Download citation
Download citation
link to html
In the title compound, [Co(CO3)(C10H8N2)2](CF3SO3), the CoIII ion is coordinated by four N atoms from two chelating 2,2′-bipyridine ligands and two O atoms from a bidentate chelating carbonate anion, and has a distorted octa­hedral environment. C—H...O hydrogen bonding is observed between bipyridine ligands and uncoordinated (CF3SO3) anions and between bipyridine and carbonate ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028516/xu2269sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028516/xu2269Isup2.hkl
Contains datablock I

CCDC reference: 619067

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.053
  • wR factor = 0.137
  • Data-to-parameter ratio = 11.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for S1 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C21 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.05 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (3) 3.66
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Cobalt ions are found in many metalloenzymes (carbonic anhydrase, cobalt chelatase etc.) to play various functions at physiological conditions. Carbonic anhydrase (CA) is an important cobalt-containing metalloenzyme at active center and catalyzes the reversible hydration of carbon dioxide to bicarbonate to tune the physiological function of carbon dioxide (Belli et al., 2003; Leitner, 1996; Yin & Moss, 1999). Therefore, a great deal of research has been performed on the chemical fixation and activation of carbon dioxide and on mimicking the function of CA (Clark & Buckingham, 1997; Catherine et al., 2003; Paul et al., 2005; Kim et al., 2004; Louize et al., 2001). A few of carbonate- and bicarbonate-cobalt complexes in bidentate chelate or tridentate bridge modes have been characterized by X-ray crystallography and reported. In order to further understand the feature of the species, we report in this paper the synthesis and crystal structural of the title compound.

The crystal structure of the title compound consists of CoIII complex cation and (CF3SO3)- counteranion, as shown in Fig. 1. In the cation, the central CoIII ion is six-coordinated in distroted octahedral coordiantion geometry. The equatorial plane is defined by two nitrogen atoms from two bipy ligands and two chelated oxygen atoms from a carbonate ion, while the other two nitrogen atoms from two bipy ligands occupy the axial positions. The average Co—N bond length is of 1.927 (4) Å (Table 1), which are similar to that found in cis-(carbonato)bis(2,2'-bipy)cobalt(III) nitrate pentahydrate (Niederhoffer et al., 1982). The dihedral angles of 2,2'-bipy in the complex are 6.865 (3) and 3.294 (3)° between C15-ring and C16-ring and between C5-ring and C6-ring, respectively.

The C—H···O hydrogen bonding is observed between bipyridine ring and (CF3SO3)- anion and between bipyridine ring and carbonate anion (Table 2).

Related literature top

For general background, see Belli et al. (2003); Leitner (1996); Yin & Moss (1999); Clark & Buckingham (1997); Catherine et al. (2003); Paul et al. (2005); Kim et al. (2004); Louize et al. (2001). For related structures, see Niederhoffer et al. (1982).

Experimental top

To a mixture of Co(CF3SO3)2.4H2O (0.430 g, 1.0 mmol) and 2,2'-bipyridine (0.370 g, 2.0 mmol) in water-ethanol (1:1, 10 ml) was added dropwise an aqueous solution (4 ml, 0.5 M) of NaHCO3. The solution was stirred at room temperature for 1 h and filtered. The clear solution was kept at room temperature to slowly evaporate for two weeks to obtain single crystals of the title compound. Anal. Calcd. for C22H16CoF3N4O6S: C, 45.53; H, 2.78; N, 9.66%. Found: C, 45.49; H, 2.83; N, 9.66%.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

Cobalt ions are found in many metalloenzymes (carbonic anhydrase, cobalt chelatase etc.) to play various functions at physiological conditions. Carbonic anhydrase (CA) is an important cobalt-containing metalloenzyme at active center and catalyzes the reversible hydration of carbon dioxide to bicarbonate to tune the physiological function of carbon dioxide (Belli et al., 2003; Leitner, 1996; Yin & Moss, 1999). Therefore, a great deal of research has been performed on the chemical fixation and activation of carbon dioxide and on mimicking the function of CA (Clark & Buckingham, 1997; Catherine et al., 2003; Paul et al., 2005; Kim et al., 2004; Louize et al., 2001). A few of carbonate- and bicarbonate-cobalt complexes in bidentate chelate or tridentate bridge modes have been characterized by X-ray crystallography and reported. In order to further understand the feature of the species, we report in this paper the synthesis and crystal structural of the title compound.

The crystal structure of the title compound consists of CoIII complex cation and (CF3SO3)- counteranion, as shown in Fig. 1. In the cation, the central CoIII ion is six-coordinated in distroted octahedral coordiantion geometry. The equatorial plane is defined by two nitrogen atoms from two bipy ligands and two chelated oxygen atoms from a carbonate ion, while the other two nitrogen atoms from two bipy ligands occupy the axial positions. The average Co—N bond length is of 1.927 (4) Å (Table 1), which are similar to that found in cis-(carbonato)bis(2,2'-bipy)cobalt(III) nitrate pentahydrate (Niederhoffer et al., 1982). The dihedral angles of 2,2'-bipy in the complex are 6.865 (3) and 3.294 (3)° between C15-ring and C16-ring and between C5-ring and C6-ring, respectively.

The C—H···O hydrogen bonding is observed between bipyridine ring and (CF3SO3)- anion and between bipyridine ring and carbonate anion (Table 2).

For general background, see Belli et al. (2003); Leitner (1996); Yin & Moss (1999); Clark & Buckingham (1997); Catherine et al. (2003); Paul et al. (2005); Kim et al. (2004); Louize et al. (2001). For related structures, see Niederhoffer et al. (1982).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% thermal ellipsoids.
Bis(2,2'-bipyridine-κ2N,N')(carbonato-κ2O,O')cobalt(III) trifluoromethanesulfonate top
Crystal data top
[Co(CO3)(C10H8N2)2](CF3O3S)Z = 2
Mr = 580.38F(000) = 588
Triclinic, P1Dx = 1.698 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.115 (3) ÅCell parameters from 1120 reflections
b = 11.054 (5) Åθ = 2.4–22.1°
c = 14.543 (6) ŵ = 0.92 mm1
α = 95.668 (6)°T = 293 K
β = 94.203 (5)°BLOCK, red
γ = 90.046 (6)°0.25 × 0.12 × 0.10 mm
V = 1135.1 (8) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3928 independent reflections
Radiation source: fine-focus sealed tube2647 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.874, Tmax = 0.921k = 613
6004 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0368P)2 + 1.2958P]
where P = (Fo2 + 2Fc2)/3
3928 reflections(Δ/σ)max = 0.001
334 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Co(CO3)(C10H8N2)2](CF3O3S)γ = 90.046 (6)°
Mr = 580.38V = 1135.1 (8) Å3
Triclinic, P1Z = 2
a = 7.115 (3) ÅMo Kα radiation
b = 11.054 (5) ŵ = 0.92 mm1
c = 14.543 (6) ÅT = 293 K
α = 95.668 (6)°0.25 × 0.12 × 0.10 mm
β = 94.203 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3928 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2647 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.921Rint = 0.029
6004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 0.57 e Å3
3928 reflectionsΔρmin = 0.53 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.53111 (8)0.76556 (6)0.87210 (4)0.0400 (2)
O10.9665 (5)0.7961 (4)1.0058 (2)0.0663 (10)
O20.7420 (4)0.6829 (3)0.9198 (2)0.0493 (8)
O30.7106 (4)0.8768 (3)0.9342 (2)0.0458 (8)
N10.4185 (5)0.7458 (3)0.9855 (2)0.0397 (9)
N20.3808 (5)0.6222 (3)0.8281 (2)0.0432 (9)
N30.3506 (5)0.8790 (3)0.8257 (2)0.0425 (9)
N40.6441 (5)0.7825 (3)0.7580 (3)0.0456 (9)
C10.7991 (7)0.7255 (5)0.7293 (4)0.0583 (13)
H10.85490.66720.76410.070*
C20.8765 (8)0.7509 (6)0.6505 (4)0.0705 (16)
H20.98360.71000.63180.085*
C30.7959 (9)0.8373 (6)0.5987 (4)0.0752 (18)
H30.84890.85630.54530.090*
C40.6367 (8)0.8951 (5)0.6266 (3)0.0641 (15)
H40.57940.95320.59200.077*
C50.5618 (7)0.8662 (4)0.7070 (3)0.0471 (12)
C60.3905 (6)0.9196 (4)0.7445 (3)0.0454 (11)
C70.2779 (8)1.0020 (5)0.7022 (4)0.0582 (13)
H70.30741.02880.64630.070*
C80.1204 (8)1.0438 (5)0.7445 (4)0.0653 (15)
H80.04131.09900.71700.078*
C90.0802 (7)1.0038 (5)0.8275 (4)0.0618 (14)
H90.02501.03210.85720.074*
C100.1985 (6)0.9213 (4)0.8657 (3)0.0505 (12)
H100.17130.89400.92180.061*
C110.3564 (7)0.5689 (5)0.7410 (3)0.0563 (13)
H110.40670.60630.69370.068*
C120.2604 (8)0.4618 (5)0.7194 (4)0.0678 (16)
H120.24470.42750.65820.081*
C130.1873 (7)0.4052 (5)0.7887 (4)0.0644 (15)
H130.12310.33160.77520.077*
C140.2100 (7)0.4589 (5)0.8791 (4)0.0544 (13)
H140.16150.42190.92710.065*
C150.3056 (6)0.5680 (4)0.8965 (3)0.0410 (11)
C160.3330 (6)0.6378 (4)0.9882 (3)0.0390 (10)
C170.2752 (6)0.6004 (4)1.0690 (3)0.0469 (11)
H170.21980.52421.06950.056*
C180.3008 (7)0.6775 (5)1.1488 (3)0.0539 (13)
H180.26430.65401.20460.065*
C190.3809 (7)0.7896 (5)1.1453 (3)0.0551 (13)
H190.39520.84411.19840.066*
C200.4394 (6)0.8207 (5)1.0638 (3)0.0481 (12)
H200.49560.89641.06240.058*
C210.3001 (11)0.6267 (7)0.4529 (5)0.087 (2)
C220.8195 (7)0.7871 (5)0.9570 (3)0.0483 (12)
S10.2292 (3)0.77396 (14)0.42698 (10)0.0751 (5)
F10.4729 (8)0.6320 (6)0.4945 (5)0.194 (3)
F20.1955 (10)0.5801 (5)0.5083 (4)0.174 (3)
F30.3080 (8)0.5490 (4)0.3809 (3)0.1387 (18)
O40.2291 (6)0.8439 (5)0.5120 (3)0.1022 (15)
O50.0497 (10)0.7494 (5)0.3834 (5)0.189 (4)
O60.3662 (13)0.8078 (5)0.3710 (4)0.197 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0416 (4)0.0350 (4)0.0438 (4)0.0002 (3)0.0041 (3)0.0059 (3)
O10.047 (2)0.087 (3)0.065 (2)0.0043 (19)0.0060 (18)0.011 (2)
O20.0482 (18)0.0407 (19)0.060 (2)0.0047 (15)0.0050 (15)0.0114 (16)
O30.0435 (17)0.0426 (19)0.0517 (18)0.0034 (15)0.0007 (14)0.0080 (15)
N10.037 (2)0.038 (2)0.044 (2)0.0002 (17)0.0006 (16)0.0049 (18)
N20.044 (2)0.041 (2)0.044 (2)0.0018 (18)0.0034 (17)0.0033 (18)
N30.042 (2)0.042 (2)0.044 (2)0.0042 (18)0.0030 (17)0.0085 (18)
N40.047 (2)0.040 (2)0.050 (2)0.0001 (19)0.0070 (18)0.0054 (19)
C10.055 (3)0.058 (3)0.062 (3)0.011 (3)0.016 (3)0.001 (3)
C20.065 (4)0.083 (4)0.064 (4)0.002 (3)0.027 (3)0.004 (3)
C30.072 (4)0.103 (5)0.052 (3)0.010 (4)0.022 (3)0.006 (3)
C40.074 (4)0.071 (4)0.049 (3)0.008 (3)0.007 (3)0.013 (3)
C50.053 (3)0.045 (3)0.042 (3)0.014 (2)0.003 (2)0.000 (2)
C60.051 (3)0.038 (3)0.046 (3)0.006 (2)0.005 (2)0.005 (2)
C70.074 (4)0.047 (3)0.052 (3)0.000 (3)0.005 (3)0.009 (3)
C80.072 (4)0.047 (3)0.073 (4)0.009 (3)0.022 (3)0.005 (3)
C90.053 (3)0.060 (4)0.070 (4)0.010 (3)0.003 (3)0.000 (3)
C100.047 (3)0.052 (3)0.053 (3)0.003 (2)0.001 (2)0.005 (2)
C110.064 (3)0.055 (3)0.048 (3)0.006 (3)0.004 (2)0.002 (3)
C120.076 (4)0.066 (4)0.057 (3)0.018 (3)0.001 (3)0.012 (3)
C130.062 (3)0.051 (3)0.077 (4)0.014 (3)0.003 (3)0.002 (3)
C140.053 (3)0.046 (3)0.065 (3)0.008 (2)0.005 (2)0.008 (3)
C150.035 (2)0.037 (3)0.052 (3)0.002 (2)0.002 (2)0.009 (2)
C160.031 (2)0.039 (3)0.048 (3)0.0063 (19)0.0009 (19)0.008 (2)
C170.048 (3)0.041 (3)0.054 (3)0.001 (2)0.007 (2)0.013 (2)
C180.051 (3)0.066 (4)0.048 (3)0.004 (3)0.011 (2)0.017 (3)
C190.054 (3)0.065 (4)0.045 (3)0.002 (3)0.004 (2)0.002 (3)
C200.049 (3)0.049 (3)0.046 (3)0.004 (2)0.004 (2)0.003 (2)
C210.108 (6)0.083 (5)0.073 (4)0.016 (4)0.014 (4)0.010 (4)
C220.046 (3)0.057 (3)0.045 (3)0.002 (3)0.010 (2)0.014 (2)
S10.1093 (13)0.0584 (10)0.0538 (8)0.0008 (9)0.0114 (8)0.0005 (7)
F10.145 (5)0.146 (5)0.273 (8)0.056 (4)0.081 (5)0.002 (5)
F20.258 (7)0.129 (4)0.163 (5)0.031 (4)0.107 (5)0.078 (4)
F30.222 (5)0.069 (3)0.125 (4)0.021 (3)0.047 (4)0.015 (3)
O40.097 (3)0.107 (4)0.091 (3)0.011 (3)0.000 (2)0.042 (3)
O50.210 (7)0.094 (4)0.230 (7)0.015 (4)0.175 (6)0.009 (4)
O60.374 (11)0.085 (4)0.153 (5)0.046 (5)0.164 (7)0.005 (4)
Geometric parameters (Å, º) top
Co1—O21.882 (3)C8—C91.376 (7)
Co1—O31.889 (3)C8—H80.9300
Co1—N11.917 (4)C9—C101.371 (7)
Co1—N21.940 (4)C9—H90.9300
Co1—N31.929 (4)C10—H100.9300
Co1—N41.922 (4)C11—C121.364 (7)
O1—C221.218 (5)C11—H110.9300
O2—C221.325 (6)C12—C131.370 (7)
O3—C221.312 (6)C12—H120.9300
N1—C201.338 (5)C13—C141.387 (7)
N1—C161.345 (5)C13—H130.9300
N2—C111.343 (6)C14—C151.377 (6)
N2—C151.352 (5)C14—H140.9300
N3—C101.330 (6)C15—C161.473 (6)
N3—C61.352 (5)C16—C171.374 (6)
N4—C11.343 (6)C17—C181.372 (7)
N4—C51.350 (6)C17—H170.9300
C1—C21.360 (7)C18—C191.371 (7)
C1—H10.9300C18—H180.9300
C2—C31.374 (8)C19—C201.360 (6)
C2—H20.9300C19—H190.9300
C3—C41.369 (8)C20—H200.9300
C3—H30.9300C21—F21.280 (7)
C4—C51.384 (6)C21—F31.291 (7)
C4—H40.9300C21—F11.329 (8)
C5—C61.473 (7)C21—S11.773 (7)
C6—C71.375 (7)S1—O61.389 (6)
C7—C81.375 (7)S1—O41.392 (4)
C7—H70.9300S1—O51.398 (5)
O2—Co1—O369.39 (14)C9—C8—H8120.1
O2—Co1—N187.40 (14)C10—C9—C8118.6 (5)
O3—Co1—N191.32 (14)C10—C9—H9120.7
O2—Co1—N492.14 (15)C8—C9—H9120.7
O3—Co1—N489.29 (14)N3—C10—C9122.5 (5)
N1—Co1—N4179.06 (16)N3—C10—H10118.7
O2—Co1—N3167.98 (14)C9—C10—H10118.7
O3—Co1—N399.30 (15)N2—C11—C12122.4 (5)
N1—Co1—N397.16 (15)N2—C11—H11118.8
N4—Co1—N383.45 (16)C12—C11—H11118.8
O2—Co1—N296.67 (15)C11—C12—C13119.3 (5)
O3—Co1—N2165.10 (14)C11—C12—H12120.4
N1—Co1—N282.56 (15)C13—C12—H12120.4
N4—Co1—N296.68 (15)C12—C13—C14119.4 (5)
N3—Co1—N294.95 (16)C12—C13—H13120.3
C22—O2—Co190.7 (3)C14—C13—H13120.3
C22—O3—Co190.8 (3)C15—C14—C13118.7 (5)
C20—N1—C16118.2 (4)C15—C14—H14120.6
C20—N1—Co1126.3 (3)C13—C14—H14120.6
C16—N1—Co1114.8 (3)N2—C15—C14121.6 (4)
C11—N2—C15118.6 (4)N2—C15—C16113.8 (4)
C11—N2—Co1127.5 (3)C14—C15—C16124.6 (4)
C15—N2—Co1113.7 (3)N1—C16—C17122.2 (4)
C10—N3—C6118.6 (4)N1—C16—C15113.0 (4)
C10—N3—Co1127.1 (3)C17—C16—C15124.8 (4)
C6—N3—Co1114.3 (3)C18—C17—C16118.7 (4)
C1—N4—C5119.2 (4)C18—C17—H17120.7
C1—N4—Co1126.2 (3)C16—C17—H17120.7
C5—N4—Co1114.4 (3)C19—C18—C17119.1 (4)
N4—C1—C2121.7 (5)C19—C18—H18120.4
N4—C1—H1119.2C17—C18—H18120.4
C2—C1—H1119.2C20—C19—C18119.6 (5)
C1—C2—C3119.7 (5)C20—C19—H19120.2
C1—C2—H2120.2C18—C19—H19120.2
C3—C2—H2120.2N1—C20—C19122.1 (4)
C4—C3—C2119.3 (5)N1—C20—H20118.9
C4—C3—H3120.4C19—C20—H20118.9
C2—C3—H3120.4F2—C21—F3107.2 (7)
C3—C4—C5119.2 (6)F2—C21—F1106.1 (7)
C3—C4—H4120.4F3—C21—F1105.7 (7)
C5—C4—H4120.4F2—C21—S1113.5 (5)
N4—C5—C4120.9 (5)F3—C21—S1114.1 (5)
N4—C5—C6114.0 (4)F1—C21—S1109.7 (6)
C4—C5—C6125.1 (5)O1—C22—O3126.4 (5)
N3—C6—C7122.0 (5)O1—C22—O2124.7 (5)
N3—C6—C5113.6 (4)O3—C22—O2109.0 (4)
C7—C6—C5124.4 (5)O6—S1—O4114.1 (4)
C6—C7—C8118.4 (5)O6—S1—O5116.3 (5)
C6—C7—H7120.8O4—S1—O5114.1 (4)
C8—C7—H7120.8O6—S1—C21103.3 (4)
C7—C8—C9119.9 (5)O4—S1—C21105.7 (3)
C7—C8—H8120.1O5—S1—C21101.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O5i0.932.393.266 (9)157
C10—H10···O1ii0.932.303.137 (6)149
C17—H17···O2iii0.932.323.155 (6)148
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Co(CO3)(C10H8N2)2](CF3O3S)
Mr580.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.115 (3), 11.054 (5), 14.543 (6)
α, β, γ (°)95.668 (6), 94.203 (5), 90.046 (6)
V3)1135.1 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.25 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.874, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
6004, 3928, 2647
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.137, 1.05
No. of reflections3928
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.53

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
Co1—O21.882 (3)Co1—N21.940 (4)
Co1—O31.889 (3)Co1—N31.929 (4)
Co1—N11.917 (4)Co1—N41.922 (4)
O2—Co1—O369.39 (14)N1—Co1—N397.16 (15)
O2—Co1—N187.40 (14)N4—Co1—N383.45 (16)
O3—Co1—N191.32 (14)O2—Co1—N296.67 (15)
O2—Co1—N492.14 (15)O3—Co1—N2165.10 (14)
O3—Co1—N489.29 (14)N1—Co1—N282.56 (15)
N1—Co1—N4179.06 (16)N4—Co1—N296.68 (15)
O2—Co1—N3167.98 (14)N3—Co1—N294.95 (16)
O3—Co1—N399.30 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O5i0.9302.3903.266 (9)157
C10—H10···O1ii0.9302.3003.137 (6)149
C17—H17···O2iii0.9302.3203.155 (6)148
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds