a riding model (including torsional freedom for methyl groups), with C—H = 0.95–0.98 Å, and with U(H) constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom.

Structure description top

Non-covalent interactions including hydrogen bonds are of great importance in stabilizing the structures of different compounds in solid state. We have so far synthesized several proton transfer compounds (Aghabozorg et al., 2006b; Manteghi et al., 2007) and their metal-organic complexes (Aghabozorg et al., 2006c; Aghabozorg et al., 2006 d; Aghabozorg et al., 2006 e; Aghabozorg et al., 2007). A wide range of various hydrogen bonds was observed in these compounds and water molecules were involved in hydrogen bonding formation of some of these structures.

Here, we report on the synthesis and X-ray crystal structure of the title compound, (I). The molecular structure of the compound (I) is shown in Fig. 1. The intermolecular hydrogen bond distances are listed in Table 1. This compound crystallizes in the triclinic system, space group P 1 with one formula in the unit cell. The most important feature of the title compound is the formation of both anionic [Co(pydc)2]2- and cationic [Co(H2O)6]2+ complexes (site symmetry 1), and (pipzH2)2+ ion (site symmetry 1), simultaneously. In the anionic complex, [Co(pydc)2]2-, the metal ion is hexacoordinated by two nitrogen atoms N1, and N2 and four oxygen atoms O2, O3, O6 and O7 of carboxylate groups of two (pydc)2- fragments which act as tridentate ligands. N1 and N2 atoms of the two (pydc)2- fragments occupy the axial positions, while oxygen atoms form the equatorial plane. The N1—Co2—N2 angle revealed with a 14.88° deviation from linearity.

The mean Co—N and Co—O bond lengths for Co2 are 2.0147 (18) and 2.1575 (17) Å, respectively and are consistent with the corresponding data reported in the literature (Aghabozorg et al., 2006a). According to bond lengths, bond and torsion angles, arrangement of the six donor atoms around Co2 is distorted octahedral.

The dihedral angel between the two planes of Co2N2O6 and N2Co2O2 [86.81 (9)°] indicate that two dianionic (pydc)2- units are almost perpendicular to each other.

In the cationic complex, [Co(H2O)6]2+, the metal ion is hexacoordinated by six oxygen atoms of water molecules with a nearly octahedral geometry around the central atom. The extensive O—H···O, N—H···O and C—H···O hydrogen bonds between [Co(H2O)6]2+, [Co(pydc)2]2-, (pipzH2)2+ and uncoordinated water molecules play an important role in stabilizing and architecture of the crystal (Table 1). The intermolecular forces in this compound consist of hydrogen bonding and ion pairing as well as π-π stacking between anion-anion fragments (3.5277 (15) Å -x, -y + 2, -z + 1) (Fig. 2) (Aghabozorg, et al., 2006f). These interactions result in the formation of a supramolecular structure based on a hydrogen-bonded network.

The reaction between Co(NO3)2·6H2O and the proton-transfer compound (GH)2(pydc) (G is guanidine) in a 1:2 molar ratio leads to the formation of red crystals of (GH)2[Co(H2O)6][Co(pydc)2]2 (Aghabozorg et al., 2006a).

For related literature, see: Aghabozorg et al. (2006b, 2006c, 2006d, 2006e, 2006f, 2007); Manteghi et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular structure of compound (I), displacement ellipsoids are at the 50% probability level. The rest of fragments could be generated by symmetry. [symmetry codes: (a) -x, -y + 1, -z + 1, (b) -x, -y, -z].
[Figure 2] Fig. 2. π-π Stacking interactions between two aromatic rings of (I). The average distance between the planes is 3.5277 (15) Å (-x, 2 - y, 1 - z).
Piperazinium hexaaquacobalt(II) bis[bis(pyridine-2,6-dicarboxylato)cobaltate(II)] octahydrate top
Crystal data top
(C4H12N2)[Co(H2O)6][Co(C7H3O4)2]2·8H2OZ = 1
Mr = 1177.59F(000) = 607
Triclinic, P1Dx = 1.710 Mg m3
a = 8.4682 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.9287 (14) ÅCell parameters from 7659 reflections
c = 12.9091 (15) Åθ = 2.5–27.5°
α = 63.478 (2)°µ = 1.18 mm1
β = 78.683 (2)°T = 150 K
γ = 83.063 (2)°Block, purple
V = 1143.3 (2) Å30.50 × 0.48 × 0.20 mm
Data collection top
Bruker SMART 1000
diffractometer
5061 independent reflections
Radiation source: fine-focus sealed tube4261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 100 pixels mm-1θmax = 27.6°, θmin = 1.8°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
k = 1515
Tmin = 0.589, Tmax = 0.798l = 1616
9953 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.4524P]
where P = (Fo2 + 2Fc2)/3
5061 reflections(Δ/σ)max < 0.001
322 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
(C4H12N2)[Co(H2O)6][Co(C7H3O4)2]2·8H2Oγ = 83.063 (2)°
Mr = 1177.59V = 1143.3 (2) Å3
Triclinic, P1Z = 1
a = 8.4682 (10) ÅMo Kα radiation
b = 11.9287 (14) ŵ = 1.18 mm1
c = 12.9091 (15) ÅT = 150 K
α = 63.478 (2)°0.50 × 0.48 × 0.20 mm
β = 78.683 (2)°
Data collection top
Bruker SMART 1000
diffractometer
5061 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4261 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.798Rint = 0.025
9953 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.59 e Å3
5061 reflectionsΔρmin = 0.62 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.50000.50000.01842 (11)
Co20.22003 (4)0.25036 (2)0.23467 (2)0.01670 (9)
N10.2066 (2)0.08823 (16)0.38145 (15)0.0165 (4)
N20.2792 (2)0.38844 (16)0.07167 (15)0.0163 (4)
N30.1311 (2)0.04921 (17)0.05881 (16)0.0210 (4)
H3B0.10220.02210.13010.025*
H3A0.22680.09160.05580.025*
O10.0037 (2)0.05806 (14)0.26917 (13)0.0238 (3)
O20.0688 (2)0.13971 (13)0.20204 (13)0.0224 (3)
O30.32424 (19)0.29185 (13)0.35241 (13)0.0201 (3)
O40.4158 (2)0.19928 (15)0.52370 (14)0.0243 (4)
O50.03682 (19)0.58947 (14)0.11407 (14)0.0237 (3)
O60.04162 (19)0.39324 (13)0.22919 (13)0.0204 (3)
O70.4431 (2)0.17914 (14)0.16162 (13)0.0238 (4)
O80.61077 (19)0.21798 (14)0.00623 (13)0.0242 (4)
O90.2103 (2)0.48680 (15)0.61912 (15)0.0303 (4)
H9B0.26140.55480.63390.036*
H9A0.26480.41030.66130.036*
O100.1082 (2)0.58551 (14)0.57348 (14)0.0229 (3)
H10B0.21980.56510.57620.028*
H10A0.06120.57880.64910.028*
O110.0824 (2)0.32105 (14)0.61321 (15)0.0293 (4)
H11B0.16540.31860.65420.035*
H11A0.05260.23780.63680.035*
O120.5233 (2)0.07835 (16)0.24549 (15)0.0348 (4)
H12B0.49140.00700.22550.042*
H12A0.56060.11260.31880.042*
O130.4299 (2)0.5784 (2)0.5563 (3)0.0603 (7)
H13B0.47660.52560.51990.072*
H13A0.49140.64960.53300.072*
O140.2727 (3)0.3327 (2)0.7521 (2)0.0516 (6)
H14A0.32610.40910.70470.062*
H14B0.19950.36460.79950.062*
O150.6190 (3)0.27236 (17)0.23945 (16)0.0410 (5)
H15D0.59290.19730.23990.049*
H15C0.63230.23840.15950.049*
C10.0628 (3)0.02551 (19)0.27641 (18)0.0193 (4)
C20.1404 (3)0.00853 (18)0.38368 (18)0.0175 (4)
C30.1429 (3)0.12571 (19)0.47785 (19)0.0207 (5)
H30.09660.19490.47880.025*
C40.2147 (3)0.1393 (2)0.57052 (19)0.0226 (5)
H40.21700.21850.63660.027*
C50.2834 (3)0.03764 (19)0.56740 (19)0.0196 (4)
H50.33310.04590.63050.024*
C60.2773 (3)0.07649 (19)0.46932 (18)0.0169 (4)
C70.3451 (3)0.19821 (19)0.44923 (18)0.0182 (4)
C80.0529 (3)0.49527 (19)0.13425 (19)0.0184 (4)
C90.1906 (3)0.49543 (18)0.04015 (18)0.0168 (4)
C100.2280 (3)0.59417 (19)0.07070 (19)0.0197 (4)
H100.16560.67060.09340.024*
C110.3584 (3)0.5779 (2)0.14681 (18)0.0208 (5)
H110.38640.64390.22280.025*
C120.4488 (3)0.4653 (2)0.11257 (19)0.0204 (4)
H120.53800.45300.16450.024*
C130.4050 (3)0.37179 (19)0.00081 (18)0.0172 (4)
C140.4942 (3)0.24579 (19)0.05474 (19)0.0192 (4)
C150.0037 (3)0.1319 (2)0.0319 (2)0.0249 (5)
H15B0.01120.20180.01370.030*
H15A0.03830.16810.10980.030*
C160.1531 (3)0.0588 (2)0.0353 (2)0.0243 (5)
H16B0.23510.11390.09760.029*
H16A0.19200.02780.04070.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0220 (2)0.01281 (19)0.0190 (2)0.00347 (15)0.00298 (16)0.00748 (16)
Co20.02253 (17)0.01160 (14)0.01341 (15)0.00183 (11)0.00085 (11)0.00368 (11)
N10.0185 (9)0.0144 (8)0.0159 (8)0.0020 (7)0.0002 (7)0.0067 (7)
N20.0190 (9)0.0137 (8)0.0152 (8)0.0009 (7)0.0023 (7)0.0055 (7)
N30.0226 (10)0.0197 (9)0.0189 (9)0.0052 (7)0.0026 (7)0.0086 (7)
O10.0345 (9)0.0176 (7)0.0211 (8)0.0064 (7)0.0063 (7)0.0079 (6)
O20.0332 (9)0.0150 (7)0.0180 (7)0.0048 (6)0.0057 (6)0.0047 (6)
O30.0271 (8)0.0146 (7)0.0173 (7)0.0036 (6)0.0031 (6)0.0054 (6)
O40.0292 (9)0.0227 (8)0.0234 (8)0.0021 (7)0.0093 (7)0.0097 (6)
O50.0250 (8)0.0154 (7)0.0282 (8)0.0028 (6)0.0015 (7)0.0093 (6)
O60.0249 (8)0.0161 (7)0.0162 (7)0.0003 (6)0.0001 (6)0.0050 (6)
O70.0301 (9)0.0169 (7)0.0172 (7)0.0036 (6)0.0003 (6)0.0035 (6)
O80.0243 (9)0.0231 (8)0.0205 (8)0.0070 (6)0.0002 (6)0.0088 (6)
O90.0312 (9)0.0205 (8)0.0359 (9)0.0071 (7)0.0143 (8)0.0159 (7)
O100.0258 (8)0.0220 (8)0.0232 (8)0.0054 (6)0.0027 (6)0.0133 (6)
O110.0369 (10)0.0152 (7)0.0337 (9)0.0031 (7)0.0124 (8)0.0055 (7)
O120.0580 (13)0.0203 (8)0.0270 (9)0.0056 (8)0.0138 (8)0.0099 (7)
O130.0295 (11)0.0450 (12)0.122 (2)0.0093 (9)0.0042 (13)0.0545 (14)
O140.0386 (12)0.0798 (16)0.0611 (14)0.0221 (11)0.0193 (10)0.0538 (13)
O150.0647 (14)0.0318 (10)0.0238 (9)0.0193 (9)0.0017 (9)0.0077 (8)
C10.0230 (11)0.0175 (10)0.0160 (10)0.0014 (8)0.0004 (8)0.0073 (8)
C20.0189 (10)0.0147 (9)0.0168 (10)0.0012 (8)0.0009 (8)0.0064 (8)
C30.0232 (11)0.0147 (9)0.0218 (11)0.0036 (8)0.0011 (9)0.0061 (8)
C40.0256 (12)0.0151 (10)0.0199 (10)0.0002 (9)0.0021 (9)0.0019 (8)
C50.0203 (11)0.0186 (10)0.0177 (10)0.0009 (8)0.0030 (8)0.0063 (8)
C60.0160 (10)0.0175 (10)0.0155 (9)0.0000 (8)0.0009 (8)0.0072 (8)
C70.0172 (10)0.0178 (10)0.0199 (10)0.0004 (8)0.0008 (8)0.0100 (8)
C80.0206 (11)0.0154 (9)0.0212 (10)0.0035 (8)0.0029 (8)0.0093 (8)
C90.0204 (10)0.0133 (9)0.0182 (10)0.0024 (8)0.0046 (8)0.0071 (8)
C100.0235 (11)0.0142 (9)0.0203 (10)0.0013 (8)0.0062 (9)0.0053 (8)
C110.0259 (12)0.0166 (10)0.0156 (10)0.0045 (9)0.0029 (8)0.0027 (8)
C120.0212 (11)0.0203 (10)0.0178 (10)0.0026 (8)0.0011 (8)0.0070 (8)
C130.0197 (10)0.0145 (9)0.0168 (10)0.0010 (8)0.0021 (8)0.0066 (8)
C140.0209 (11)0.0166 (10)0.0201 (10)0.0010 (8)0.0051 (8)0.0076 (8)
C150.0363 (14)0.0130 (9)0.0214 (11)0.0015 (9)0.0004 (10)0.0057 (8)
C160.0256 (12)0.0251 (11)0.0242 (11)0.0084 (9)0.0005 (9)0.0123 (9)
Geometric parameters (Å, º) top
Co1—O10i2.0522 (16)O11—H11A0.9499
Co1—O102.0522 (16)O12—H12B0.9500
Co1—O9i2.0824 (16)O12—H12A0.9500
Co1—O92.0824 (16)O13—H13B0.9499
Co1—O112.1056 (16)O13—H13A0.9500
Co1—O11i2.1056 (15)O14—H14A0.9501
Co2—N12.0098 (17)O14—H14B0.9499
Co2—N22.0204 (17)O15—H15D0.9499
Co2—O62.1224 (15)O15—H15C0.9501
Co2—O32.1534 (16)C1—C21.518 (3)
Co2—O22.1623 (16)C2—C31.385 (3)
Co2—O72.1927 (16)C3—C41.384 (3)
N1—C21.330 (3)C3—H30.9500
N1—C61.330 (3)C4—C51.388 (3)
N2—C131.332 (3)C4—H40.9500
N2—C91.335 (3)C5—C61.389 (3)
N3—C16ii1.488 (3)C5—H50.9500
N3—C151.495 (3)C6—C71.520 (3)
N3—H3B0.9024C8—C91.510 (3)
N3—H3A0.9001C9—C101.394 (3)
O1—C11.249 (3)C10—C111.384 (3)
O2—C11.269 (2)C10—H100.9500
O3—C71.278 (3)C11—C121.393 (3)
O4—C71.233 (3)C11—H110.9500
O5—C81.232 (3)C12—C131.384 (3)
O6—C81.282 (2)C12—H120.9500
O7—C141.262 (3)C13—C141.523 (3)
O8—C141.246 (3)C15—C161.503 (3)
O9—H9B0.9500C15—H15B0.9900
O9—H9A0.9499C15—H15A0.9900
O10—H10B0.9501C16—N3ii1.488 (3)
O10—H10A0.9501C16—H16B0.9900
O11—H11B0.9501C16—H16A0.9900
O10i—Co1—O10180.000 (1)H14A—O14—H14B95.2
O10i—Co1—O9i89.89 (7)H15D—O15—H15C98.0
O10—Co1—O9i90.11 (7)O1—C1—O2125.5 (2)
O10i—Co1—O990.11 (7)O1—C1—C2118.72 (18)
O10—Co1—O989.89 (7)O2—C1—C2115.76 (19)
O9i—Co1—O9180.000 (1)N1—C2—C3121.1 (2)
O10i—Co1—O1188.04 (7)N1—C2—C1113.09 (17)
O10—Co1—O1191.96 (7)C3—C2—C1125.8 (2)
O9i—Co1—O1188.93 (7)C4—C3—C2118.2 (2)
O9—Co1—O1191.07 (7)C4—C3—H3120.9
O10i—Co1—O11i91.96 (7)C2—C3—H3120.9
O10—Co1—O11i88.04 (7)C3—C4—C5120.31 (19)
O9i—Co1—O11i91.07 (7)C3—C4—H4119.8
O9—Co1—O11i88.93 (7)C5—C4—H4119.8
O11—Co1—O11i180.0C4—C5—C6118.0 (2)
N1—Co2—N2165.15 (7)C4—C5—H5121.0
N1—Co2—O6117.76 (6)C6—C5—H5121.0
N2—Co2—O676.99 (6)N1—C6—C5120.9 (2)
N1—Co2—O376.50 (6)N1—C6—C7113.00 (17)
N2—Co2—O3107.36 (6)C5—C6—C7126.0 (2)
O6—Co2—O387.84 (6)O4—C7—O3125.7 (2)
N1—Co2—O276.73 (6)O4—C7—C6119.32 (18)
N2—Co2—O2101.16 (7)O3—C7—C6114.95 (19)
O6—Co2—O295.55 (6)O5—C8—O6126.4 (2)
O3—Co2—O2151.30 (6)O5—C8—C9118.87 (18)
N1—Co2—O789.59 (6)O6—C8—C9114.73 (18)
N2—Co2—O775.79 (6)N2—C9—C10120.6 (2)
O6—Co2—O7152.52 (6)N2—C9—C8113.56 (17)
O3—Co2—O796.68 (6)C10—C9—C8125.86 (19)
O2—Co2—O793.31 (6)C11—C10—C9118.23 (19)
C2—N1—C6121.47 (18)C11—C10—H10120.9
C2—N1—Co2118.78 (14)C9—C10—H10120.9
C6—N1—Co2119.43 (14)C10—C11—C12120.36 (19)
C13—N2—C9121.70 (18)C10—C11—H11119.8
C13—N2—Co2119.90 (14)C12—C11—H11119.8
C9—N2—Co2118.39 (14)C13—C12—C11118.1 (2)
C16ii—N3—C15110.72 (17)C13—C12—H12120.9
C16ii—N3—H3B110.6C11—C12—H12120.9
C15—N3—H3B108.7N2—C13—C12121.02 (19)
C16ii—N3—H3A106.0N2—C13—C14113.12 (18)
C15—N3—H3A110.2C12—C13—C14125.8 (2)
H3B—N3—H3A110.6O8—C14—O7125.70 (19)
C1—O2—Co2114.35 (14)O8—C14—C13118.81 (19)
C7—O3—Co2115.43 (14)O7—C14—C13115.48 (19)
C8—O6—Co2116.30 (13)N3—C15—C16110.58 (17)
C14—O7—Co2115.18 (13)N3—C15—H15B109.5
Co1—O9—H9B124.4C16—C15—H15B109.5
Co1—O9—H9A120.9N3—C15—H15A109.5
H9B—O9—H9A114.8C16—C15—H15A109.5
Co1—O10—H10B115.3H15B—C15—H15A108.1
Co1—O10—H10A118.6N3ii—C16—C15110.06 (19)
H10B—O10—H10A106.0N3ii—C16—H16B109.6
Co1—O11—H11B116.5C15—C16—H16B109.6
Co1—O11—H11A134.4N3ii—C16—H16A109.6
H11B—O11—H11A109.0C15—C16—H16A109.6
H12B—O12—H12A108.2H16B—C16—H16A108.2
H13B—O13—H13A112.9
N2—Co2—N1—C274.0 (3)O2—C1—C2—N11.3 (3)
O6—Co2—N1—C298.84 (16)O1—C1—C2—C31.1 (3)
O3—Co2—N1—C2179.05 (17)O2—C1—C2—C3177.4 (2)
O2—Co2—N1—C29.51 (15)N1—C2—C3—C40.7 (3)
O7—Co2—N1—C283.98 (16)C1—C2—C3—C4177.9 (2)
N2—Co2—N1—C699.7 (3)C2—C3—C4—C50.7 (3)
O6—Co2—N1—C687.52 (16)C3—C4—C5—C60.1 (3)
O3—Co2—N1—C67.31 (15)C2—N1—C6—C50.5 (3)
O2—Co2—N1—C6176.85 (17)Co2—N1—C6—C5173.96 (16)
O7—Co2—N1—C689.66 (16)C2—N1—C6—C7180.00 (18)
N1—Co2—N2—C135.8 (4)Co2—N1—C6—C76.5 (2)
O6—Co2—N2—C13179.31 (17)C4—C5—C6—N10.5 (3)
O3—Co2—N2—C1397.16 (17)C4—C5—C6—C7180.0 (2)
O2—Co2—N2—C1386.12 (17)Co2—O3—C7—O4173.03 (17)
O7—Co2—N2—C134.49 (16)Co2—O3—C7—C65.8 (2)
N1—Co2—N2—C9174.9 (2)N1—C6—C7—O4178.97 (19)
O6—Co2—N2—C91.46 (16)C5—C6—C7—O41.6 (3)
O3—Co2—N2—C982.07 (17)N1—C6—C7—O30.0 (3)
O2—Co2—N2—C994.65 (16)C5—C6—C7—O3179.5 (2)
O7—Co2—N2—C9174.74 (17)Co2—O6—C8—O5179.05 (18)
N1—Co2—O2—C19.99 (15)Co2—O6—C8—C91.4 (2)
N2—Co2—O2—C1154.97 (15)C13—N2—C9—C100.2 (3)
O6—Co2—O2—C1127.24 (15)Co2—N2—C9—C10179.05 (16)
O3—Co2—O2—C131.6 (2)C13—N2—C9—C8179.58 (19)
O7—Co2—O2—C178.80 (15)Co2—N2—C9—C81.2 (2)
N1—Co2—O3—C77.07 (15)O5—C8—C9—N2179.8 (2)
N2—Co2—O3—C7158.05 (15)O6—C8—C9—N20.2 (3)
O6—Co2—O3—C7126.30 (15)O5—C8—C9—C100.1 (3)
O2—Co2—O3—C728.7 (2)O6—C8—C9—C10179.6 (2)
O7—Co2—O3—C780.89 (15)N2—C9—C10—C110.2 (3)
N1—Co2—O6—C8179.67 (15)C8—C9—C10—C11179.5 (2)
N2—Co2—O6—C81.55 (15)C9—C10—C11—C120.1 (3)
O3—Co2—O6—C8106.82 (15)C10—C11—C12—C130.5 (3)
O2—Co2—O6—C8101.75 (15)C9—N2—C13—C120.3 (3)
O7—Co2—O6—C86.5 (2)Co2—N2—C13—C12179.48 (16)
N1—Co2—O7—C14170.69 (16)C9—N2—C13—C14177.03 (19)
N2—Co2—O7—C146.67 (16)Co2—N2—C13—C142.2 (2)
O6—Co2—O7—C1414.7 (2)C11—C12—C13—N20.6 (3)
O3—Co2—O7—C14112.95 (16)C11—C12—C13—C14176.3 (2)
O2—Co2—O7—C1494.01 (16)Co2—O7—C14—O8173.99 (19)
Co2—O2—C1—O1172.74 (18)Co2—O7—C14—C137.5 (2)
Co2—O2—C1—C28.9 (2)N2—C13—C14—O8177.5 (2)
C6—N1—C2—C30.1 (3)C12—C13—C14—O85.4 (3)
Co2—N1—C2—C3173.36 (16)N2—C13—C14—O73.9 (3)
C6—N1—C2—C1178.64 (18)C12—C13—C14—O7173.3 (2)
Co2—N1—C2—C17.9 (2)C16ii—N3—C15—C1657.7 (3)
O1—C1—C2—N1179.8 (2)N3—C15—C16—N3ii57.3 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O10.901.922.808 (2)167
N3—H3A···O8iii0.901.912.772 (2)159
O9—H9B···O3i0.951.922.855 (2)168
O9—H9A···O15iv0.951.822.767 (2)171
O10—H10B···O130.951.762.683 (3)162
O10—H10A···O6i0.951.792.719 (2)166
O11—H11B···O140.951.772.692 (3)163
O11—H11A···O1v0.951.982.906 (2)163
O12—H12B···O70.951.872.808 (2)171
O12—H12A···O4vi0.951.862.795 (2)166
O13—H13B···O13vii0.951.922.868 (5)179
O13—H13A···O4vii0.951.832.770 (3)171
O14—H14B···O5i0.951.792.732 (3)170
O14—H14A···O130.952.203.123 (4)164
O15—H15D···O12viii0.951.862.772 (3)161
O15—H15C···O80.951.862.770 (2)161
Symmetry codes: (i) x, y+1, z+1; (iii) x1, y, z; (iv) x1, y, z+1; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x+1, y+1, z+1; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula(C4H12N2)[Co(H2O)6][Co(C7H3O4)2]2·8H2O
Mr1177.59
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.4682 (10), 11.9287 (14), 12.9091 (15)
α, β, γ (°)63.478 (2), 78.683 (2), 83.063 (2)
V3)1143.3 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.50 × 0.48 × 0.20
Data collection
DiffractometerBruker SMART 1000
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.589, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
9953, 5061, 4261
Rint0.025
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.06
No. of reflections5061
No. of parameters322
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.62

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O10.901.922.808 (2)166.8
N3—H3A···O8i0.901.912.772 (2)159.1
O9—H9B···O3ii0.951.922.855 (2)168.4
O9—H9A···O15iii0.951.822.767 (2)170.7
O10—H10B···O130.951.762.683 (3)162.1
O10—H10A···O6ii0.951.792.719 (2)165.5
O11—H11B···O140.951.772.692 (3)162.8
O11—H11A···O1iv0.951.982.906 (2)163.1
O12—H12B···O70.951.872.808 (2)170.8
O12—H12A···O4v0.951.862.795 (2)165.5
O13—H13B···O13vi0.951.922.868 (5)178.9
O13—H13A···O4vi0.951.832.770 (3)171.1
O14—H14B···O5ii0.951.792.732 (3)170.4
O14—H14A···O130.952.203.123 (4)164.3
O15—H15D···O12vii0.951.862.772 (3)161.2
O15—H15C···O80.951.862.770 (2)160.5
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x1, y, z+1; (iv) x, y, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z+1; (vii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds