Download citation
Download citation
link to html
In the title compound, C35H34N10O2S2, the six-membered heterocyclic ring adopts a half-chair conformation, while the pyrrolidine five-membered ring exists in an envelope conformation. However the other five-membered ring in the oxindole maintains planarity. In the crystal structure, mol­ecules form N—H...O hydrogen-bonded dimers around inversion centres. The structure is further stabilized by a C—H...π inter­action.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807025822/sj2320sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807025822/sj2320Isup2.hkl
Contains datablock I

CCDC reference: 654963

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.051
  • wR factor = 0.143
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT601_ALERT_2_A Structure Contains Solvent Accessible VOIDS of . 264.00 A   3
Author Response: The problem of the disordered solvent molecule is resolved using the Squeeze program. The disordered solvent may be ethanol moiety which is used for crystallization. See experimental section.

Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 46 Perc. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.76 Ratio PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3A ... ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of C1 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C4 = ... R
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

1,3-Dipolar cycloadditions are versatile synthetic strategies employed for the construction of five-membered heterocycles (Jiang et al., 2006). 1,3-dipolar cycloadditions of azomethine ylides to alkenes afford pyrrolidines, which exhibit important biological properties (Lundahl et al.,1972). The extensive use of isatin as a precursor for 1,3-dipolar cycloadditions stems from the fact that it generates a wide variety of azomethine ylides with primary and secondary amines, These can be trapped with suitable dipolarophiles (Cravotto et al., 2001). The piperidone sub-structure is a versatile entity in synthetic organic chemistry due to its pharmacological properties. Such compounds display potent cytotoxicity towards human Molt 4/C8 and CEM T-lymphocytes as well as murine P388 and L1210 leukemic cells and spasmolytic activities (Dimmock et al., 2003; Abignente & Biniecka-Picazio, 1977). We report here the synthesis and structure of a novel spiropyrrolidine, the title compound (I), Fig. 1.

The slightly distorted half-chair conformation of the piperidin-4-one ring is confirmed by the puckering analysis [q2 = 0.312 (1) Å, φ2 = 230 (2) °, q3 = -0.449 (1) Å; Cremer & Pople, 1975] (Fig. 1). Also, the 5-membered ring is in an envelope conformation with the puckering values of q2 = 0.427 (2) Å, φ2 = 329 (2)°. The benzene ring fused to the 5-membered ring is oriented with an angle of 80.4 (1)°. The two phenyl rings (C23—C28 and C29—C34) subtend angles of 27.9 (2) and 85.8 (1)° with the methylidenephenyl ring (C17—C22) attached to the 6-membered ring.

In the crystal structure, molecules dimerize through the N—H···O hydrogen bonds around an inversion centre (Fig. 2). The crystal is further stabilized by C—H···π interactions between H31 and the C17—C22 benzene ring (centroid Cg1) (Table 1).

Related literature top

For general background, see: Jiang et al. (2006); Lundahl et al. (1972); Cravotto et al. (2001); Dimmock et al. (2003); Abignente & Biniecka-Picazio (1977). For puckering analysis of heterocyclic rings, see: Cremer & Pople (1975).

Experimental top

1-Methyl-3,5-bis[(E)-phenylmethylidene]tetrahydro-4(1H)-pyridinone (1 mmol), isatin (1 mmol) and benzyl amine (1 mmol) were mixed well in a tube and kept over a water bath at 85–90o C for 10–15 s until the mixture becomes a viscous paste to ensure thorough mixing and left aside for 10 min at ambient temperature. After completion of the reaction (TLC), the viscous paste was recrystallized from ethanol to obtain pure crystals of the title compound.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and N—H = 0.86 Å and Uiso(H) = 1.2–1.5 Ueq (parent atom).

There are large accessible voids of 264 Å3 in the structure, which host disordered ethanol solvent molecules. This affected the diffraction pattern, mostly at low scattering angles, and was corrected with the SQUEEZE program (PLATON; Spek, 2003).

Structure description top

1,3-Dipolar cycloadditions are versatile synthetic strategies employed for the construction of five-membered heterocycles (Jiang et al., 2006). 1,3-dipolar cycloadditions of azomethine ylides to alkenes afford pyrrolidines, which exhibit important biological properties (Lundahl et al.,1972). The extensive use of isatin as a precursor for 1,3-dipolar cycloadditions stems from the fact that it generates a wide variety of azomethine ylides with primary and secondary amines, These can be trapped with suitable dipolarophiles (Cravotto et al., 2001). The piperidone sub-structure is a versatile entity in synthetic organic chemistry due to its pharmacological properties. Such compounds display potent cytotoxicity towards human Molt 4/C8 and CEM T-lymphocytes as well as murine P388 and L1210 leukemic cells and spasmolytic activities (Dimmock et al., 2003; Abignente & Biniecka-Picazio, 1977). We report here the synthesis and structure of a novel spiropyrrolidine, the title compound (I), Fig. 1.

The slightly distorted half-chair conformation of the piperidin-4-one ring is confirmed by the puckering analysis [q2 = 0.312 (1) Å, φ2 = 230 (2) °, q3 = -0.449 (1) Å; Cremer & Pople, 1975] (Fig. 1). Also, the 5-membered ring is in an envelope conformation with the puckering values of q2 = 0.427 (2) Å, φ2 = 329 (2)°. The benzene ring fused to the 5-membered ring is oriented with an angle of 80.4 (1)°. The two phenyl rings (C23—C28 and C29—C34) subtend angles of 27.9 (2) and 85.8 (1)° with the methylidenephenyl ring (C17—C22) attached to the 6-membered ring.

In the crystal structure, molecules dimerize through the N—H···O hydrogen bonds around an inversion centre (Fig. 2). The crystal is further stabilized by C—H···π interactions between H31 and the C17—C22 benzene ring (centroid Cg1) (Table 1).

For general background, see: Jiang et al. (2006); Lundahl et al. (1972); Cravotto et al. (2001); Dimmock et al. (2003); Abignente & Biniecka-Picazio (1977). For puckering analysis of heterocyclic rings, see: Cremer & Pople (1975).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound (I) with the numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing for (I) viewed down the a-axis. H bonds are drawn as dashed lines.
5''-Benzylidene-1''-methyl-4',5'-diphenyl-1H-indole-3-spiro-2'-pyrrolidine-3'-spiro-3''-piperidine-2,4''-dione top
Crystal data top
C35H31N3O2Z = 2
Mr = 525.63F(000) = 556
Triclinic, P1Dx = 1.118 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.194 (4) ÅCell parameters from 25 reflections
b = 10.681 (5) Åθ = 9.1–12.7°
c = 15.352 (8) ŵ = 0.07 mm1
α = 80.76 (4)°T = 293 K
β = 80.31 (2)°Block, colourless
γ = 72.71 (5)°0.25 × 0.21 × 0.18 mm
V = 1562.4 (13) Å3
Data collection top
Nonius MACH3 sealed-tube
diffractometer
2506 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω/2θ scansh = 112
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.968, Tmax = 0.995l = 1818
6511 measured reflections3 standard reflections every 60 min
5494 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0742P)2]
where P = (Fo2 + 2Fc2)/3
5494 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C35H31N3O2γ = 72.71 (5)°
Mr = 525.63V = 1562.4 (13) Å3
Triclinic, P1Z = 2
a = 10.194 (4) ÅMo Kα radiation
b = 10.681 (5) ŵ = 0.07 mm1
c = 15.352 (8) ÅT = 293 K
α = 80.76 (4)°0.25 × 0.21 × 0.18 mm
β = 80.31 (2)°
Data collection top
Nonius MACH3 sealed-tube
diffractometer
2506 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.968, Tmax = 0.9953 standard reflections every 60 min
6511 measured reflections intensity decay: none
5494 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 0.89Δρmax = 0.26 e Å3
5494 reflectionsΔρmin = 0.22 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7418 (3)0.2828 (2)0.35142 (15)0.0446 (6)
C20.7663 (3)0.0554 (2)0.40313 (16)0.0474 (7)
H20.68210.07050.44620.057*
C30.7292 (3)0.0721 (2)0.30834 (16)0.0446 (6)
H30.81710.04360.26990.053*
C40.6756 (3)0.2245 (2)0.28475 (16)0.0446 (6)
C50.5182 (3)0.2759 (2)0.29432 (18)0.0534 (7)
H5A0.48250.24240.25090.064*
H5B0.47890.24620.35330.064*
C60.5102 (3)0.4660 (3)0.18724 (19)0.0614 (8)
H6A0.49520.56090.18100.074*
H6B0.44610.44840.15390.074*
C70.6546 (3)0.4031 (2)0.14835 (17)0.0532 (7)
C80.7281 (3)0.2684 (2)0.18842 (17)0.0501 (7)
C90.7272 (4)0.4596 (3)0.08092 (19)0.0683 (9)
H90.81600.40740.06400.082*
C100.6297 (3)0.3648 (2)0.41871 (18)0.0495 (7)
C110.7583 (3)0.5007 (2)0.34650 (17)0.0501 (7)
C120.8105 (4)0.6082 (3)0.3224 (2)0.0679 (8)
H120.76770.68730.34630.081*
C130.9275 (4)0.5945 (3)0.2620 (2)0.0828 (10)
H130.96370.66630.24390.099*
C140.9937 (4)0.4764 (4)0.2270 (2)0.0793 (9)
H141.07320.46960.18610.095*
C150.9413 (3)0.3688 (3)0.25317 (19)0.0648 (8)
H150.98690.28860.23140.078*
C160.8218 (3)0.3812 (2)0.31119 (16)0.0467 (7)
C170.6895 (4)0.5905 (3)0.02937 (19)0.0708 (9)
C180.7963 (5)0.6480 (4)0.0052 (2)0.1059 (13)
H180.88640.60360.00570.127*
C190.7696 (6)0.7709 (4)0.0559 (3)0.1232 (17)
H190.84150.80880.07810.148*
C200.6374 (7)0.8359 (4)0.0729 (3)0.1199 (17)
H200.61960.91750.10750.144*
C210.5315 (5)0.7812 (4)0.0390 (3)0.1031 (13)
H210.44170.82660.05010.124*
C220.5567 (4)0.6586 (3)0.0116 (2)0.0843 (11)
H220.48380.62200.03360.101*
C230.8664 (3)0.0761 (2)0.42894 (17)0.0485 (7)
C240.8285 (3)0.1674 (3)0.4941 (2)0.0679 (8)
H240.73990.14710.52540.081*
C250.9218 (4)0.2906 (3)0.5138 (2)0.0793 (10)
H250.89460.35130.55830.095*
C261.0515 (4)0.3227 (3)0.4690 (2)0.0732 (9)
H261.11230.40570.48150.088*
C271.0917 (3)0.2317 (3)0.4053 (2)0.0748 (9)
H271.18110.25190.37510.090*
C280.9998 (3)0.1098 (3)0.3856 (2)0.0642 (8)
H281.02860.04890.34200.077*
C290.6387 (3)0.0084 (2)0.29153 (17)0.0471 (7)
C300.6614 (3)0.0580 (3)0.21036 (19)0.0621 (8)
H300.73150.04090.16710.075*
C310.5803 (4)0.1329 (3)0.1932 (2)0.0823 (10)
H310.59650.16600.13880.099*
C320.4765 (4)0.1580 (3)0.2564 (3)0.0885 (11)
H320.42160.20750.24470.106*
C330.4539 (4)0.1109 (3)0.3358 (2)0.0861 (10)
H330.38340.12830.37870.103*
C340.5342 (3)0.0373 (3)0.3538 (2)0.0681 (8)
H340.51760.00640.40900.082*
C350.3367 (3)0.4792 (3)0.3149 (2)0.0911 (11)
H35A0.32230.45270.37780.137*
H35B0.27630.45080.28570.137*
H35C0.31690.57360.30420.137*
N10.4800 (2)0.41942 (19)0.28030 (15)0.0553 (6)
N20.6481 (2)0.48676 (19)0.41089 (14)0.0534 (6)
H2A0.59780.54820.44200.064*
N30.8292 (2)0.16302 (18)0.39558 (14)0.0521 (6)
H3A0.90610.15710.41420.063*
O10.8263 (2)0.19800 (18)0.14694 (12)0.0719 (6)
O20.5457 (2)0.32358 (17)0.47439 (12)0.0623 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0525 (16)0.0346 (14)0.0450 (15)0.0081 (12)0.0037 (13)0.0104 (11)
C20.0566 (17)0.0362 (14)0.0483 (15)0.0070 (13)0.0072 (13)0.0125 (11)
C30.0507 (16)0.0352 (13)0.0445 (14)0.0039 (12)0.0028 (12)0.0139 (11)
C40.0500 (17)0.0328 (13)0.0490 (15)0.0051 (12)0.0046 (13)0.0132 (11)
C50.0594 (19)0.0430 (15)0.0569 (16)0.0081 (14)0.0092 (14)0.0131 (12)
C60.074 (2)0.0427 (16)0.067 (2)0.0064 (15)0.0240 (17)0.0074 (14)
C70.072 (2)0.0441 (16)0.0438 (16)0.0110 (15)0.0142 (15)0.0074 (13)
C80.0634 (19)0.0365 (14)0.0490 (16)0.0078 (14)0.0070 (14)0.0124 (12)
C90.097 (2)0.0515 (18)0.0545 (18)0.0143 (17)0.0146 (18)0.0060 (14)
C100.0620 (18)0.0371 (15)0.0455 (15)0.0046 (13)0.0096 (14)0.0084 (12)
C110.0649 (19)0.0403 (15)0.0470 (16)0.0123 (14)0.0164 (15)0.0055 (12)
C120.087 (2)0.0459 (17)0.077 (2)0.0211 (17)0.0241 (19)0.0044 (15)
C130.094 (3)0.075 (2)0.094 (3)0.050 (2)0.018 (2)0.003 (2)
C140.076 (2)0.088 (3)0.083 (2)0.040 (2)0.0053 (19)0.010 (2)
C150.065 (2)0.066 (2)0.0660 (19)0.0185 (17)0.0067 (17)0.0156 (15)
C160.0540 (17)0.0400 (15)0.0464 (15)0.0114 (13)0.0081 (14)0.0076 (12)
C170.111 (3)0.0475 (18)0.0534 (18)0.020 (2)0.013 (2)0.0044 (14)
C180.130 (3)0.067 (2)0.098 (3)0.021 (2)0.018 (3)0.009 (2)
C190.168 (5)0.074 (3)0.109 (3)0.037 (3)0.009 (3)0.018 (2)
C200.194 (5)0.064 (3)0.090 (3)0.026 (3)0.026 (3)0.016 (2)
C210.161 (4)0.071 (3)0.081 (3)0.025 (3)0.056 (3)0.007 (2)
C220.128 (3)0.063 (2)0.069 (2)0.026 (2)0.044 (2)0.0035 (17)
C230.0549 (18)0.0354 (14)0.0537 (16)0.0028 (13)0.0144 (14)0.0119 (13)
C240.076 (2)0.0466 (17)0.077 (2)0.0122 (16)0.0164 (17)0.0030 (16)
C250.101 (3)0.052 (2)0.087 (2)0.022 (2)0.034 (2)0.0125 (17)
C260.077 (2)0.0435 (18)0.100 (3)0.0014 (17)0.039 (2)0.0192 (18)
C270.074 (2)0.054 (2)0.090 (2)0.0014 (18)0.0168 (19)0.0219 (18)
C280.068 (2)0.0442 (17)0.0727 (19)0.0004 (15)0.0106 (17)0.0113 (14)
C290.0611 (18)0.0312 (13)0.0478 (15)0.0086 (13)0.0090 (14)0.0070 (11)
C300.085 (2)0.0437 (16)0.0569 (17)0.0112 (15)0.0152 (16)0.0089 (13)
C310.120 (3)0.062 (2)0.075 (2)0.023 (2)0.033 (2)0.0225 (17)
C320.115 (3)0.063 (2)0.109 (3)0.043 (2)0.044 (3)0.004 (2)
C330.108 (3)0.085 (2)0.085 (3)0.058 (2)0.016 (2)0.004 (2)
C340.085 (2)0.0649 (19)0.0622 (19)0.0303 (18)0.0074 (18)0.0134 (15)
C350.062 (2)0.075 (2)0.115 (3)0.0094 (18)0.001 (2)0.019 (2)
N10.0521 (15)0.0398 (13)0.0667 (16)0.0008 (11)0.0059 (12)0.0130 (11)
N20.0724 (16)0.0319 (12)0.0531 (13)0.0044 (11)0.0087 (12)0.0156 (10)
N30.0548 (14)0.0348 (12)0.0692 (15)0.0068 (10)0.0222 (12)0.0086 (10)
O10.0881 (15)0.0495 (11)0.0595 (12)0.0009 (11)0.0131 (12)0.0109 (10)
O20.0826 (15)0.0434 (11)0.0538 (12)0.0135 (10)0.0120 (11)0.0147 (9)
Geometric parameters (Å, º) top
C1—N31.462 (3)C17—C181.393 (5)
C1—C161.511 (3)C18—C191.390 (5)
C1—C101.561 (3)C18—H180.9300
C1—C41.606 (3)C19—C201.367 (6)
C2—N31.455 (3)C19—H190.9300
C2—C231.509 (3)C20—C211.365 (6)
C2—C31.534 (3)C20—H200.9300
C2—H20.9800C21—C221.387 (4)
C3—C291.509 (4)C21—H210.9300
C3—C41.558 (3)C22—H220.9300
C3—H30.9800C23—C241.371 (4)
C4—C51.523 (3)C23—C281.379 (4)
C4—C81.534 (3)C24—C251.397 (4)
C5—N11.454 (3)C24—H240.9300
C5—H5A0.9700C25—C261.356 (4)
C5—H5B0.9700C25—H250.9300
C6—N11.448 (3)C26—C271.366 (4)
C6—C71.490 (4)C26—H260.9300
C6—H6A0.9700C27—C281.382 (4)
C6—H6B0.9700C27—H270.9300
C7—C91.338 (4)C28—H280.9300
C7—C81.496 (4)C29—C341.379 (4)
C8—O11.210 (3)C29—C301.389 (3)
C9—C171.468 (4)C30—C311.387 (4)
C9—H90.9300C30—H300.9300
C10—O21.230 (3)C31—C321.369 (5)
C10—N21.354 (3)C31—H310.9300
C11—C121.378 (4)C32—C331.351 (5)
C11—N21.393 (3)C32—H320.9300
C11—C161.397 (3)C33—C341.375 (4)
C12—C131.368 (4)C33—H330.9300
C12—H120.9300C34—H340.9300
C13—C141.387 (4)C35—N11.455 (3)
C13—H130.9300C35—H35A0.9600
C14—C151.383 (4)C35—H35B0.9600
C14—H140.9300C35—H35C0.9600
C15—C161.368 (4)N2—H2A0.8600
C15—H150.9300N3—H3A0.8600
C17—C221.383 (4)
N3—C1—C16112.0 (2)C18—C17—C9117.2 (3)
N3—C1—C10112.3 (2)C19—C18—C17120.8 (4)
C16—C1—C10100.90 (19)C19—C18—H18119.6
N3—C1—C4102.18 (17)C17—C18—H18119.6
C16—C1—C4117.40 (19)C20—C19—C18119.8 (5)
C10—C1—C4112.6 (2)C20—C19—H19120.1
N3—C2—C23111.4 (2)C18—C19—H19120.1
N3—C2—C399.96 (19)C21—C20—C19120.1 (4)
C23—C2—C3113.86 (19)C21—C20—H20120.0
N3—C2—H2110.4C19—C20—H20120.0
C23—C2—H2110.4C20—C21—C22120.7 (4)
C3—C2—H2110.4C20—C21—H21119.7
C29—C3—C2117.1 (2)C22—C21—H21119.7
C29—C3—C4116.4 (2)C17—C22—C21120.3 (4)
C2—C3—C4103.98 (18)C17—C22—H22119.8
C29—C3—H3106.2C21—C22—H22119.8
C2—C3—H3106.2C24—C23—C28117.5 (3)
C4—C3—H3106.2C24—C23—C2121.9 (3)
C5—C4—C8106.4 (2)C28—C23—C2120.5 (2)
C5—C4—C3113.4 (2)C23—C24—C25120.6 (3)
C8—C4—C3111.58 (19)C23—C24—H24119.7
C5—C4—C1112.41 (18)C25—C24—H24119.7
C8—C4—C1109.30 (19)C26—C25—C24120.9 (3)
C3—C4—C1103.79 (19)C26—C25—H25119.6
N1—C5—C4108.6 (2)C24—C25—H25119.6
N1—C5—H5A110.0C25—C26—C27119.2 (3)
C4—C5—H5A110.0C25—C26—H26120.4
N1—C5—H5B110.0C27—C26—H26120.4
C4—C5—H5B110.0C26—C27—C28120.1 (3)
H5A—C5—H5B108.4C26—C27—H27119.9
N1—C6—C7113.2 (2)C28—C27—H27119.9
N1—C6—H6A108.9C23—C28—C27121.7 (3)
C7—C6—H6A108.9C23—C28—H28119.2
N1—C6—H6B108.9C27—C28—H28119.2
C7—C6—H6B108.9C34—C29—C30117.5 (3)
H6A—C6—H6B107.8C34—C29—C3123.1 (2)
C9—C7—C6124.9 (3)C30—C29—C3119.4 (2)
C9—C7—C8116.3 (3)C31—C30—C29120.6 (3)
C6—C7—C8118.7 (2)C31—C30—H30119.7
O1—C8—C7121.3 (2)C29—C30—H30119.7
O1—C8—C4121.5 (2)C32—C31—C30120.0 (3)
C7—C8—C4117.3 (2)C32—C31—H31120.0
C7—C9—C17130.5 (3)C30—C31—H31120.0
C7—C9—H9114.7C33—C32—C31119.9 (3)
C17—C9—H9114.7C33—C32—H32120.0
O2—C10—N2125.2 (2)C31—C32—H32120.0
O2—C10—C1126.3 (2)C32—C33—C34120.5 (3)
N2—C10—C1108.3 (2)C32—C33—H33119.7
C12—C11—N2128.4 (3)C34—C33—H33119.7
C12—C11—C16121.8 (3)C33—C34—C29121.4 (3)
N2—C11—C16109.7 (2)C33—C34—H34119.3
C13—C12—C11117.6 (3)C29—C34—H34119.3
C13—C12—H12121.2N1—C35—H35A109.5
C11—C12—H12121.2N1—C35—H35B109.5
C12—C13—C14121.7 (3)H35A—C35—H35B109.5
C12—C13—H13119.1N1—C35—H35C109.5
C14—C13—H13119.1H35A—C35—H35C109.5
C15—C14—C13119.9 (3)H35B—C35—H35C109.5
C15—C14—H14120.1C6—N1—C5110.8 (2)
C13—C14—H14120.1C6—N1—C35111.5 (2)
C16—C15—C14119.5 (3)C5—N1—C35112.8 (2)
C16—C15—H15120.2C10—N2—C11111.9 (2)
C14—C15—H15120.2C10—N2—H2A124.1
C15—C16—C11119.4 (2)C11—N2—H2A124.1
C15—C16—C1131.4 (2)C2—N3—C1109.5 (2)
C11—C16—C1109.1 (2)C2—N3—H3A125.2
C22—C17—C18118.3 (3)C1—N3—H3A125.2
C22—C17—C9124.6 (3)
N3—C2—C3—C29170.15 (19)N3—C1—C16—C1553.8 (3)
C23—C2—C3—C2971.0 (3)C10—C1—C16—C15173.4 (3)
N3—C2—C3—C440.2 (2)C4—C1—C16—C1563.9 (4)
C23—C2—C3—C4159.1 (2)N3—C1—C16—C11122.9 (2)
C29—C3—C4—C529.9 (3)C10—C1—C16—C113.3 (3)
C2—C3—C4—C5100.5 (2)C4—C1—C16—C11119.4 (2)
C29—C3—C4—C890.3 (3)C7—C9—C17—C2231.2 (5)
C2—C3—C4—C8139.3 (2)C7—C9—C17—C18150.1 (3)
C29—C3—C4—C1152.1 (2)C22—C17—C18—C190.3 (5)
C2—C3—C4—C121.8 (2)C9—C17—C18—C19179.1 (3)
N3—C1—C4—C5127.7 (2)C17—C18—C19—C200.6 (6)
C16—C1—C4—C5109.5 (2)C18—C19—C20—C211.0 (7)
C10—C1—C4—C57.0 (3)C19—C20—C21—C221.0 (6)
N3—C1—C4—C8114.4 (2)C18—C17—C22—C210.4 (5)
C16—C1—C4—C88.5 (3)C9—C17—C22—C21179.0 (3)
C10—C1—C4—C8125.0 (2)C20—C21—C22—C170.7 (5)
N3—C1—C4—C34.8 (2)N3—C2—C23—C24134.2 (3)
C16—C1—C4—C3127.6 (2)C3—C2—C23—C24113.7 (3)
C10—C1—C4—C3115.9 (2)N3—C2—C23—C2847.4 (3)
C8—C4—C5—N163.1 (2)C3—C2—C23—C2864.8 (3)
C3—C4—C5—N1173.8 (2)C28—C23—C24—C251.3 (4)
C1—C4—C5—N156.5 (3)C2—C23—C24—C25177.2 (3)
N1—C6—C7—C9151.3 (3)C23—C24—C25—C260.2 (5)
N1—C6—C7—C826.5 (3)C24—C25—C26—C271.6 (5)
C9—C7—C8—O122.9 (4)C25—C26—C27—C281.5 (5)
C6—C7—C8—O1159.1 (3)C24—C23—C28—C271.3 (4)
C9—C7—C8—C4155.9 (2)C2—C23—C28—C27177.2 (3)
C6—C7—C8—C422.1 (3)C26—C27—C28—C230.0 (5)
C5—C4—C8—O1142.5 (3)C2—C3—C29—C3435.1 (3)
C3—C4—C8—O118.3 (3)C4—C3—C29—C3488.8 (3)
C1—C4—C8—O195.9 (3)C2—C3—C29—C30144.0 (2)
C5—C4—C8—C738.8 (3)C4—C3—C29—C3092.1 (3)
C3—C4—C8—C7162.9 (2)C34—C29—C30—C310.5 (4)
C1—C4—C8—C782.9 (3)C3—C29—C30—C31179.7 (3)
C6—C7—C9—C170.3 (5)C29—C30—C31—C320.3 (5)
C8—C7—C9—C17177.6 (3)C30—C31—C32—C330.6 (5)
N3—C1—C10—O253.5 (3)C31—C32—C33—C340.2 (5)
C16—C1—C10—O2172.9 (2)C32—C33—C34—C290.6 (5)
C4—C1—C10—O261.1 (3)C30—C29—C34—C330.9 (4)
N3—C1—C10—N2121.2 (2)C3—C29—C34—C33179.9 (3)
C16—C1—C10—N21.8 (3)C7—C6—N1—C551.3 (3)
C4—C1—C10—N2124.2 (2)C7—C6—N1—C35177.8 (2)
N2—C11—C12—C13174.7 (3)C4—C5—N1—C672.6 (3)
C16—C11—C12—C130.1 (4)C4—C5—N1—C35161.7 (2)
C11—C12—C13—C141.2 (5)O2—C10—N2—C11175.0 (2)
C12—C13—C14—C150.1 (5)C1—C10—N2—C110.3 (3)
C13—C14—C15—C162.1 (5)C12—C11—N2—C10177.6 (3)
C14—C15—C16—C113.1 (4)C16—C11—N2—C102.5 (3)
C14—C15—C16—C1179.5 (3)C23—C2—N3—C1167.17 (19)
C12—C11—C16—C152.0 (4)C3—C2—N3—C146.5 (2)
N2—C11—C16—C15173.4 (2)C16—C1—N3—C2158.78 (19)
C12—C11—C16—C1179.2 (2)C10—C1—N3—C288.6 (2)
N2—C11—C16—C13.7 (3)C4—C1—N3—C232.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.102.950 (3)170
C31—H31···Cg1ii0.932.853.778 (5)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC35H31N3O2
Mr525.63
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.194 (4), 10.681 (5), 15.352 (8)
α, β, γ (°)80.76 (4), 80.31 (2), 72.71 (5)
V3)1562.4 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.21 × 0.18
Data collection
DiffractometerNonius MACH3 sealed-tube
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.968, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
6511, 5494, 2506
Rint0.020
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.143, 0.89
No. of reflections5494
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXTL/PC (Bruker, 2000), SHELXTL/PC, PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.862.102.950 (3)170.3
C31—H31···Cg1ii0.932.853.778 (5)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds