Download citation
Download citation
link to html
In the crystal structure of the title compound, [Pd2(C22H17N2)2(C12H12N2)2](PF6)2·C4H10O·H2O, two Pd(dmbpy) units (dmbpy is 4,4′-dimethyl-2,2′-bipyridine) are bridged by 4-benzyl-3,5-diphenyl­pyrazolate ligands in an exodentate fashion, which results in a clip-like cavity between the two Pd(dmbpy)Pd planes. A disordered hexa­fluorido­phosphate anion is held in the cavity by an anion–π inter­action [P—F...Cg1 = 3.435 (15) Å (Cg1 is the centroid of the Pd–dmbpy chelate ring system) and P—F...Cg2 = 3.187 (15) Å (Cg2 is the centroid of a pyridine ring)]. A crystallographic twofold rotation axis passes through an F atom of the disordered anion and the mid-point of the two Pd atoms. The P and two F atoms of the second anion also lie on a twofold rotation axis, as do the O atom of the diethyl ether and the water O atom. The crystal structure is stabilized by electrostatic forces between the cations and anions, and inter­molecular hydrogen bonds involving hexa­fluorido­phosphate anions (C—H...F), the solvent diethyl ether mol­ecules and water mol­ecules (C—H...O).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028401/si2018sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028401/si2018Isup2.hkl
Contains datablock I

CCDC reference: 654744

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.011 Å
  • Disorder in solvent or counterion
  • R factor = 0.045
  • wR factor = 0.144
  • Data-to-parameter ratio = 19.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT420_ALERT_2_B D-H Without Acceptor O2 - H2A ... ?
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.87 Ratio PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P2 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P1 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 3.20 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 17.00 Perc. PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 11 PLAT432_ALERT_2_C Short Inter X...Y Contact F9 .. C36 .. 2.95 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.29 From the CIF: _reflns_number_total 9007 Count of symmetry unique reflns 4867 Completeness (_total/calc) 185.06% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 4140 Fraction of Friedel pairs measured 0.851 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In our previous publictions, we reported a 3,5-diphenylpyrazolate-bridged dinuclear Pd(II) complex having an inorganic anion as the charge-balancing species (Huang et al., 2005 and 2007). Recently, we reported a 4-benzyl substituted 3,5-diphenylpyrazole ligand (Huang et al., 2007). In the present paper, we report the crytal structure of a dinuclear palladium(II) complex based on 4,4'-dimethyl-2,2'-bipyridine (dmbpy) and 4-benzyl-3,5-diphenylpyrazolate (Fig. 1). In the cation, a crystallographic twofold rotation axis passes through F6 and the mid-point of the Pd1—Pd1i atoms (Fig. 1).The distance of two palladium atoms is 2.9989 (6) Å which are shorter than that of our previous dipalladium complexes (Table 1). The PdII center has a cis-square-planar geometry defined by a N,N'-bidentate pyrazolate ligand and a chelating 4,4'-dimethyl-2,2'-bipyridine ligand. This conformation creates an 'open book' disposition for the square-planar environment of the two Pd atoms. The dihedral angle between the two coordination planes around the Pd atoms is 61.0 (1)°. The two Pd(dmbpy)Pd planes form a cleft with a cavity of approximately 180 Å3. An interesting feature of the structure is the presence of a disordered hexafluorophosphate anion in the clip-like cavity formed by the Pd(dmbpy)Pd1 and Pd(dmbpy)Pdi planes. This disordered hexafluorophosphate anions is generated by a twofold rotation axis and held in the cavity by an anion–π interaction (P2—F8···Cg1 3.435 (15) Å, Cg1 is the centroid of the ring system Pd1, N1, C6, C7, N2; P2—F8···Cg2 3.187 (15) Å, Cg2 is the centroid of the ring system N1, C1, C2, C3, C5, C6). Atoms P1, F3 and F4 of the second anion lie also on a twofold rotation axis (Wyckoff letter a) and is located near the cation by C—H···F intermolecular hydrogen bonds. The compound packs by elestrostatic interactions, C—H···F intermolecular hydrogen bonds between the cations and anions, and C—H···O intermolecular hydrogen bonds between the solvent diethyl ether molecules and water molecules. The non-classical hydrogen bonds that connect cations and anions are detailed in Table 2.

Related literature top

For related literature, see: Flack (1983); Huang et al. (2005); Huang, Wu, Liu & Song (2007); Huang, Wu, Liu & Sun (2007).

Experimental top

A mixture of [4,4'-dimethyl-2,2'-bipyridine]dinitratopalladium (83.0 mg, 0.20 mmol) and 4-benzyl-3,5-diphenylpyrazole (31.0 mg, 0.10 mmol) was dissolved in water (5 ml) and stirred 2 h resulting in a clear yellow solution. To the mixture was added a tenfold excess of potassium hexafluorophosphate, which resulted in the immediate deposition of yellow microcrystals.The crystals were filtered, washed with a minimum amount of cold water and dried under vacuum (quantative yield, of 129.6 mg). Crystals were obtained by the vapor diffusion of diethyl ether into a 1 mM solution of in acetonitrile. 1H NMR (400 MHz, [D3] acetonitrile): δ 2.45 (12H, s, dmbpy-CH3), 4.09 (4H, s, CH2), 6.82 (4H, m, Ph—H), 7.03 (6H, m, Ph—H), 7.20 (4H, d, J=5.9 Hz, dmbpy-H5,5'), 7.26 (8H, t, J = 7.5 Hz, Ph—H), 7.33 (4H, t, J = 7.3 Hz, Ph—H), 7.53 (8H, d, J = 7.5 Hz, Ph—H), 7.77 (4H, d, J = 5.9 Hz, dmbpy-H6,6'), 7.99 (4H, s, dmbpy-H3,3') p.p.m.

Refinement top

The value -0.02 (3) of the Flack parameter (Flack, 1983) indicates the absolute structure of the measured crystal was correctly determined. The water O atoms were refined with anisotropic displacement parameters. The H atoms of water molecules were located in a difference Fourier map and refined as riding, with O—H distances of 0.97 Å and Uiso(H) = 1.2Ueq(O). The aromatic H atoms were constrained to an ideal geometry, with C—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C). The methyl H atoms were rotated to fit the electron density, with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). The methylene H atoms were constrained to ideal geometry, with C—H distances of 0.97 Å and Uiso(H) = 1.2Ueq(C). Both PF6- anions and ether molecule were disordered about twofold rotation axis. The largest peak and deepest hole on the final difference Fourier map corresponds to 1.05 and -0.720 e Å-3, and were located 1.15 and 0.16 Å from the F3 and C35 atoms, respectively.

Structure description top

In our previous publictions, we reported a 3,5-diphenylpyrazolate-bridged dinuclear Pd(II) complex having an inorganic anion as the charge-balancing species (Huang et al., 2005 and 2007). Recently, we reported a 4-benzyl substituted 3,5-diphenylpyrazole ligand (Huang et al., 2007). In the present paper, we report the crytal structure of a dinuclear palladium(II) complex based on 4,4'-dimethyl-2,2'-bipyridine (dmbpy) and 4-benzyl-3,5-diphenylpyrazolate (Fig. 1). In the cation, a crystallographic twofold rotation axis passes through F6 and the mid-point of the Pd1—Pd1i atoms (Fig. 1).The distance of two palladium atoms is 2.9989 (6) Å which are shorter than that of our previous dipalladium complexes (Table 1). The PdII center has a cis-square-planar geometry defined by a N,N'-bidentate pyrazolate ligand and a chelating 4,4'-dimethyl-2,2'-bipyridine ligand. This conformation creates an 'open book' disposition for the square-planar environment of the two Pd atoms. The dihedral angle between the two coordination planes around the Pd atoms is 61.0 (1)°. The two Pd(dmbpy)Pd planes form a cleft with a cavity of approximately 180 Å3. An interesting feature of the structure is the presence of a disordered hexafluorophosphate anion in the clip-like cavity formed by the Pd(dmbpy)Pd1 and Pd(dmbpy)Pdi planes. This disordered hexafluorophosphate anions is generated by a twofold rotation axis and held in the cavity by an anion–π interaction (P2—F8···Cg1 3.435 (15) Å, Cg1 is the centroid of the ring system Pd1, N1, C6, C7, N2; P2—F8···Cg2 3.187 (15) Å, Cg2 is the centroid of the ring system N1, C1, C2, C3, C5, C6). Atoms P1, F3 and F4 of the second anion lie also on a twofold rotation axis (Wyckoff letter a) and is located near the cation by C—H···F intermolecular hydrogen bonds. The compound packs by elestrostatic interactions, C—H···F intermolecular hydrogen bonds between the cations and anions, and C—H···O intermolecular hydrogen bonds between the solvent diethyl ether molecules and water molecules. The non-classical hydrogen bonds that connect cations and anions are detailed in Table 2.

For related literature, see: Flack (1983); Huang et al. (2005); Huang, Wu, Liu & Song (2007); Huang, Wu, Liu & Sun (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 30% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. Crystal packing of the title compound.
Bis(µ-4-benzyl-3,5-diphenylpyrazolato-κ2N:N')bis[(4,4'-δimethyl-2,2'-bipyridine-κ2N,N')palladium(II)] bis(hexafluoridophosphate) diethyl ether monosolvate monohydrate top
Crystal data top
[Pd2(C22H17N2)2(C12H12N2)2](PF6)2·C4H10O·H2ODx = 1.444 Mg m3
Mr = 1582.10Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3121Cell parameters from 9974 reflections
Hall symbol: P 31 2"θ = 2.4–27.9°
a = 22.1138 (3) ŵ = 0.62 mm1
c = 12.8884 (2) ÅT = 291 K
V = 5458.29 (13) Å3Block, yellow
Z = 30.48 × 0.42 × 0.36 mm
F(000) = 2412
Data collection top
Bruker SMART CCD area-detector
diffractometer
9007 independent reflections
Radiation source: sealed tube8156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 28.3°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2929
Tmin = 0.756, Tmax = 0.808k = 2929
47040 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0859P)2 + 2.0829P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
9007 reflectionsΔρmax = 1.05 e Å3
466 parametersΔρmin = 0.74 e Å3
0 restraintsAbsolute structure: Flack (1983), with 4168 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
[Pd2(C22H17N2)2(C12H12N2)2](PF6)2·C4H10O·H2OZ = 3
Mr = 1582.10Mo Kα radiation
Trigonal, P3121µ = 0.62 mm1
a = 22.1138 (3) ÅT = 291 K
c = 12.8884 (2) Å0.48 × 0.42 × 0.36 mm
V = 5458.29 (13) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
9007 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
8156 reflections with I > 2σ(I)
Tmin = 0.756, Tmax = 0.808Rint = 0.028
47040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.144Δρmax = 1.05 e Å3
S = 1.10Δρmin = 0.74 e Å3
9007 reflectionsAbsolute structure: Flack (1983), with 4168 Friedel pairs
466 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5436 (3)0.8913 (3)1.0360 (4)0.0499 (10)
H10.52190.91381.06590.060*
C20.5767 (3)0.8665 (3)1.0993 (4)0.0590 (13)
H20.57770.87321.17060.071*
C30.6080 (3)0.8319 (3)1.0572 (4)0.0600 (13)
C40.6420 (5)0.8022 (5)1.1256 (6)0.095 (3)
H4A0.69090.83551.13220.142*
H4B0.63620.76001.09520.142*
H4C0.62060.79211.19290.142*
C50.6071 (3)0.8259 (3)0.9514 (5)0.0577 (12)
H50.62840.80330.92080.069*
C60.5751 (2)0.8527 (2)0.8887 (4)0.0439 (9)
C70.5768 (2)0.8544 (2)0.7752 (4)0.0422 (9)
C80.6115 (3)0.8291 (3)0.7153 (4)0.0525 (11)
H80.63190.80600.74710.063*
C90.6160 (3)0.8379 (3)0.6094 (4)0.0580 (13)
C100.6557 (5)0.8132 (5)0.5452 (6)0.089 (2)
H10A0.63790.76430.55760.133*
H10B0.70420.83890.56370.133*
H10C0.65050.82040.47310.133*
C110.5847 (3)0.8732 (3)0.5659 (4)0.0591 (13)
H110.58700.88090.49470.071*
C120.5500 (3)0.8965 (3)0.6292 (4)0.0508 (11)
H120.52950.92010.59920.061*
C130.4209 (2)0.9453 (2)0.6460 (4)0.0422 (9)
C140.3722 (2)0.8706 (2)0.6242 (4)0.0468 (10)
C150.3780 (3)0.8400 (3)0.5326 (5)0.0652 (14)
H150.41280.86630.48470.078*
C160.3309 (5)0.7694 (4)0.5139 (7)0.084 (2)
H160.33540.74840.45420.101*
C170.2784 (5)0.7310 (3)0.5822 (7)0.088 (2)
H170.24720.68410.56850.106*
C180.2716 (4)0.7611 (4)0.6711 (8)0.086 (2)
H180.23520.73490.71690.103*
C190.3187 (3)0.8307 (3)0.6929 (5)0.0620 (12)
H190.31430.85060.75390.074*
C200.4195 (2)0.9389 (2)1.0197 (4)0.0403 (9)
C210.3762 (2)0.8629 (2)1.0408 (4)0.0455 (10)
C220.3518 (3)0.8147 (3)0.9600 (5)0.0589 (13)
H220.36150.82990.89160.071*
C230.3129 (3)0.7436 (3)0.9820 (6)0.0715 (17)
H230.29710.71160.92780.086*
C240.2976 (3)0.7204 (3)1.0813 (7)0.082 (2)
H240.27040.67281.09440.098*
C250.3214 (3)0.7660 (4)1.1609 (6)0.0725 (18)
H250.31140.74951.22870.087*
C260.3609 (3)0.8374 (3)1.1428 (5)0.0591 (13)
H260.37720.86831.19840.071*
C270.4274 (2)1.0032 (3)0.5939 (3)0.0429 (8)
C280.3809 (3)1.0019 (3)0.5084 (4)0.0528 (11)
H28A0.36420.95870.46990.063*
H28B0.40851.04010.46130.063*
C290.3190 (3)1.0073 (2)0.5424 (4)0.0498 (11)
C300.2880 (3)0.9856 (3)0.6380 (5)0.0644 (14)
H300.30810.96990.68650.077*
C310.2275 (4)0.9864 (5)0.6643 (9)0.096 (3)
H310.20670.96960.72860.115*
C320.1984 (5)1.0118 (6)0.5953 (11)0.117 (4)
H320.15911.01450.61380.140*
C330.2280 (5)1.0335 (5)0.4983 (11)0.108 (4)
H330.20791.04940.45010.130*
C340.2877 (4)1.0314 (3)0.4731 (6)0.0742 (19)
H340.30751.04660.40780.089*
C350.0657 (19)0.0584 (18)0.794 (3)0.282 (17)
H35A0.02560.05640.82770.338*
H35B0.05480.05040.72040.338*
C360.1279 (17)0.1337 (17)0.806 (2)0.267 (14)
H36A0.13420.14620.87820.401*
H36B0.11850.16540.76820.401*
H36C0.16960.13590.77950.401*
F10.5517 (4)1.0008 (4)0.4557 (3)0.1223 (19)
F20.5204 (7)0.9199 (4)0.3331 (6)0.185 (4)
F30.4871 (6)1.00000.33330.220 (9)
F40.6205 (7)1.00000.33330.218 (7)
F50.8020 (4)1.0593 (5)0.8395 (10)0.098 (3)0.50
F60.8550 (5)1.00000.83330.174 (5)
F70.7642 (6)0.9347 (7)0.9591 (14)0.270 (7)
F80.7129 (6)0.9957 (7)0.9187 (15)0.158 (6)0.50
F90.8204 (7)1.0540 (8)0.9732 (17)0.173 (7)0.50
N10.5419 (2)0.8839 (2)0.9324 (3)0.0409 (7)
N20.5449 (2)0.8865 (2)0.7307 (3)0.0405 (7)
N30.46707 (19)0.96654 (19)0.7249 (3)0.0386 (7)
N40.46601 (18)0.96287 (19)0.9408 (3)0.0384 (7)
O10.0732 (17)0.00000.83330.290 (15)
O20.2246 (11)0.2246 (11)1.00000.332 (17)
H2A0.24700.25050.93730.398*
P10.55322 (12)1.00000.33330.0683 (6)
P20.7837 (3)0.9967 (3)0.8965 (6)0.122 (2)0.50
Pd10.500203 (16)0.921712 (16)0.83157 (2)0.03555 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (3)0.064 (3)0.040 (2)0.040 (2)0.004 (2)0.003 (2)
C20.067 (3)0.078 (4)0.046 (3)0.047 (3)0.000 (2)0.009 (3)
C30.069 (3)0.071 (4)0.056 (3)0.047 (3)0.001 (3)0.016 (3)
C40.129 (7)0.135 (7)0.072 (4)0.105 (6)0.011 (5)0.035 (5)
C50.066 (3)0.063 (3)0.066 (3)0.049 (3)0.003 (3)0.008 (3)
C60.042 (2)0.041 (2)0.052 (3)0.0235 (17)0.0037 (19)0.0088 (19)
C70.043 (2)0.042 (2)0.047 (2)0.0253 (17)0.0012 (19)0.0018 (18)
C80.055 (3)0.057 (3)0.058 (3)0.038 (2)0.000 (2)0.005 (2)
C90.056 (3)0.068 (3)0.060 (3)0.038 (3)0.000 (2)0.013 (2)
C100.104 (6)0.130 (7)0.071 (4)0.088 (6)0.001 (4)0.027 (4)
C110.061 (3)0.079 (4)0.048 (3)0.043 (3)0.003 (2)0.006 (3)
C120.060 (3)0.065 (3)0.042 (2)0.043 (3)0.001 (2)0.001 (2)
C130.0375 (19)0.049 (2)0.042 (2)0.0227 (18)0.0035 (17)0.0047 (18)
C140.045 (2)0.043 (2)0.053 (3)0.0231 (18)0.009 (2)0.0076 (19)
C150.069 (3)0.066 (3)0.061 (3)0.035 (3)0.011 (3)0.020 (3)
C160.103 (5)0.066 (4)0.093 (5)0.050 (4)0.031 (5)0.034 (4)
C170.086 (5)0.048 (3)0.125 (7)0.029 (3)0.038 (5)0.016 (4)
C180.062 (4)0.050 (3)0.130 (7)0.017 (3)0.003 (4)0.006 (4)
C190.058 (3)0.051 (3)0.070 (3)0.023 (2)0.002 (3)0.001 (3)
C200.0340 (19)0.044 (2)0.045 (2)0.0209 (17)0.0018 (17)0.0033 (18)
C210.0374 (19)0.048 (2)0.056 (3)0.0251 (19)0.0064 (18)0.008 (2)
C220.054 (3)0.051 (3)0.067 (3)0.024 (2)0.006 (3)0.000 (2)
C230.060 (3)0.046 (3)0.102 (5)0.022 (2)0.007 (3)0.002 (3)
C240.054 (3)0.051 (3)0.135 (7)0.022 (3)0.015 (4)0.024 (4)
C250.059 (3)0.073 (4)0.083 (5)0.031 (3)0.018 (3)0.039 (4)
C260.051 (2)0.058 (3)0.061 (3)0.023 (2)0.006 (2)0.017 (3)
C270.0407 (19)0.049 (2)0.041 (2)0.0238 (18)0.0036 (17)0.0006 (19)
C280.050 (2)0.058 (3)0.044 (3)0.022 (2)0.007 (2)0.003 (2)
C290.048 (2)0.0312 (18)0.065 (3)0.0159 (17)0.018 (2)0.0006 (19)
C300.060 (3)0.062 (3)0.080 (4)0.037 (3)0.005 (3)0.000 (3)
C310.064 (4)0.087 (5)0.141 (8)0.040 (4)0.008 (4)0.011 (5)
C320.080 (5)0.103 (7)0.196 (12)0.068 (5)0.033 (7)0.033 (8)
C330.095 (6)0.083 (5)0.173 (10)0.064 (5)0.070 (7)0.025 (6)
C340.078 (4)0.046 (3)0.098 (5)0.031 (3)0.036 (4)0.002 (3)
C350.28 (3)0.27 (4)0.29 (3)0.13 (3)0.15 (3)0.00 (3)
C360.27 (3)0.28 (3)0.33 (3)0.20 (3)0.01 (3)0.09 (3)
F10.160 (5)0.157 (5)0.047 (2)0.077 (4)0.004 (3)0.002 (3)
F20.282 (12)0.118 (5)0.138 (6)0.087 (6)0.020 (6)0.015 (5)
F30.197 (9)0.37 (3)0.149 (10)0.186 (14)0.000 (6)0.000 (12)
F40.188 (8)0.30 (2)0.200 (12)0.152 (11)0.013 (7)0.026 (13)
F50.050 (4)0.068 (5)0.160 (10)0.016 (4)0.000 (5)0.007 (5)
F60.110 (5)0.099 (6)0.309 (16)0.049 (3)0.009 (4)0.018 (8)
F70.150 (8)0.208 (11)0.42 (2)0.066 (9)0.013 (11)0.086 (12)
F80.088 (7)0.095 (8)0.291 (19)0.045 (6)0.021 (9)0.024 (10)
F90.097 (8)0.120 (10)0.28 (2)0.040 (8)0.038 (11)0.061 (12)
N10.0424 (18)0.0435 (18)0.0425 (19)0.0258 (15)0.0024 (16)0.0035 (16)
N20.0427 (18)0.0451 (18)0.0409 (19)0.0273 (15)0.0031 (15)0.0001 (16)
N30.0353 (16)0.0387 (17)0.0426 (19)0.0192 (14)0.0027 (14)0.0017 (15)
N40.0343 (16)0.0369 (16)0.046 (2)0.0195 (13)0.0048 (15)0.0013 (15)
O10.29 (3)0.30 (4)0.28 (3)0.15 (2)0.025 (15)0.05 (3)
O20.278 (18)0.278 (18)0.29 (3)0.03 (3)0.056 (16)0.056 (16)
P10.0776 (11)0.0938 (17)0.0389 (10)0.0469 (8)0.0025 (5)0.0049 (10)
P20.061 (2)0.078 (3)0.219 (7)0.029 (2)0.013 (3)0.010 (4)
Pd10.03531 (15)0.03791 (16)0.03836 (16)0.02200 (12)0.00096 (12)0.00067 (12)
Geometric parameters (Å, º) top
C1—N11.343 (6)C24—H240.9300
C1—C21.378 (7)C25—C261.390 (9)
C1—H10.9300C25—H250.9300
C2—C31.375 (8)C26—H260.9300
C2—H20.9300C27—C20i1.409 (6)
C3—C51.370 (8)C27—C281.497 (6)
C3—C41.506 (7)C28—C291.499 (8)
C4—H4A0.9600C28—H28A0.9700
C4—H4B0.9600C28—H28B0.9700
C4—H4C0.9600C29—C301.375 (9)
C5—C61.388 (6)C29—C341.389 (7)
C5—H50.9300C30—C311.387 (9)
C6—N11.356 (6)C30—H300.9300
C6—C71.464 (7)C31—C321.373 (14)
C7—N21.355 (5)C31—H310.9300
C7—C81.387 (6)C32—C331.382 (16)
C8—C91.375 (8)C32—H320.9300
C8—H80.9300C33—C341.382 (13)
C9—C111.394 (8)C33—H330.9300
C9—C101.495 (8)C34—H340.9300
C10—H10A0.9600C35—O11.47 (4)
C10—H10B0.9600C35—C361.55 (4)
C10—H10C0.9600C35—H35A0.9700
C11—C121.384 (7)C35—H35B0.9700
C11—H110.9300C36—H36A0.9600
C12—N21.321 (6)C36—H36B0.9600
C12—H120.9300C36—H36C0.9600
C13—N31.349 (6)P1—F31.462 (15)
C13—C271.388 (7)P1—F41.489 (15)
C13—C141.480 (6)P1—F21.542 (8)
C14—C191.385 (8)P1—F2ii1.542 (8)
C14—C151.397 (8)P1—F1ii1.577 (4)
C15—C161.398 (10)P1—F11.577 (4)
C15—H150.9300P2—F5i1.425 (13)
C16—C171.362 (12)P2—F51.436 (12)
C16—H160.9300P2—F71.458 (13)
C17—C181.372 (12)P2—F91.49 (2)
C17—H170.9300P2—F81.582 (13)
C18—C191.389 (9)P2—P2i1.634 (15)
C18—H180.9300P2—F61.744 (11)
C19—H190.9300F5—P2i1.425 (12)
C20—N41.352 (6)F6—P2i1.744 (11)
C20—C27i1.409 (6)N1—Pd12.002 (3)
C20—C211.484 (6)N2—Pd12.010 (3)
C21—C221.392 (8)N3—N4i1.352 (5)
C21—C261.403 (7)N3—Pd12.033 (3)
C22—C231.392 (8)N4—N3i1.352 (5)
C22—H220.9300N4—Pd12.017 (3)
C23—C241.356 (11)O1—C35iii1.47 (4)
C23—H230.9300O2—H2A0.9713
C24—C251.348 (12)Pd1—Pd1i2.9989 (6)
N1—C1—C2121.9 (4)C30—C29—C34116.9 (6)
N1—C1—H1119.0C30—C29—C28123.3 (5)
C2—C1—H1119.0C34—C29—C28119.6 (6)
C3—C2—C1120.2 (5)C29—C30—C31122.0 (7)
C3—C2—H2119.9C29—C30—H30119.0
C1—C2—H2119.9C31—C30—H30119.0
C5—C3—C2117.3 (5)C32—C31—C30120.0 (10)
C5—C3—C4121.8 (5)C32—C31—H31120.0
C2—C3—C4120.9 (6)C30—C31—H31120.0
C3—C4—H4A109.5C31—C32—C33119.3 (8)
C3—C4—H4B109.5C31—C32—H32120.4
H4A—C4—H4B109.5C33—C32—H32120.4
C3—C4—H4C109.5C34—C33—C32119.8 (7)
H4A—C4—H4C109.5C34—C33—H33120.1
H4B—C4—H4C109.5C32—C33—H33120.1
C3—C5—C6121.6 (5)C33—C34—C29121.9 (8)
C3—C5—H5119.2C33—C34—H34119.0
C6—C5—H5119.2C29—C34—H34119.0
N1—C6—C5119.8 (5)O1—C35—C36119 (4)
N1—C6—C7114.6 (4)O1—C35—H35A107.7
C5—C6—C7125.5 (4)C36—C35—H35A107.7
N2—C7—C8121.0 (4)O1—C35—H35B107.7
N2—C7—C6115.0 (4)C36—C35—H35B107.7
C8—C7—C6124.0 (4)H35A—C35—H35B107.1
C9—C8—C7120.7 (5)C35—C36—H36A109.5
C9—C8—H8119.7C35—C36—H36B109.5
C7—C8—H8119.7H36A—C36—H36B109.5
C8—C9—C11117.2 (5)C35—C36—H36C109.5
C8—C9—C10120.8 (6)H36A—C36—H36C109.5
C11—C9—C10121.9 (6)H36B—C36—H36C109.5
C9—C10—H10A109.5F3—P1—F4180.000 (4)
C9—C10—H10B109.5F3—P1—F295.9 (5)
H10A—C10—H10B109.5F4—P1—F284.1 (5)
C9—C10—H10C109.5F3—P1—F2ii95.9 (5)
H10A—C10—H10C109.5F4—P1—F2ii84.1 (5)
H10B—C10—H10C109.5F2—P1—F2ii168.1 (10)
C12—C11—C9119.6 (5)F3—P1—F1ii88.5 (3)
C12—C11—H11120.2F4—P1—F1ii91.5 (3)
C9—C11—H11120.2F2—P1—F1ii89.5 (4)
N2—C12—C11122.6 (5)F2ii—P1—F1ii90.8 (4)
N2—C12—H12118.7F3—P1—F188.5 (3)
C11—C12—H12118.7F4—P1—F191.5 (3)
N3—C13—C27109.4 (4)F2—P1—F190.8 (4)
N3—C13—C14122.2 (4)F2ii—P1—F189.5 (4)
C27—C13—C14128.4 (4)F1ii—P1—F1177.0 (6)
C19—C14—C15119.2 (5)F5i—P2—F5105.5 (7)
C19—C14—C13120.1 (5)F5i—P2—F776.7 (8)
C15—C14—C13120.6 (5)F5—P2—F7177.0 (10)
C14—C15—C16119.2 (7)F5i—P2—F9174.8 (8)
C14—C15—H15120.4F5—P2—F975.4 (8)
C16—C15—H15120.4F7—P2—F9102.3 (11)
C17—C16—C15120.8 (7)F5i—P2—F884.6 (8)
C17—C16—H16119.6F5—P2—F884.6 (7)
C15—C16—H16119.6F7—P2—F893.6 (8)
C16—C17—C18120.2 (6)F9—P2—F890.4 (9)
C16—C17—H17119.9F5i—P2—P2i55.5 (6)
C18—C17—H17119.9F5—P2—P2i54.8 (6)
C17—C18—C19120.2 (7)F7—P2—P2i128.0 (10)
C17—C18—H18119.9F9—P2—P2i127.2 (8)
C19—C18—H18119.9F8—P2—P2i100.4 (7)
C14—C19—C18120.3 (6)F5i—P2—F685.0 (5)
C14—C19—H19119.9F5—P2—F684.7 (5)
C18—C19—H19119.9F7—P2—F697.7 (7)
N4—C20—C27i108.2 (4)F9—P2—F6100.2 (6)
N4—C20—C21121.0 (4)F8—P2—F6162.5 (9)
C27i—C20—C21130.7 (4)P2i—P2—F662.1 (3)
C22—C21—C26117.9 (5)P2i—F5—P269.7 (7)
C22—C21—C20120.9 (5)P2i—F6—P255.9 (6)
C26—C21—C20121.1 (5)C1—N1—C6119.0 (4)
C21—C22—C23119.8 (6)C1—N1—Pd1125.9 (3)
C21—C22—H22120.1C6—N1—Pd1115.0 (3)
C23—C22—H22120.1C12—N2—C7118.8 (4)
C24—C23—C22121.0 (7)C12—N2—Pd1126.4 (3)
C24—C23—H23119.5C7—N2—Pd1114.5 (3)
C22—C23—H23119.5C13—N3—N4i108.4 (3)
C25—C24—C23120.4 (6)C13—N3—Pd1137.3 (3)
C25—C24—H24119.8N4i—N3—Pd1114.1 (3)
C23—C24—H24119.8N3i—N4—C20109.0 (3)
C24—C25—C26120.6 (6)N3i—N4—Pd1113.9 (3)
C24—C25—H25119.7C20—N4—Pd1137.0 (3)
C26—C25—H25119.7C35—O1—C35iii113 (4)
C25—C26—C21120.2 (6)H2A—O2—H2Aiv113.3 (1)
C25—C26—H26119.9N1—Pd1—N280.8 (1)
C21—C26—H26119.9N1—Pd1—N495.2 (1)
C13—C27—C20i105.0 (4)N2—Pd1—N4173.5 (2)
C13—C27—C28125.7 (4)N1—Pd1—N3174.7 (2)
C20i—C27—C28129.0 (4)N2—Pd1—N396.8 (1)
C27—C28—C29115.5 (4)N4—Pd1—N386.8 (1)
C27—C28—H28A108.4N1—Pd1—Pd1i110.59 (12)
C29—C28—H28A108.4N2—Pd1—Pd1i110.18 (11)
C27—C28—H28B108.4N4—Pd1—Pd1i66.34 (11)
C29—C28—H28B108.4N3—Pd1—Pd1i65.68 (11)
H28A—C28—H28B107.5
N1—C1—C2—C31.2 (10)C30—C29—C34—C330.2 (9)
C1—C2—C3—C52.4 (10)C28—C29—C34—C33176.0 (6)
C1—C2—C3—C4177.7 (7)F5i—P2—F5—P2i23.9 (8)
C2—C3—C5—C60.8 (9)F9—P2—F5—P2i161.4 (7)
C4—C3—C5—C6179.3 (7)F8—P2—F5—P2i106.8 (8)
C3—C5—C6—N12.0 (9)F6—P2—F5—P2i59.4 (4)
C3—C5—C6—C7174.2 (6)F5i—P2—F6—P2i53.3 (5)
N1—C6—C7—N20.3 (6)F5—P2—F6—P2i52.8 (5)
C5—C6—C7—N2176.6 (5)F7—P2—F6—P2i129.1 (9)
N1—C6—C7—C8176.2 (5)F9—P2—F6—P2i126.9 (8)
C5—C6—C7—C80.2 (8)F8—P2—F6—P2i0.5 (18)
N2—C7—C8—C91.9 (8)C2—C1—N1—C61.7 (8)
C6—C7—C8—C9174.3 (5)C2—C1—N1—Pd1176.6 (4)
C7—C8—C9—C110.2 (8)C5—C6—N1—C13.3 (7)
C7—C8—C9—C10177.6 (6)C7—C6—N1—C1173.3 (4)
C8—C9—C11—C121.0 (9)C5—C6—N1—Pd1178.7 (4)
C10—C9—C11—C12178.4 (6)C7—C6—N1—Pd12.1 (5)
C9—C11—C12—N20.3 (9)C11—C12—N2—C72.4 (8)
N3—C13—C14—C1968.4 (6)C11—C12—N2—Pd1176.8 (4)
C27—C13—C14—C19111.3 (6)C8—C7—N2—C123.2 (7)
N3—C13—C14—C15114.1 (6)C6—C7—N2—C12173.4 (4)
C27—C13—C14—C1566.2 (7)C8—C7—N2—Pd1178.3 (4)
C19—C14—C15—C161.9 (9)C6—C7—N2—Pd11.7 (5)
C13—C14—C15—C16179.4 (6)C27—C13—N3—N4i0.6 (5)
C14—C15—C16—C172.1 (11)C14—C13—N3—N4i179.1 (4)
C15—C16—C17—C180.6 (12)C27—C13—N3—Pd1173.7 (3)
C16—C17—C18—C191.0 (12)C14—C13—N3—Pd16.6 (7)
C15—C14—C19—C180.3 (9)C27i—C20—N4—N3i0.5 (5)
C13—C14—C19—C18177.9 (6)C21—C20—N4—N3i177.2 (4)
C17—C18—C19—C141.2 (11)C27i—C20—N4—Pd1175.6 (3)
N4—C20—C21—C2235.4 (7)C21—C20—N4—Pd12.0 (7)
C27i—C20—C21—C22147.6 (5)C36—C35—O1—C35iii147 (3)
N4—C20—C21—C26142.2 (5)C1—N1—Pd1—N2172.7 (5)
C27i—C20—C21—C2634.9 (7)C6—N1—Pd1—N22.4 (3)
C26—C21—C22—C230.7 (8)C1—N1—Pd1—N42.1 (4)
C20—C21—C22—C23178.3 (5)C6—N1—Pd1—N4177.2 (3)
C21—C22—C23—C240.7 (9)C1—N1—Pd1—Pd1i64.5 (4)
C22—C23—C24—C251.7 (10)C6—N1—Pd1—Pd1i110.6 (3)
C23—C24—C25—C261.3 (10)C12—N2—Pd1—N1172.4 (5)
C24—C25—C26—C210.1 (9)C7—N2—Pd1—N12.2 (3)
C22—C21—C26—C251.1 (8)C12—N2—Pd1—N32.8 (5)
C20—C21—C26—C25178.7 (5)C7—N2—Pd1—N3177.4 (3)
N3—C13—C27—C20i0.3 (5)C12—N2—Pd1—Pd1i63.7 (4)
C14—C13—C27—C20i179.4 (5)C7—N2—Pd1—Pd1i110.9 (3)
N3—C13—C27—C28173.6 (4)N3i—N4—Pd1—N1111.1 (3)
C14—C13—C27—C286.1 (8)C20—N4—Pd1—N163.9 (5)
C13—C27—C28—C2990.3 (6)N3i—N4—Pd1—N363.9 (3)
C20i—C27—C28—C2981.4 (6)C20—N4—Pd1—N3121.1 (4)
C27—C28—C29—C3027.2 (7)N3i—N4—Pd1—Pd1i0.9 (2)
C27—C28—C29—C34156.9 (5)C20—N4—Pd1—Pd1i174.1 (5)
C34—C29—C30—C311.1 (9)C13—N3—Pd1—N265.8 (5)
C28—C29—C30—C31175.0 (6)N4i—N3—Pd1—N2108.3 (3)
C29—C30—C31—C322.5 (12)C13—N3—Pd1—N4119.6 (5)
C30—C31—C32—C333.0 (14)N4i—N3—Pd1—N466.3 (3)
C31—C32—C33—C342.2 (14)C13—N3—Pd1—Pd1i174.9 (5)
C32—C33—C34—C290.8 (12)N4i—N3—Pd1—Pd1i0.9 (2)
Symmetry codes: (i) xy+1, y+2, z+5/3; (ii) xy+1, y+2, z+2/3; (iii) xy, y, z+5/3; (iv) y, x, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F1i0.932.503.228 (8)135
C12—H12···F10.932.443.200 (8)139
C36—H36A···O20.962.453.25 (3)141
C36—H36B···F7v0.962.313.04 (4)133
C36—H36C···F9v0.962.192.95 (3)135
Symmetry codes: (i) xy+1, y+2, z+5/3; (v) x+y, x+1, z1/3.

Experimental details

Crystal data
Chemical formula[Pd2(C22H17N2)2(C12H12N2)2](PF6)2·C4H10O·H2O
Mr1582.10
Crystal system, space groupTrigonal, P3121
Temperature (K)291
a, c (Å)22.1138 (3), 12.8884 (2)
V3)5458.29 (13)
Z3
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.48 × 0.42 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.756, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
47040, 9007, 8156
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.144, 1.10
No. of reflections9007
No. of parameters466
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.74
Absolute structureFlack (1983), with 4168 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: SMART (Bruker, 2001), SMART, SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2001), SHELXTL.

Selected geometric parameters (Å, º) top
N1—Pd12.002 (3)N3—Pd12.033 (3)
N2—Pd12.010 (3)N4—Pd12.017 (3)
N3—N4i1.352 (5)Pd1—Pd1i2.9989 (6)
N4i—N3—Pd1114.1 (3)N1—Pd1—N280.8 (1)
N3i—N4—Pd1113.9 (3)N4—Pd1—N386.8 (1)
Symmetry code: (i) xy+1, y+2, z+5/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F1i0.932.503.228 (8)135
C12—H12···F10.932.443.200 (8)139
C36—H36A···O20.962.453.25 (3)141
C36—H36B···F7ii0.962.313.04 (4)133
C36—H36C···F9ii0.962.192.95 (3)135
Symmetry codes: (i) xy+1, y+2, z+5/3; (ii) x+y, x+1, z1/3.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds