Download citation
Download citation
link to html
The title compound, dicaesium tetra­thio­tungstate(VI), was obtained from a dilute aqueous solution containing equimolar quanti­ties of Cs2CO3 and (NH4)2[WS4]. The compound crystallizes in the ortho­rhom­bic space group Pnma and is isotypic with Cs2[MoS4], Rb2[WS4], (NH4)2[WS4] and K2[MoS4]. The structure contains discrete slightly distorted tetra­hedral [WS4]2- anions (m symmetry), separated by Cs+ cations. One of the two unique Cs+ cations (both located on mirror planes) is surrounded by nine S atoms and the other by ten S atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031029/wm2130sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031029/wm2130Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 170 K
  • Mean [sigma](W-S) = 0.002 Å
  • R factor = 0.027
  • wR factor = 0.069
  • Data-to-parameter ratio = 36.4

checkCIF/PLATON results

No syntax errors found



Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for W1 (9) 6.76
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

As part of an ongoing research programme, we are investigating the synthesis and structural characterization of organic ammonium tetrathiometalates of the group VI metals Mo and W (Srinivasan et al., 2007). While several tetrathiotungstates containing organic ammonium cations are known (Srinivasan et al., 2007, and literature therein), the structures of only two tetrathiotungstates with inorganic counter cations, viz. Rb2[WS4] (Yao & Ibers, 2004) and (NH4)2[WS4] (Srinivasan et al., 2004) are reported so far. Here we describe the structure of dicesium tetrathiotungstate(VI) (I) which is isotypic with the corresponding Mo compounds Cs2[MoS4] (Raymond et al., 1995), K2[MoS4] (Emirdag-Eanes & Ibers, 2001), Rb2[MoS4] (Ellermeier et al., 1999), and with the aforementioned Rb2[WS4] and (NH4)2[WS4]. The lattice parameters of (I) are consistent with a previous determination from X-ray powder data (a = 10.05 Å, b = 7.24 Å, c = 12.85 Å and V = 935.4 Å3; Müller & Sievert, 1974).

The structure of (I) consists of discrete tetrahedral [WS4]2- ions (m symmetry), separated by Cs+ cations (Fig. 1). The [WS4] tetrahedron is slightly distorted with S—W—S angles between 108.86 (7) and 110.82 (8) ° (Table 1). The W—S bond lengths range from 2.1915 (12) to 2.2079 (18) Å with an average value of 2.196 Å which is comparable with the bond lengths ranging from 2.1710 (17) to 2.2053 (14) Å in the lighter homologue Rb2[WS4] (Yao & Ibers, 2004). Interestingly, the difference Δ between the longest and the shortest W—S bond of 0.0164 Å in (I) is comparable to the Δ value of 0.0134 Å in (NH4)2[WS4] (Srinivasan et al., 2004), but much less than the Δ value of 0.0343 Å for the isotypic Rb2[WS4]. Two crystallographically independent Cs+ cations are present in the asymmetric unit and both are coordinated by S atoms leading to irregular polyhedra. The packing of the structure is illustrated in Fig. 2. The Cs1—S distances range from 3.451 (2) to 3.7072 (5) Å (average 3.579 Å) while the Cs2—S distances vary between 3.6564 (4) and 4.0448 (16) Å. The mean Cs2—S distance (3.799 Å) is significantly longer than the average Cs1—S distance. Cs1 is surrounded by six symmetry related [WS4]2- tetrahedra via nine S atoms (Fig. 3), while Cs2 is surrounded by five symmetry related [WS4]2- tetrahedra via ten S atoms.

Related literature top

The title compound has previously been characterized by X-ray powder diffraction (Müller & Sievert, 1974). For isotypic structures see: Cs2[MoS4] (Raymond et al., 1995), K2[MoS4] (Emirdag-Eanes & Ibers, 2001), Rb2[MoS4] (Ellermeier et al., 1999), Rb2[WS4] (Yao & Ibers, 2004) and (NH4)2[WS4] (Srinivasan et al., 2004). Various tetrathiotungstates with organic ammonium counter cations were characterized by Srinivasan et al. (2007).

Experimental top

The title compound was crystallized from a very dilute aqueous solution (90 ml) containing equimolar quantities of (NH4)2[WS4] (174 mg, 0.5 mmol) and Cs2CO3 (163 mg, 0.5 mmol). It is to be noted that the use of more concentrated solutions leads to the formation of microcrystalline products. The crystals were filtered, washed with ice-cold water (2 ml), followed by 2-propanol (10 ml) and diethyl ether (10 ml), and air dried. The yield of the air stable yellow crystals was approximately 50%. The mid IR spectrum of (I) exhibits no signals above 500 cm-1. The intense signal at 460 cm-1 can be assigned to the triply degenerate asymmetric stretching vibration of the [WS4]2- tetrahedron. The Raman spectrum shows intense signals at 481 and 179 cm-1 and a weak signal at 460 cm-1, as expected for the tetrathiotungstate anion.

Refinement top

The largest peak in the residual electron density map is located at a distance of 0.68 Å from Cs2 and the deepest hole 0.78 Å from W1.

Structure description top

As part of an ongoing research programme, we are investigating the synthesis and structural characterization of organic ammonium tetrathiometalates of the group VI metals Mo and W (Srinivasan et al., 2007). While several tetrathiotungstates containing organic ammonium cations are known (Srinivasan et al., 2007, and literature therein), the structures of only two tetrathiotungstates with inorganic counter cations, viz. Rb2[WS4] (Yao & Ibers, 2004) and (NH4)2[WS4] (Srinivasan et al., 2004) are reported so far. Here we describe the structure of dicesium tetrathiotungstate(VI) (I) which is isotypic with the corresponding Mo compounds Cs2[MoS4] (Raymond et al., 1995), K2[MoS4] (Emirdag-Eanes & Ibers, 2001), Rb2[MoS4] (Ellermeier et al., 1999), and with the aforementioned Rb2[WS4] and (NH4)2[WS4]. The lattice parameters of (I) are consistent with a previous determination from X-ray powder data (a = 10.05 Å, b = 7.24 Å, c = 12.85 Å and V = 935.4 Å3; Müller & Sievert, 1974).

The structure of (I) consists of discrete tetrahedral [WS4]2- ions (m symmetry), separated by Cs+ cations (Fig. 1). The [WS4] tetrahedron is slightly distorted with S—W—S angles between 108.86 (7) and 110.82 (8) ° (Table 1). The W—S bond lengths range from 2.1915 (12) to 2.2079 (18) Å with an average value of 2.196 Å which is comparable with the bond lengths ranging from 2.1710 (17) to 2.2053 (14) Å in the lighter homologue Rb2[WS4] (Yao & Ibers, 2004). Interestingly, the difference Δ between the longest and the shortest W—S bond of 0.0164 Å in (I) is comparable to the Δ value of 0.0134 Å in (NH4)2[WS4] (Srinivasan et al., 2004), but much less than the Δ value of 0.0343 Å for the isotypic Rb2[WS4]. Two crystallographically independent Cs+ cations are present in the asymmetric unit and both are coordinated by S atoms leading to irregular polyhedra. The packing of the structure is illustrated in Fig. 2. The Cs1—S distances range from 3.451 (2) to 3.7072 (5) Å (average 3.579 Å) while the Cs2—S distances vary between 3.6564 (4) and 4.0448 (16) Å. The mean Cs2—S distance (3.799 Å) is significantly longer than the average Cs1—S distance. Cs1 is surrounded by six symmetry related [WS4]2- tetrahedra via nine S atoms (Fig. 3), while Cs2 is surrounded by five symmetry related [WS4]2- tetrahedra via ten S atoms.

The title compound has previously been characterized by X-ray powder diffraction (Müller & Sievert, 1974). For isotypic structures see: Cs2[MoS4] (Raymond et al., 1995), K2[MoS4] (Emirdag-Eanes & Ibers, 2001), Rb2[MoS4] (Ellermeier et al., 1999), Rb2[WS4] (Yao & Ibers, 2004) and (NH4)2[WS4] (Srinivasan et al., 2004). Various tetrathiotungstates with organic ammonium counter cations were characterized by Srinivasan et al. (2007).

Computing details top

Data collection: DIF4 (Stoe & Cie, 1998); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: CIFTAB in SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. Part of the crystal structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) x, -y + 1/2, z]
[Figure 2] Fig. 2. A perspective view of the crystal packing of (I) along the b axis. Cs atoms are represented as blue spheres, W atoms as black spheres and S atoms as yellow spheres.
[Figure 3] Fig. 3. A view of the surroundings of the Cs1 cation showing Cs1 linked to six different [WS4]2- units via nine S atoms (Cs···S distances are shown as dashed lines). [Symmetry codes: (ii) x - 1/2, y, -z + 1/2; (iii) -x + 3/2, y + 1/2, z - 1/2; (iv) -x + 3/2, -y, z - 1/2; (v) -x + 1, y + 1/2, -z + 1; (vi)-x + 1, -y, -z + 1; (vii) -x + 3/2, -y + 1, z - 1/2.]
dicaesium tetrathiotungstate(VI) top
Crystal data top
Cs2[WS4]F(000) = 992
Mr = 577.91Dx = 4.129 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 8000 reflections
a = 10.0579 (9) Åθ = 3.0–30.0°
b = 7.2362 (5) ŵ = 20.95 mm1
c = 12.7740 (9) ÅT = 170 K
V = 929.70 (12) Å3Block, yellow
Z = 40.08 × 0.07 × 0.04 mm
Data collection top
STOE IPDS 1
diffractometer
1492 independent reflections
Radiation source: fine-focus sealed tube1322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ–scansθmax = 30.4°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
h = 1414
Tmin = 0.211, Tmax = 0.442k = 1010
11509 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0492P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 1.03Δρmax = 2.31 e Å3
1492 reflectionsΔρmin = 2.62 e Å3
41 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00164 (18)
Crystal data top
Cs2[WS4]V = 929.70 (12) Å3
Mr = 577.91Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 10.0579 (9) ŵ = 20.95 mm1
b = 7.2362 (5) ÅT = 170 K
c = 12.7740 (9) Å0.08 × 0.07 × 0.04 mm
Data collection top
STOE IPDS 1
diffractometer
1492 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
1322 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.442Rint = 0.060
11509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02741 parameters
wR(F2) = 0.0690 restraints
S = 1.03Δρmax = 2.31 e Å3
1492 reflectionsΔρmin = 2.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.75191 (3)0.25000.57843 (2)0.00972 (10)
Cs10.53579 (4)0.25000.16913 (3)0.01439 (12)
Cs20.84172 (5)0.25000.89664 (4)0.01797 (12)
S10.7079 (2)0.25000.41025 (14)0.0169 (3)
S20.96862 (18)0.25000.60598 (15)0.0169 (3)
S30.66310 (14)0.00367 (16)0.64964 (12)0.0186 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.00771 (15)0.00837 (14)0.01308 (15)0.0000.00028 (8)0.000
Cs10.0121 (2)0.01475 (19)0.0163 (2)0.0000.00075 (15)0.000
Cs20.0160 (2)0.0149 (2)0.0230 (2)0.0000.00236 (17)0.000
S10.0167 (9)0.0187 (8)0.0153 (8)0.0000.0041 (6)0.000
S20.0094 (7)0.0197 (8)0.0215 (8)0.0000.0022 (6)0.000
S30.0164 (6)0.0125 (5)0.0268 (7)0.0011 (4)0.0048 (5)0.0056 (4)
Geometric parameters (Å, º) top
W1—S32.1915 (12)Cs2—S1v3.6564 (4)
W1—S3i2.1915 (12)Cs2—S1iv3.6564 (4)
W1—S12.1935 (18)Cs2—S3xii3.7170 (15)
W1—S22.2079 (18)Cs2—S3v3.7170 (15)
W1—Cs2ii4.1380 (7)Cs2—S3xiii3.7384 (14)
W1—Cs24.1640 (6)Cs2—S3xiv3.7384 (14)
W1—Cs1iii4.2606 (6)Cs2—S2ii3.7527 (19)
W1—Cs1iv4.3580 (4)Cs2—S23.926 (2)
W1—Cs1v4.3580 (4)Cs2—S34.0448 (16)
W1—Cs2vi4.4011 (4)Cs2—S3i4.0448 (16)
W1—Cs2vii4.4011 (4)Cs2—W1xiv4.1380 (7)
Cs1—S1viii3.451 (2)S1—Cs1iii3.451 (2)
Cs1—S13.5331 (19)S1—Cs2vi3.6564 (4)
Cs1—S3ix3.5502 (14)S1—Cs2vii3.6564 (4)
Cs1—S3vi3.5502 (14)S2—Cs1iii3.579 (2)
Cs1—S3x3.5680 (14)S2—Cs1iv3.7072 (5)
Cs1—S3xi3.5680 (14)S2—Cs1v3.7072 (5)
Cs1—S2viii3.579 (2)S2—Cs2xiv3.7527 (19)
Cs1—S2vi3.7072 (5)S3—Cs1v3.5502 (14)
Cs1—S2vii3.7072 (5)S3—Cs1xi3.5680 (14)
Cs1—W1viii4.2606 (6)S3—Cs2vi3.7170 (15)
Cs1—W1vii4.3580 (4)S3—Cs2ii3.7384 (14)
Cs1—W1vi4.3580 (4)
S3—W1—S3i108.86 (7)S3x—Cs1—W1vi150.96 (2)
S3—W1—S1108.92 (5)S3xi—Cs1—W1vi91.15 (2)
S3i—W1—S1108.92 (5)S2viii—Cs1—W1vi80.295 (18)
S3—W1—S2109.65 (4)S2vi—Cs1—W1vi30.43 (3)
S3i—W1—S2109.65 (4)S2vii—Cs1—W1vi139.31 (3)
S1—W1—S2110.82 (8)W1viii—Cs1—W1vi97.530 (9)
S3—W1—Cs2ii64.00 (4)W1vii—Cs1—W1vi112.242 (12)
S3i—W1—Cs2ii64.00 (4)S1v—Cs2—S1iv163.39 (6)
S1—W1—Cs2ii82.76 (5)S1v—Cs2—S3xii116.46 (4)
S2—W1—Cs2ii166.41 (5)S1iv—Cs2—S3xii57.87 (3)
S3—W1—Cs271.53 (4)S1v—Cs2—S3v57.87 (3)
S3i—W1—Cs271.53 (4)S1iv—Cs2—S3v116.46 (4)
S1—W1—Cs2179.12 (6)S3xii—Cs2—S3v59.19 (4)
S2—W1—Cs268.30 (5)S1v—Cs2—S3xiii126.67 (4)
Cs2ii—W1—Cs298.115 (10)S1iv—Cs2—S3xiii69.74 (4)
S3—W1—Cs1iii125.54 (4)S3xii—Cs2—S3xiii85.03 (4)
S3i—W1—Cs1iii125.54 (4)S3v—Cs2—S3xiii112.60 (2)
S1—W1—Cs1iii53.73 (5)S1v—Cs2—S3xiv69.74 (4)
S2—W1—Cs1iii57.09 (5)S1iv—Cs2—S3xiv126.67 (4)
Cs2ii—W1—Cs1iii136.492 (11)S3xii—Cs2—S3xiv112.60 (2)
Cs2—W1—Cs1iii125.393 (12)S3v—Cs2—S3xiv85.03 (4)
S3—W1—Cs1iv139.88 (4)S3xiii—Cs2—S3xiv56.95 (4)
S3i—W1—Cs1iv54.13 (4)S1v—Cs2—S2ii82.19 (3)
S1—W1—Cs1iv111.06 (3)S1iv—Cs2—S2ii82.19 (3)
S2—W1—Cs1iv58.259 (13)S3xii—Cs2—S2ii89.70 (4)
Cs2ii—W1—Cs1iv117.909 (7)S3v—Cs2—S2ii89.70 (4)
Cs2—W1—Cs1iv68.543 (7)S3xiii—Cs2—S2ii149.68 (2)
Cs1iii—W1—Cs1iv82.470 (9)S3xiv—Cs2—S2ii149.68 (2)
S3—W1—Cs1v54.13 (4)S1v—Cs2—S295.12 (3)
S3i—W1—Cs1v139.88 (4)S1iv—Cs2—S295.12 (3)
S1—W1—Cs1v111.06 (3)S3xii—Cs2—S2145.74 (3)
S2—W1—Cs1v58.259 (13)S3v—Cs2—S2145.74 (3)
Cs2ii—W1—Cs1v117.909 (7)S3xiii—Cs2—S264.49 (3)
Cs2—W1—Cs1v68.543 (7)S3xiv—Cs2—S264.49 (3)
Cs1iii—W1—Cs1v82.470 (8)S2ii—Cs2—S2108.46 (3)
Cs1iv—W1—Cs1v112.242 (12)S1v—Cs2—S362.64 (3)
S3—W1—Cs2vi57.53 (4)S1iv—Cs2—S3114.37 (4)
S3i—W1—Cs2vi143.17 (4)S3xii—Cs2—S3152.884 (17)
S1—W1—Cs2vi55.946 (9)S3v—Cs2—S3117.054 (10)
S2—W1—Cs2vi107.18 (3)S3xiii—Cs2—S3118.09 (2)
Cs2ii—W1—Cs2vi80.054 (9)S3xiv—Cs2—S392.90 (2)
Cs2—W1—Cs2vi124.159 (7)S2ii—Cs2—S363.19 (3)
Cs1iii—W1—Cs2vi75.627 (8)S2—Cs2—S353.61 (3)
Cs1iv—W1—Cs2vi158.065 (11)S1v—Cs2—S3i114.37 (4)
Cs1v—W1—Cs2vi64.062 (9)S1iv—Cs2—S3i62.64 (3)
S3—W1—Cs2vii143.17 (4)S3xii—Cs2—S3i117.054 (10)
S3i—W1—Cs2vii57.53 (4)S3v—Cs2—S3i152.884 (17)
S1—W1—Cs2vii55.946 (9)S3xiii—Cs2—S3i92.90 (2)
S2—W1—Cs2vii107.18 (3)S3xiv—Cs2—S3i118.09 (2)
Cs2ii—W1—Cs2vii80.054 (9)S2ii—Cs2—S3i63.19 (3)
Cs2—W1—Cs2vii124.159 (7)S2—Cs2—S3i53.61 (3)
Cs1iii—W1—Cs2vii75.627 (8)S3—Cs2—S3i52.30 (3)
Cs1iv—W1—Cs2vii64.062 (9)S1v—Cs2—W1xiv97.60 (3)
Cs1v—W1—Cs2vii158.065 (11)S1iv—Cs2—W1xiv97.60 (3)
Cs2vi—W1—Cs2vii110.588 (13)S3xii—Cs2—W1xiv86.91 (2)
S1viii—Cs1—S1136.42 (4)S3v—Cs2—W1xiv86.91 (2)
S1viii—Cs1—S3ix142.64 (3)S3xiii—Cs2—W1xiv31.796 (19)
S1—Cs1—S3ix69.10 (4)S3xiv—Cs2—W1xiv31.796 (19)
S1viii—Cs1—S3vi142.64 (3)S2ii—Cs2—W1xiv176.10 (3)
S1—Cs1—S3vi69.10 (4)S2—Cs2—W1xiv75.44 (3)
S3ix—Cs1—S3vi62.27 (4)S3—Cs2—W1xiv120.19 (2)
S1viii—Cs1—S3x69.81 (4)S3i—Cs2—W1xiv120.19 (2)
S1—Cs1—S3x73.08 (4)S1v—Cs2—W190.97 (3)
S3ix—Cs1—S3x104.94 (3)S1iv—Cs2—W190.97 (3)
S3vi—Cs1—S3x142.16 (2)S3xii—Cs2—W1147.771 (19)
S1viii—Cs1—S3xi69.81 (4)S3v—Cs2—W1147.77 (2)
S1—Cs1—S3xi73.08 (4)S3xiii—Cs2—W191.90 (3)
S3ix—Cs1—S3xi142.16 (2)S3xiv—Cs2—W191.90 (3)
S3vi—Cs1—S3xi104.94 (3)S2ii—Cs2—W176.96 (3)
S3x—Cs1—S3xi61.92 (4)S2—Cs2—W131.50 (3)
S1viii—Cs1—S2viii62.03 (4)S3—Cs2—W130.924 (18)
S1—Cs1—S2viii161.55 (5)S3i—Cs2—W130.924 (18)
S3ix—Cs1—S2viii95.29 (4)W1xiv—Cs2—W1106.942 (12)
S3vi—Cs1—S2viii95.29 (4)W1—S1—Cs1iii95.44 (7)
S3x—Cs1—S2viii122.10 (4)W1—S1—Cs1162.32 (9)
S3xi—Cs1—S2viii122.10 (4)Cs1iii—S1—Cs1102.24 (5)
S1viii—Cs1—S2vi85.68 (3)W1—S1—Cs2vi94.25 (3)
S1—Cs1—S2vi101.28 (3)Cs1iii—S1—Cs2vi96.68 (3)
S3ix—Cs1—S2vi119.97 (4)Cs1—S1—Cs2vi83.78 (3)
S3vi—Cs1—S2vi59.36 (3)W1—S1—Cs2vii94.25 (3)
S3x—Cs1—S2vi129.54 (4)Cs1iii—S1—Cs2vii96.68 (3)
S3xi—Cs1—S2vi68.43 (4)Cs1—S1—Cs2vii83.78 (3)
S2viii—Cs1—S2vi77.53 (3)Cs2vi—S1—Cs2vii163.39 (6)
S1viii—Cs1—S2vii85.68 (3)W1—S2—Cs1iii91.71 (6)
S1—Cs1—S2vii101.28 (3)W1—S2—Cs1iv91.31 (3)
S3ix—Cs1—S2vii59.36 (3)Cs1iii—S2—Cs1iv102.47 (3)
S3vi—Cs1—S2vii119.97 (4)W1—S2—Cs1v91.31 (3)
S3x—Cs1—S2vii68.43 (4)Cs1iii—S2—Cs1v102.47 (3)
S3xi—Cs1—S2vii129.54 (4)Cs1iv—S2—Cs1v154.83 (6)
S2viii—Cs1—S2vii77.53 (3)W1—S2—Cs2xiv170.32 (8)
S2vi—Cs1—S2vii154.83 (6)Cs1iii—S2—Cs2xiv78.61 (4)
S1viii—Cs1—W1viii30.83 (3)Cs1iv—S2—Cs2xiv90.80 (3)
S1—Cs1—W1viii167.25 (4)Cs1v—S2—Cs2xiv90.80 (3)
S3ix—Cs1—W1viii121.31 (3)W1—S2—Cs280.20 (5)
S3vi—Cs1—W1viii121.31 (3)Cs1iii—S2—Cs2171.91 (6)
S3x—Cs1—W1viii96.08 (3)Cs1iv—S2—Cs277.90 (3)
S3xi—Cs1—W1viii96.08 (3)Cs1v—S2—Cs277.90 (3)
S2viii—Cs1—W1viii31.20 (3)Cs2xiv—S2—Cs2109.48 (5)
S2vi—Cs1—W1viii80.24 (3)W1—S3—Cs1v95.85 (4)
S2vii—Cs1—W1viii80.24 (3)W1—S3—Cs1xi156.39 (6)
S1viii—Cs1—W1vii112.968 (15)Cs1v—S3—Cs1xi99.60 (3)
S1—Cs1—W1vii89.53 (2)W1—S3—Cs2vi92.64 (5)
S3ix—Cs1—W1vii30.016 (19)Cs1v—S3—Cs2vi79.44 (3)
S3vi—Cs1—W1vii89.58 (2)Cs1xi—S3—Cs2vi107.62 (3)
S3x—Cs1—W1vii91.15 (2)W1—S3—Cs2ii84.20 (4)
S3xi—Cs1—W1vii150.96 (2)Cs1v—S3—Cs2ii174.41 (5)
S2viii—Cs1—W1vii80.296 (18)Cs1xi—S3—Cs2ii82.13 (3)
S2vi—Cs1—W1vii139.31 (3)Cs2vi—S3—Cs2ii94.97 (3)
S2vii—Cs1—W1vii30.43 (3)W1—S3—Cs277.54 (4)
W1viii—Cs1—W1vii97.530 (8)Cs1v—S3—Cs278.13 (3)
S1viii—Cs1—W1vi112.968 (15)Cs1xi—S3—Cs288.26 (3)
S1—Cs1—W1vi89.53 (2)Cs2vi—S3—Cs2154.38 (4)
S3ix—Cs1—W1vi89.58 (2)Cs2ii—S3—Cs2107.29 (3)
S3vi—Cs1—W1vi30.016 (19)
Symmetry codes: (i) x, y+1/2, z; (ii) x1/2, y, z+3/2; (iii) x+1/2, y, z+1/2; (iv) x+3/2, y+1, z+1/2; (v) x+3/2, y, z+1/2; (vi) x+3/2, y, z1/2; (vii) x+3/2, y+1, z1/2; (viii) x1/2, y, z+1/2; (ix) x+3/2, y+1/2, z1/2; (x) x+1, y+1/2, z+1; (xi) x+1, y, z+1; (xii) x+3/2, y+1/2, z+1/2; (xiii) x+1/2, y+1/2, z+3/2; (xiv) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaCs2[WS4]
Mr577.91
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)170
a, b, c (Å)10.0579 (9), 7.2362 (5), 12.7740 (9)
V3)929.70 (12)
Z4
Radiation typeMo Kα
µ (mm1)20.95
Crystal size (mm)0.08 × 0.07 × 0.04
Data collection
DiffractometerSTOE IPDS 1
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1998)
Tmin, Tmax0.211, 0.442
No. of measured, independent and
observed [I > 2σ(I)] reflections
11509, 1492, 1322
Rint0.060
(sin θ/λ)max1)0.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.03
No. of reflections1492
No. of parameters41
Δρmax, Δρmin (e Å3)2.31, 2.62

Computer programs: DIF4 (Stoe & Cie, 1998), DIF4, REDU4 (Stoe & Cie, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), CIFTAB in SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
W1—S32.1915 (12)Cs1—S2vii3.7072 (5)
W1—S3i2.1915 (12)Cs2—S1viii3.6564 (4)
W1—S12.1935 (18)Cs2—S1ix3.6564 (4)
W1—S22.2079 (18)Cs2—S3x3.7170 (15)
Cs1—S1ii3.451 (2)Cs2—S3viii3.7170 (15)
Cs1—S13.5331 (19)Cs2—S3xi3.7384 (14)
Cs1—S3iii3.5502 (14)Cs2—S3xii3.7384 (14)
Cs1—S3iv3.5502 (14)Cs2—S2xiii3.7527 (19)
Cs1—S3v3.5680 (14)Cs2—S23.926 (2)
Cs1—S3vi3.5680 (14)Cs2—S34.0448 (16)
Cs1—S2ii3.579 (2)Cs2—S3i4.0448 (16)
Cs1—S2iv3.7072 (5)
S3—W1—S3i108.86 (7)S3—W1—S2109.65 (4)
S3—W1—S1108.92 (5)S1—W1—S2110.82 (8)
Symmetry codes: (i) x, y+1/2, z; (ii) x1/2, y, z+1/2; (iii) x+3/2, y+1/2, z1/2; (iv) x+3/2, y, z1/2; (v) x+1, y+1/2, z+1; (vi) x+1, y, z+1; (vii) x+3/2, y+1, z1/2; (viii) x+3/2, y, z+1/2; (ix) x+3/2, y+1, z+1/2; (x) x+3/2, y+1/2, z+1/2; (xi) x+1/2, y+1/2, z+3/2; (xii) x+1/2, y, z+3/2; (xiii) x1/2, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds