Download citation
Download citation
link to html
In the title compound, {[Zn(C10H2O8)(C3H12N2)]·4H2O}n, the Zn2+ ions are in a distorted tetra­hedral environment made up of four O atoms from four benzene-1,2,4,5-tetra­carboxyl­ate anions, which leads to the formation of a polymeric three-dimensional network. The disordered (3:1) propane-1,2-diammonium counter-cations and the water mol­ecules are located in the voids of the network. Inter­molecular N—H...O and O—H...O hydrogen bonds help to consolidate the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028905/wm2117sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028905/wm2117Isup2.hkl
Contains datablock I

CCDC reference: 654783

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in solvent or counterion
  • R factor = 0.038
  • wR factor = 0.111
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found




Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT221_ALERT_4_C Large Solvent/Anion N Ueq(max)/Ueq(min) ... 3.84 Ratio PLAT223_ALERT_4_C Large Solvent/Anion H Ueq(max)/Ueq(min) ... 3.06 Ratio PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 18.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 17
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the past, considerable attention has been paid to the exploration of the structures and properties of metal complexes or salts containing benzenepolycarboxylate ligands. In the case of benzene-1,2,4,5-tetracarboxylate (btec) ligands, the coordination chemistry is well represented, although there are not as many structures as reported for benzene-1,3,5-tricarboxylate (btc). Among the many known compounds containing btec ligands, most are transition metal complexes, including Mn (Rochon & Massarweh, 2000; Hu et al., 2001), Fe (Chu et al., 2001), Co (Murugavel et al., 2002; Kumagai et al., 2002; Poleti & Karanović, 1989; Cheng et al., 2002), Ni (Murugavel et al., 2002; Rochon & Massarweh, 2000; Poleti et al., 1988), Cu (Zou et al., 1998; Cheng et al., 2001; Cao, Shi et al., 2002), Ag (Jaber et al., 1997) and Zn (Murugavel et al., 2002; Yang et al., 2004). Examples of compounds with main group metals such as Ca (Robl, 1988) and Tl (Day & Luehrs, 1988) also exist. Recently, compounds of the rare earth elements were also reported (Cao, Sun et al., 2002; Daiguebonne et al., 2003). However, compounds with btec ligands and organic ammonium counter cations are rare and may have an interesting polymeric structure.

Indeed, the title compound, (I), forms a polymeric three-dimensional structure. The Zn atom is in the center of a distorted tetrahedron made up of four O atoms from four benzene-1,2,4,5-tetracarboxylate anions. The Zn—O bond lengths and bond angles in (I) (Table 1) are within the normal range (Murugavel et al., 2002; Yang et al., 2004). The propane-1,2-diammonium counter cations and the water molecules are located in the voids of the polymeric anionic moieties (Fig. 1). Intermolecular hydrogen bonds of the type N—H···O and O—H···O (Table 2) stabilize the crystal packing (Fig. 2).

Related literature top

Transition metal complexes with benzene-1,2,4,5-tetracarboxylate (btec) ligands include those with Mn (Rochon & Massarweh, 2000; Hu et al., 2001), Fe (Chu et al., 2001), Co (Murugavel et al., 2002; Kumagai et al., 2002; Poleti & Karanović, 1989; Cheng et al., 2002), Ni (Murugavel et al., 2002; Rochon & Massarweh, 2000; Poleti et al., 1988), Cu (Zou et al., 1998; Cheng et al., 2001; Cao, Shi et al., 2002), Ag (Jaber et al., 1997) and Zn (Murugavel et al., 2002; Yang et al., 2004). Main group and metal complexes with the same ligand include those with Ca (Robl, 1988) and Tl (Day & Luehrs, 1988); for rare earth metal complexes, see Cao, Sun et al. (2002) and Daiguebonne et al. (2003). The Zn—O bond lengths and angles are comparable to those in similar structures (Murugavel et al., 2002; Yang et al., 2004).

Experimental top

At room temperature propane-1,2-diamine (0.87 g (1.0 ml), 11.6 mmol) was added to a solution of benzene-1,2,4,5-tetracarboxylic acid (1.52 g, 5.81 mmol) in ethanol (20 ml), resulting in a milky suspension which subsequently was added to a solution of ZnCl2 (0.41 g, 2.93 mmol) in water (30 ml). The resulting colorless solution was stirred for 5 min and was left to evaporate slowly at room temperature. After three days, colorless prismatic crystals of (I) were isolated (yield 1.15 g, 84.1%).

Refinement top

The H atoms bonded to C atoms were placed in calculated positions. The H atoms of the NH3+ groups and of the water molecules were found in difference Fourier maps. All H atoms were refined in the riding model approximation with the Uiso(H) parameters equal to 1.2Ueq(X) (X = C, N and O). The propane-1,2-diammonium cation is disordered. One NH3+, the CH3 and the CH groups are split in two positions. They were refined with fixed occupancies of 0.75 and 0.25. Four restrains were used to fix distances d(C11—C12), d(C11—C12'), d(C12—C13) and d(C12'-C13) for the disordered cation. The highest peak and the deepest hole in the final Fourier map are located 1.02 and 0.48 Å from atom OW2.

Structure description top

In the past, considerable attention has been paid to the exploration of the structures and properties of metal complexes or salts containing benzenepolycarboxylate ligands. In the case of benzene-1,2,4,5-tetracarboxylate (btec) ligands, the coordination chemistry is well represented, although there are not as many structures as reported for benzene-1,3,5-tricarboxylate (btc). Among the many known compounds containing btec ligands, most are transition metal complexes, including Mn (Rochon & Massarweh, 2000; Hu et al., 2001), Fe (Chu et al., 2001), Co (Murugavel et al., 2002; Kumagai et al., 2002; Poleti & Karanović, 1989; Cheng et al., 2002), Ni (Murugavel et al., 2002; Rochon & Massarweh, 2000; Poleti et al., 1988), Cu (Zou et al., 1998; Cheng et al., 2001; Cao, Shi et al., 2002), Ag (Jaber et al., 1997) and Zn (Murugavel et al., 2002; Yang et al., 2004). Examples of compounds with main group metals such as Ca (Robl, 1988) and Tl (Day & Luehrs, 1988) also exist. Recently, compounds of the rare earth elements were also reported (Cao, Sun et al., 2002; Daiguebonne et al., 2003). However, compounds with btec ligands and organic ammonium counter cations are rare and may have an interesting polymeric structure.

Indeed, the title compound, (I), forms a polymeric three-dimensional structure. The Zn atom is in the center of a distorted tetrahedron made up of four O atoms from four benzene-1,2,4,5-tetracarboxylate anions. The Zn—O bond lengths and bond angles in (I) (Table 1) are within the normal range (Murugavel et al., 2002; Yang et al., 2004). The propane-1,2-diammonium counter cations and the water molecules are located in the voids of the polymeric anionic moieties (Fig. 1). Intermolecular hydrogen bonds of the type N—H···O and O—H···O (Table 2) stabilize the crystal packing (Fig. 2).

Transition metal complexes with benzene-1,2,4,5-tetracarboxylate (btec) ligands include those with Mn (Rochon & Massarweh, 2000; Hu et al., 2001), Fe (Chu et al., 2001), Co (Murugavel et al., 2002; Kumagai et al., 2002; Poleti & Karanović, 1989; Cheng et al., 2002), Ni (Murugavel et al., 2002; Rochon & Massarweh, 2000; Poleti et al., 1988), Cu (Zou et al., 1998; Cheng et al., 2001; Cao, Shi et al., 2002), Ag (Jaber et al., 1997) and Zn (Murugavel et al., 2002; Yang et al., 2004). Main group and metal complexes with the same ligand include those with Ca (Robl, 1988) and Tl (Day & Luehrs, 1988); for rare earth metal complexes, see Cao, Sun et al. (2002) and Daiguebonne et al. (2003). The Zn—O bond lengths and angles are comparable to those in similar structures (Murugavel et al., 2002; Yang et al., 2004).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 40% probability level. The disorder of the propane-1,2-diammonium cation is indicated with dotted lines.
[Figure 2] Fig. 2. Unit-cell packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Poly[propane-1,2-diammonium [(µ4-benzene-1,2,4,5-tetracarboxylato-κ4O:O':O'':O''')zinc(II)] tetrahydrate] top
Crystal data top
[Zn(C10H2O8)(C3H12N2)]·4H2OF(000) = 960
Mr = 463.70Dx = 1.664 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8669 reflections
a = 9.4116 (5) Åθ = 2.8–33.7°
b = 13.2967 (7) ŵ = 1.39 mm1
c = 14.9365 (7) ÅT = 100 K
β = 98.019 (1)°Prism, colourless
V = 1850.92 (16) Å30.21 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker APEX II CCD area-detector
diffractometer
4454 independent reflections
Radiation source: fine-focus sealed tube4001 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.758, Tmax = 0.797k = 1717
20525 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.111H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0657P)2 + 2.3619P]
where P = (Fo2 + 2Fc2)/3
4454 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 1.62 e Å3
4 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Zn(C10H2O8)(C3H12N2)]·4H2OV = 1850.92 (16) Å3
Mr = 463.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4116 (5) ŵ = 1.39 mm1
b = 13.2967 (7) ÅT = 100 K
c = 14.9365 (7) Å0.21 × 0.18 × 0.17 mm
β = 98.019 (1)°
Data collection top
Bruker APEX II CCD area-detector
diffractometer
4454 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4001 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.797Rint = 0.033
20525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.08Δρmax = 1.62 e Å3
4454 reflectionsΔρmin = 0.94 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.03224 (3)0.868391 (18)0.655799 (16)0.00834 (10)
O10.12169 (17)1.06008 (13)0.42654 (12)0.0154 (3)
O20.2471 (2)1.11654 (15)0.32229 (13)0.0230 (4)
O30.19966 (17)0.92584 (13)0.61094 (11)0.0146 (3)
O40.17684 (18)0.83944 (13)0.48050 (12)0.0161 (3)
C10.3718 (2)1.02922 (17)0.44759 (15)0.0123 (4)
C20.3698 (2)0.95572 (17)0.51446 (15)0.0117 (4)
C30.4976 (2)0.92813 (17)0.56651 (15)0.0126 (4)
H3A0.49630.87920.61270.015*
C40.2385 (2)1.07046 (17)0.39364 (15)0.0130 (4)
C50.2357 (2)0.90262 (17)0.53424 (15)0.0117 (4)
O50.20752 (18)0.67090 (13)0.66424 (12)0.0177 (3)
O60.01647 (18)0.72814 (12)0.62750 (12)0.0154 (3)
O70.04691 (18)0.62364 (12)0.28851 (11)0.0135 (3)
O80.0393 (2)0.45944 (14)0.26156 (12)0.0253 (4)
C60.0402 (2)0.57553 (16)0.56367 (15)0.0110 (4)
C70.0576 (2)0.58931 (16)0.47342 (15)0.0117 (4)
H7A0.09730.65040.45520.014*
C80.0176 (2)0.51486 (16)0.40971 (15)0.0116 (4)
C90.0823 (2)0.66294 (17)0.62596 (15)0.0121 (4)
C100.0358 (2)0.53321 (17)0.31313 (15)0.0123 (4)
N10.2934 (3)1.1642 (3)0.8054 (2)0.0430 (7)
H1NA0.22311.12120.80160.052*
H1NB0.36251.15410.84970.052*
H1NC0.27261.22560.81890.052*
C110.3328 (3)1.1789 (3)0.7146 (2)0.0347 (7)
H11A0.43831.21170.71230.042*
H11B0.37431.10800.69240.042*
C130.2738 (3)1.2619 (2)0.56495 (19)0.0297 (6)
H13A0.19511.28670.52060.045*0.75
H13B0.32751.21030.53700.045*0.75
H13C0.33801.31780.58570.045*0.75
H13D0.37531.25340.55850.045*0.25
H13E0.25911.32880.58960.045*0.25
H13F0.21521.25510.50570.045*0.25
N20.1015 (3)1.1399 (2)0.6099 (2)0.0171 (5)0.75
H2NA0.02121.16390.57660.021*0.75
H2NB0.07661.10450.65560.021*0.75
H2NC0.14271.09460.56920.021*0.75
C120.2138 (3)1.2175 (4)0.6440 (2)0.0248 (8)0.75
H12A0.16461.27170.67180.030*0.75
N2'0.0784 (8)1.1905 (6)0.6487 (5)0.0112 (14)*0.25
H2'A0.06741.14960.69610.017*0.25
H2'B0.01661.17130.59940.017*0.25
H2'C0.05961.25510.66320.017*0.25
C12'0.2306 (12)1.1829 (10)0.6281 (6)0.038 (4)*0.25
H12B0.23891.11730.59930.045*0.25
O1W0.3900 (3)0.5682 (2)0.3988 (2)0.0468 (6)
H1WA0.45720.54780.37430.056*
H1WB0.35780.61780.37020.056*
O2W0.4618 (3)0.6631 (2)0.56783 (19)0.0480 (6)
H2WA0.39010.66400.59330.058*
H2WB0.44180.63550.51860.058*
O3W0.3873 (3)1.0068 (2)0.1991 (2)0.0512 (7)
H3WA0.32410.96400.19020.061*
H3WB0.36081.03690.24170.061*
O4W0.3356 (2)0.76559 (16)0.33999 (13)0.0266 (4)
H4WA0.28750.77670.29090.032*
H4WB0.30320.79640.38020.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01004 (14)0.00727 (14)0.00786 (14)0.00064 (8)0.00181 (9)0.00028 (8)
O10.0107 (7)0.0166 (8)0.0189 (8)0.0027 (6)0.0019 (6)0.0031 (6)
O20.0160 (8)0.0314 (10)0.0213 (9)0.0027 (7)0.0014 (7)0.0113 (8)
O30.0124 (7)0.0148 (8)0.0177 (8)0.0012 (6)0.0062 (6)0.0010 (6)
O40.0159 (8)0.0142 (8)0.0184 (8)0.0028 (6)0.0031 (6)0.0011 (6)
C10.0097 (10)0.0137 (10)0.0137 (10)0.0014 (8)0.0027 (8)0.0000 (8)
C20.0108 (10)0.0111 (10)0.0136 (10)0.0000 (8)0.0038 (8)0.0013 (8)
C30.0119 (10)0.0120 (10)0.0143 (10)0.0016 (8)0.0034 (8)0.0013 (8)
C40.0117 (10)0.0117 (10)0.0152 (10)0.0014 (8)0.0001 (8)0.0001 (8)
C50.0081 (9)0.0120 (10)0.0149 (10)0.0022 (8)0.0011 (8)0.0031 (8)
O50.0163 (8)0.0196 (9)0.0165 (8)0.0016 (7)0.0002 (6)0.0043 (7)
O60.0158 (8)0.0096 (7)0.0209 (8)0.0010 (6)0.0025 (6)0.0052 (6)
O70.0169 (8)0.0143 (8)0.0092 (7)0.0024 (6)0.0016 (6)0.0022 (6)
O80.0473 (12)0.0180 (9)0.0129 (8)0.0027 (8)0.0120 (8)0.0032 (7)
C60.0143 (10)0.0087 (9)0.0099 (9)0.0018 (8)0.0017 (8)0.0002 (8)
C70.0163 (10)0.0079 (9)0.0116 (10)0.0005 (8)0.0038 (8)0.0013 (8)
C80.0159 (10)0.0098 (10)0.0098 (10)0.0011 (8)0.0048 (8)0.0007 (8)
C90.0180 (11)0.0100 (9)0.0089 (9)0.0008 (8)0.0041 (8)0.0000 (8)
C100.0144 (10)0.0135 (10)0.0094 (9)0.0000 (8)0.0029 (8)0.0017 (8)
N10.0316 (14)0.064 (2)0.0327 (15)0.0096 (14)0.0020 (12)0.0115 (14)
C110.0187 (13)0.0481 (19)0.0379 (17)0.0005 (13)0.0059 (12)0.0085 (14)
C130.0271 (14)0.0341 (15)0.0283 (14)0.0050 (12)0.0046 (11)0.0003 (12)
N20.0198 (14)0.0159 (13)0.0162 (13)0.0009 (10)0.0045 (11)0.0007 (10)
C120.0245 (19)0.029 (2)0.0220 (18)0.0111 (15)0.0080 (14)0.0077 (16)
O1W0.0398 (14)0.0443 (14)0.0599 (17)0.0103 (11)0.0192 (12)0.0098 (12)
O2W0.0338 (13)0.0690 (18)0.0413 (14)0.0020 (13)0.0063 (11)0.0043 (13)
O3W0.0552 (16)0.0491 (16)0.0555 (16)0.0195 (13)0.0292 (13)0.0152 (13)
O4W0.0228 (9)0.0342 (11)0.0221 (9)0.0038 (8)0.0010 (7)0.0006 (8)
Geometric parameters (Å, º) top
Zn1—O31.9519 (16)C11—C12'1.501 (3)
Zn1—O61.9526 (16)C11—C121.517 (3)
Zn1—O7i1.9705 (16)C11—H11A1.0900
Zn1—O1ii2.0047 (17)C11—H11B1.0900
O1—C41.273 (3)C13—C121.500 (3)
O1—Zn1ii2.0047 (16)C13—C12'1.505 (3)
O2—C41.242 (3)C13—H13A0.9800
O3—C51.277 (3)C13—H13B0.9800
O4—C51.238 (3)C13—H13C0.9800
C1—C3iii1.396 (3)C13—H13D0.9800
C1—C21.399 (3)C13—H13E0.9800
C1—C41.497 (3)C13—H13F0.9799
C2—C31.388 (3)N2—C121.513 (5)
C2—C51.511 (3)N2—H2NA0.9031
C3—C1iii1.396 (3)N2—H2NB0.8871
C3—H3A0.9500N2—H2NC0.9737
O5—C91.240 (3)C12—H12A0.9801
O6—C91.274 (3)N2'—C12'1.510 (17)
O7—C101.266 (3)N2'—H2NA1.1886
O7—Zn1iv1.9705 (16)N2'—H2NB1.1475
O8—C101.250 (3)N2'—H2'A0.9100
C6—C71.392 (3)N2'—H2'B0.9100
C6—C8v1.400 (3)N2'—H2'C0.9100
C6—C91.507 (3)C12'—H12B0.9799
C7—C81.388 (3)O1W—H1WA0.8200
C7—H7A0.9500O1W—H1WB0.8204
C8—C6v1.400 (3)O2W—H2WA0.8199
C8—C101.496 (3)O2W—H2WB0.8201
N1—C111.468 (4)O3W—H3WA0.8202
N1—H1NA0.8701O3W—H3WB0.8198
N1—H1NB0.8699O4W—H4WA0.8200
N1—H1NC0.8701O4W—H4WB0.8204
O3—Zn1—O6118.41 (7)C12—C13—H13D120.8
O3—Zn1—O7i112.19 (7)C12'—C13—H13D109.5
O6—Zn1—O7i104.51 (7)H13A—C13—H13D128.8
O3—Zn1—O1ii98.78 (7)H13B—C13—H13D46.3
O6—Zn1—O1ii101.10 (7)H13C—C13—H13D63.4
O7i—Zn1—O1ii122.33 (7)C12—C13—H13E88.4
C4—O1—Zn1ii107.52 (14)C12'—C13—H13E109.5
C5—O3—Zn1122.78 (15)H13A—C13—H13E79.4
C3iii—C1—C2119.4 (2)H13B—C13—H13E154.7
C3iii—C1—C4117.3 (2)H13C—C13—H13E46.1
C2—C1—C4123.1 (2)H13D—C13—H13E109.5
C3—C2—C1119.2 (2)C12—C13—H13F116.6
C3—C2—C5116.7 (2)C12'—C13—H13F109.5
C1—C2—C5124.1 (2)H13B—C13—H13F79.0
C2—C3—C1iii121.4 (2)H13C—C13—H13F126.9
C2—C3—H3A119.3H13D—C13—H13F109.5
C1iii—C3—H3A119.3H13E—C13—H13F109.5
O2—C4—O1123.2 (2)C12—N2—H2NA115.8
O2—C4—C1119.5 (2)C12—N2—H2NB110.4
O1—C4—C1117.2 (2)H2NA—N2—H2NB108.7
O4—C5—O3126.5 (2)C12—N2—H2NC108.2
O4—C5—C2120.0 (2)H2NA—N2—H2NC104.5
O3—C5—C2113.33 (19)H2NB—N2—H2NC108.9
C9—O6—Zn1120.26 (15)C12—N2—H12B63.8
C10—O7—Zn1iv110.26 (14)H2NA—N2—H12B138.7
C7—C6—C8v119.4 (2)H2NB—N2—H12B109.3
C7—C6—C9116.09 (19)H2NC—N2—H12B47.3
C8v—C6—C9124.5 (2)C13—C12—N2109.0 (3)
C8—C7—C6120.8 (2)C13—C12—C11111.0 (3)
C8—C7—H7A119.6N2—C12—C11114.6 (3)
C6—C7—H7A119.6C13—C12—H12A107.2
C7—C8—C6v119.8 (2)N2—C12—H12A107.1
C7—C8—C10119.2 (2)C11—C12—H12A107.5
C6v—C8—C10121.0 (2)C13—C12—H12B84.3
O5—C9—O6125.6 (2)N2—C12—H12B53.1
O5—C9—C6120.1 (2)C11—C12—H12B82.2
O6—C9—C6114.0 (2)H12A—C12—H12B160.1
O8—C10—O7123.8 (2)C12'—N2'—H2NA96.7
O8—C10—C8118.8 (2)C12'—N2'—H2NB88.7
O7—C10—C8117.4 (2)H2NA—N2'—H2NB77.0
C11—N1—H1NA108.3C12'—N2'—H12A63.8
C11—N1—H1NB117.7H2NA—N2'—H12A129.9
H1NA—N1—H1NB115.4H2NB—N2'—H12A141.3
C11—N1—H1NC100.6C12'—N2'—H2'A109.5
H1NA—N1—H1NC116.0C12'—N2'—H2'B109.5
H1NB—N1—H1NC97.9H2'A—N2'—H2'B109.5
N1—C11—C12'125.9 (5)C12'—N2'—H2'C109.5
N1—C11—C12115.5 (3)H2'A—N2'—H2'C109.5
N1—C11—H11A115.6H2'B—N2'—H2'C109.5
C12'—C11—H11A115.8C11—C12'—C13111.6 (3)
C12—C11—H11A115.5C11—C12'—N2'109.8 (8)
N1—C11—H11B108.3C13—C12'—N2'115.4 (9)
C12'—C11—H11B89.0C11—C12'—H12A84.7
C12—C11—H11B110.0C13—C12'—H12A83.7
H11A—C11—H11B88.2N2'—C12'—H12A53.5
C12—C13—H13A109.5C11—C12'—H12B105.4
C12'—C13—H13A114.4C13—C12'—H12B107.6
C12—C13—H13B109.5N2'—C12'—H12B106.6
C12'—C13—H13B88.8H12A—C12'—H12B160.0
H13A—C13—H13B109.5H1WA—O1W—H1WB106.5
C12—C13—H13C109.5H2WA—O2W—H2WB108.7
C12'—C13—H13C122.7H3WA—O3W—H3WB99.9
H13A—C13—H13C109.5H4WA—O4W—H4WB110.6
H13B—C13—H13C109.5
O6—Zn1—O3—C535.90 (19)C8v—C6—C7—C80.3 (4)
O7i—Zn1—O3—C5157.79 (16)C9—C6—C7—C8177.8 (2)
O1ii—Zn1—O3—C571.86 (18)C6—C7—C8—C6v0.3 (4)
C3iii—C1—C2—C31.2 (4)C6—C7—C8—C10179.0 (2)
C4—C1—C2—C3174.5 (2)Zn1—O6—C9—O521.3 (3)
C3iii—C1—C2—C5178.5 (2)Zn1—O6—C9—C6152.37 (15)
C4—C1—C2—C55.9 (3)C7—C6—C9—O588.7 (3)
C1—C2—C3—C1iii1.2 (4)C8v—C6—C9—O593.2 (3)
C5—C2—C3—C1iii178.5 (2)C7—C6—C9—O685.4 (3)
Zn1ii—O1—C4—O20.9 (3)C8v—C6—C9—O692.7 (3)
Zn1ii—O1—C4—C1175.71 (16)Zn1iv—O7—C10—O810.9 (3)
C3iii—C1—C4—O221.3 (3)Zn1iv—O7—C10—C8169.08 (15)
C2—C1—C4—O2163.0 (2)C7—C8—C10—O8160.0 (2)
C3iii—C1—C4—O1155.4 (2)C6v—C8—C10—O820.6 (3)
C2—C1—C4—O120.3 (3)C7—C8—C10—O720.0 (3)
Zn1—O3—C5—O43.5 (3)C6v—C8—C10—O7159.4 (2)
Zn1—O3—C5—C2179.39 (14)C12'—C13—C12—N254.4 (9)
C3—C2—C5—O4107.6 (3)C12'—C13—C12—C1172.8 (6)
C1—C2—C5—O472.1 (3)N1—C11—C12—C13161.0 (3)
C3—C2—C5—O368.6 (3)N1—C11—C12—N274.9 (4)
C1—C2—C5—O3111.7 (2)N1—C11—C12'—C13140.5 (7)
O3—Zn1—O6—C937.10 (19)C12—C11—C12'—C1374.2 (7)
O7i—Zn1—O6—C988.60 (17)N1—C11—C12'—N2'11.3 (12)
O1ii—Zn1—O6—C9143.54 (17)C12—C11—C12'—N2'55.0 (13)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z+1; (iii) x+1, y+2, z+1; (iv) x, y+3/2, z1/2; (v) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O8i0.872.052.901 (4)165
N1—H1NB···O2Wvi0.871.922.771 (4)164
N1—H1NC···O2vii0.872.112.964 (4)165
N2—H2NA···O4ii0.901.942.788 (3)156
N2—H2NB···O8i0.891.872.755 (3)173
N2—H2NC···O10.972.162.968 (3)139
N2—H2NC···O30.972.372.992 (3)121
O1W—H1WA···O3Wviii0.822.022.838 (4)173
O1W—H1WB···O4W0.822.022.792 (3)157
O2W—H2WA···O50.822.142.962 (3)177
O2W—H2WB···O1W0.822.002.819 (4)179
O3W—H3WA···O5iv0.822.112.911 (3)165
O3W—H3WB···O20.822.022.817 (3)164
O4W—H4WA···O5iv0.822.062.859 (3)166
O4W—H4WB···O40.822.122.911 (3)163
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z+1; (iv) x, y+3/2, z1/2; (vi) x+1, y+1/2, z+3/2; (vii) x, y+5/2, z+1/2; (viii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H2O8)(C3H12N2)]·4H2O
Mr463.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.4116 (5), 13.2967 (7), 14.9365 (7)
β (°) 98.019 (1)
V3)1850.92 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.21 × 0.18 × 0.17
Data collection
DiffractometerBruker APEX II CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.758, 0.797
No. of measured, independent and
observed [I > 2σ(I)] reflections
20525, 4454, 4001
Rint0.033
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.08
No. of reflections4454
No. of parameters262
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.62, 0.94

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2005), SHELXTL.

Selected geometric parameters (Å, º) top
Zn1—O31.9519 (16)Zn1—O7i1.9705 (16)
Zn1—O61.9526 (16)Zn1—O1ii2.0047 (17)
O3—Zn1—O6118.41 (7)O3—Zn1—O1ii98.78 (7)
O3—Zn1—O7i112.19 (7)O6—Zn1—O1ii101.10 (7)
O6—Zn1—O7i104.51 (7)O7i—Zn1—O1ii122.33 (7)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O8i0.872.052.901 (4)165
N1—H1NB···O2Wiii0.871.922.771 (4)164
N1—H1NC···O2iv0.872.112.964 (4)165
N2—H2NA···O4ii0.901.942.788 (3)156
N2—H2NB···O8i0.891.872.755 (3)173
N2—H2NC···O10.972.162.968 (3)139
N2—H2NC···O30.972.372.992 (3)121
O1W—H1WA···O3Wv0.822.022.838 (4)173
O1W—H1WB···O4W0.822.022.792 (3)157
O2W—H2WA···O50.822.142.962 (3)177
O2W—H2WB···O1W0.822.002.819 (4)179
O3W—H3WA···O5vi0.822.112.911 (3)165
O3W—H3WB···O20.822.022.817 (3)164
O4W—H4WA···O5vi0.822.062.859 (3)166
O4W—H4WB···O40.822.122.911 (3)163
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+2, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x, y+5/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds