Download citation
Download citation
link to html
In the title compound, [Cu(C8H4O4)(C14H12N2)]n·0.5nC8H6O4, the terephthalate dianion links adjacent Cu atoms into a zigzag chain. The kink at the metal linkage is nearly a right angle. The metal atom shows square-planar coordination. The solvent terephthalic acid mol­ecule is disordered about a centre of inversion; it occupies the space between chains but is not hydrogen bonded to any.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027663/xu2271sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027663/xu2271Isup2.hkl
Contains datablock I

CCDC reference: 654737

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in main residue
  • R factor = 0.066
  • wR factor = 0.225
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 500 Ang. PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O4 PLAT301_ALERT_3_C Main Residue Disorder ......................... 5.00 Perc.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 16
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Copper terephthalate forms adducts with 1,10-phenanthroline; the 1:1 adduct has been isolated as an anhydrous (Sun et al., 2001; Marsh, 2004) as well as a monoaqua (Rogan et al., 2004) compound in which the dicarboxylate dianion functions as a bridging entity. A 1:2 adduct is known having two monodeprotonated carboxylate groups (Li et al., 2006). Copper(II) terephthalate–dimethylphenanthroline crystallizes as a 1:0.5 cocrystal, (C14H14N2)(C8H4O4)Cu.0.5C8H6O4, the terephthalate dianion links adjacent copper atoms into a zigzag chain, the kink at the metal linkage being nearly a right angle. The metal atom shows square-planar coordination; if the long double-bonded oxygen atoms that are more than 2.5 Å away are considered, then the geometry is an octahedron. The lattice terephthalic acid molecule is disordered about a center-of-inversion; it occupies the space between chains but is not hydrogen bonded to any.

Related literature top

For copper terephthalate adducts with 1,10-phenanthroline, see: Sun et al. (2001); Marsh (2004); Rogan et al. (2004). For a discussion on the distortion of square-planar geometries of copper carboxylates, see: Li et al. (2005). For related literature, see: Bailey & Brown (1967); Li et al. (2006).

Experimental top

A mixture of copper(II) hydoxide carbonate (0.203 g, 1 mmol)), terephthalic acid (0.164 g, 1 mmo1) and 4,7-dimethyl-1,10-phenanthroline (0.062 g, 0.3 mmol) and water (16 ml) was placed in a 25-ml, Teflon-lined, stainless steel Parr bomb. The bomb was heated to 453 K for 72 h. It was cooled to room temperature over 72 h to furnish several blue prismatic crystals.

Refinement top

The structure when refined with only the atoms comprising the (C14H14N2)(C8H4O4)Cu portion of the asymmetric refined to a satisfactory R-index but with two voids of 382 Å3, each about a center-of-inversion. As the terephthalic acid itself is a centrosymmetric molecule displaying a volume of 174.8 Å3 (Bailey & Brown, 1967), the voids of the unit cell should accommodate four terephthalic acid molecules.

The electron densities in the difference Fourier map were allowed to refine off the symmetry element, as a half-occupancy C8H6O4 molecule. The aromatic ring was refined as a rigid hexagon of 1.39 Å sides; the C–C distances were restrained to 1.50±0.01 Å and the C–O distances to 1.25±0.01 Å. The two –C—C(=O)–OH units were restrained to be nearly flat, and other distances restraints were use to ensure sensible bond angles. The temperature factors of all C– and O-atoms were restrained to equal each other. The atoms were refined isotropically.

The H-atoms were placed in calculated positions (O–H 0.82 Å and C–H 0.93 Å), and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C,O).

The final difference Fourier map had a large peak near the disordered terephthalic acid molecule.

Structure description top

Copper terephthalate forms adducts with 1,10-phenanthroline; the 1:1 adduct has been isolated as an anhydrous (Sun et al., 2001; Marsh, 2004) as well as a monoaqua (Rogan et al., 2004) compound in which the dicarboxylate dianion functions as a bridging entity. A 1:2 adduct is known having two monodeprotonated carboxylate groups (Li et al., 2006). Copper(II) terephthalate–dimethylphenanthroline crystallizes as a 1:0.5 cocrystal, (C14H14N2)(C8H4O4)Cu.0.5C8H6O4, the terephthalate dianion links adjacent copper atoms into a zigzag chain, the kink at the metal linkage being nearly a right angle. The metal atom shows square-planar coordination; if the long double-bonded oxygen atoms that are more than 2.5 Å away are considered, then the geometry is an octahedron. The lattice terephthalic acid molecule is disordered about a center-of-inversion; it occupies the space between chains but is not hydrogen bonded to any.

For copper terephthalate adducts with 1,10-phenanthroline, see: Sun et al. (2001); Marsh (2004); Rogan et al. (2004). For a discussion on the distortion of square-planar geometries of copper carboxylates, see: Li et al. (2005). For related literature, see: Bailey & Brown (1967); Li et al. (2006).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystaClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the polymeric (C14H14N2)(C8H4O4)Cu chain; displacement ellipsoids are drawn at the 50% probability level, and H atoms as spheres of arbitrary radius. The hemiterephthalic acid molecule is not shown.
catena-Poly[[[(4,7-dimethyl-1,10-phenanthroline-\k2N,N')copper(II)]-µ-terephthalato-κ2O:O'] terephthalic acid hemisolvate] top
Crystal data top
[Cu(C8H4O4)(C14H12N2)]·0.5C8H6O4F(000) = 2128
Mr = 518.97Dx = 1.585 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5331 reflections
a = 18.764 (5) Åθ = 2.7–27.5°
b = 17.769 (5) ŵ = 1.05 mm1
c = 14.749 (5) ÅT = 295 K
β = 117.841 (5)°Prism, blue
V = 4348 (2) Å30.33 × 0.20 × 0.08 mm
Z = 8
Data collection top
Rigaku Mercury CCD
diffractometer
4914 independent reflections
Radiation source: fine-focus sealed tube4295 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(CrystalStructure; Rigaku, 2000)
h = 2024
Tmin = 0.828, Tmax = 0.921k = 2323
16066 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.225 w = 1/[σ2(Fo2) + (0.1414P)2 + 6.3201P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
4914 reflectionsΔρmax = 1.41 e Å3
290 parametersΔρmin = 0.88 e Å3
16 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (2)
Crystal data top
[Cu(C8H4O4)(C14H12N2)]·0.5C8H6O4V = 4348 (2) Å3
Mr = 518.97Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.764 (5) ŵ = 1.05 mm1
b = 17.769 (5) ÅT = 295 K
c = 14.749 (5) Å0.33 × 0.20 × 0.08 mm
β = 117.841 (5)°
Data collection top
Rigaku Mercury CCD
diffractometer
4914 independent reflections
Absorption correction: multi-scan
(CrystalStructure; Rigaku, 2000)
4295 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.921Rint = 0.030
16066 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06616 restraints
wR(F2) = 0.225H-atom parameters constrained
S = 1.15Δρmax = 1.41 e Å3
4914 reflectionsΔρmin = 0.88 e Å3
290 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.25030 (3)0.53888 (2)0.62123 (3)0.0363 (3)
O10.30675 (15)0.50921 (15)0.76751 (19)0.0415 (6)
O20.39382 (18)0.57136 (17)0.7350 (2)0.0514 (7)
O30.28153 (19)0.44917 (15)0.5707 (2)0.0483 (7)
O40.1733 (2)0.41283 (19)0.5821 (3)0.0599 (8)
N10.20944 (18)0.59243 (18)0.4862 (2)0.0375 (6)
N20.19708 (19)0.62594 (16)0.6513 (2)0.0377 (6)
C10.3768 (2)0.53507 (18)0.7936 (3)0.0376 (8)
C20.4409 (2)0.51817 (18)0.9015 (3)0.0339 (7)
C30.4211 (2)0.5079 (2)0.9807 (3)0.0395 (7)
H30.36790.51390.96770.047*
C40.4796 (2)0.4888 (2)1.0790 (3)0.0396 (8)
H40.46560.48081.13100.048*
C50.2296 (3)0.3998 (2)0.5624 (3)0.0429 (8)
C60.2401 (2)0.3225 (2)0.5288 (3)0.0400 (8)
C70.3078 (3)0.3049 (2)0.5186 (3)0.0433 (8)
H70.34660.34160.53050.052*
C80.3184 (3)0.2329 (2)0.4908 (3)0.0440 (8)
H80.36450.22130.48510.053*
C90.2153 (2)0.5730 (2)0.4036 (3)0.0455 (9)
H90.23740.52640.40240.055*
C100.1896 (3)0.6197 (3)0.3179 (3)0.0512 (10)
H100.19560.60400.26170.061*
C110.1557 (2)0.6885 (2)0.3155 (3)0.0471 (9)
C120.1270 (4)0.7387 (4)0.2239 (4)0.0724 (15)
H12A0.14540.71950.17760.109*
H12B0.14800.78850.24530.109*
H12C0.06920.74030.18990.109*
C130.1481 (2)0.7105 (2)0.4034 (3)0.0402 (8)
C140.1757 (2)0.6606 (2)0.4854 (3)0.0364 (7)
C150.1137 (3)0.7799 (2)0.4124 (3)0.0511 (10)
H150.09660.81470.35930.061*
C160.1053 (3)0.7962 (2)0.4971 (3)0.0529 (10)
H160.08180.84160.50000.063*
C170.1317 (2)0.7453 (2)0.5817 (3)0.0409 (8)
C180.1680 (2)0.67809 (19)0.5755 (3)0.0346 (7)
C190.1238 (3)0.7575 (2)0.6720 (3)0.0499 (10)
C200.0834 (4)0.8272 (3)0.6848 (5)0.0779 (17)
H20A0.06650.81840.73610.117*
H20B0.03730.83920.62080.117*
H20C0.12070.86850.70560.117*
C210.1524 (3)0.7029 (2)0.7462 (3)0.0511 (10)
H210.14720.70920.80540.061*
C220.1889 (3)0.6385 (2)0.7348 (3)0.0465 (9)
H220.20830.60290.78710.056*
O50.014 (2)0.4403 (15)0.4138 (17)0.247 (5)*0.50
H5O0.01520.43710.47580.297*0.50
O60.002 (3)0.5681 (15)0.422 (2)0.247 (5)*0.50
O70.0155 (19)0.5688 (17)0.0359 (17)0.247 (5)*0.50
H7O0.01770.57380.09730.297*0.50
O80.005 (3)0.4375 (16)0.0488 (18)0.247 (5)*0.50
C230.004 (3)0.5035 (12)0.2799 (17)0.247 (5)*0.50
C240.004 (3)0.4358 (12)0.2378 (19)0.247 (5)*0.50
H240.00720.39080.27150.297*0.50
C250.007 (2)0.4356 (12)0.1453 (17)0.247 (5)*0.50
H250.01190.39040.11710.297*0.50
C260.002 (2)0.5030 (12)0.0949 (16)0.247 (5)*0.50
C270.005 (2)0.5706 (12)0.1371 (18)0.247 (5)*0.50
H270.00860.61570.10340.297*0.50
C280.008 (2)0.5708 (11)0.2296 (18)0.247 (5)*0.50
H280.01330.61610.25780.297*0.50
C290.0052 (14)0.5040 (13)0.3804 (12)0.247 (5)*0.50
C300.0043 (13)0.5031 (15)0.0064 (11)0.247 (5)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0400 (4)0.0313 (3)0.0304 (3)0.00531 (15)0.0103 (2)0.00028 (14)
O10.0386 (13)0.0412 (13)0.0331 (12)0.0006 (11)0.0070 (10)0.0026 (11)
O20.0572 (17)0.0521 (16)0.0401 (15)0.0015 (13)0.0189 (13)0.0137 (13)
O30.0618 (18)0.0342 (13)0.0503 (16)0.0024 (12)0.0274 (14)0.0036 (11)
O40.0640 (19)0.0554 (18)0.066 (2)0.0006 (15)0.0347 (17)0.0190 (15)
N10.0362 (15)0.0403 (15)0.0307 (14)0.0066 (12)0.0113 (12)0.0007 (12)
N20.0447 (16)0.0335 (14)0.0296 (14)0.0056 (12)0.0130 (12)0.0009 (11)
C10.044 (2)0.0295 (16)0.0325 (17)0.0036 (13)0.0121 (15)0.0007 (12)
C20.0324 (16)0.0280 (14)0.0324 (16)0.0005 (12)0.0077 (13)0.0009 (12)
C30.0345 (17)0.0430 (18)0.0371 (17)0.0027 (14)0.0135 (14)0.0006 (15)
C40.0405 (18)0.0426 (19)0.0364 (17)0.0049 (15)0.0186 (15)0.0020 (14)
C50.056 (2)0.0376 (18)0.0327 (17)0.0049 (16)0.0190 (16)0.0020 (14)
C60.058 (2)0.0342 (16)0.0301 (16)0.0034 (15)0.0224 (16)0.0017 (13)
C70.057 (2)0.0391 (18)0.0369 (18)0.0057 (16)0.0250 (17)0.0035 (14)
C80.060 (2)0.0399 (18)0.0401 (19)0.0023 (16)0.0306 (18)0.0016 (15)
C90.0422 (19)0.051 (2)0.0390 (19)0.0100 (16)0.0154 (16)0.0019 (16)
C100.052 (2)0.068 (3)0.0363 (19)0.005 (2)0.0221 (17)0.0003 (18)
C110.046 (2)0.055 (2)0.0383 (19)0.0021 (17)0.0181 (16)0.0041 (17)
C120.099 (4)0.078 (3)0.044 (2)0.012 (3)0.037 (3)0.018 (2)
C130.0395 (18)0.0429 (18)0.0334 (17)0.0022 (15)0.0129 (14)0.0026 (14)
C140.0354 (17)0.0362 (17)0.0337 (16)0.0010 (13)0.0130 (14)0.0020 (13)
C150.063 (3)0.042 (2)0.046 (2)0.0090 (18)0.0241 (19)0.0124 (17)
C160.067 (3)0.0343 (18)0.052 (2)0.0121 (18)0.024 (2)0.0079 (17)
C170.049 (2)0.0326 (17)0.0380 (18)0.0054 (15)0.0178 (16)0.0004 (14)
C180.0378 (17)0.0303 (15)0.0317 (16)0.0001 (13)0.0128 (13)0.0007 (12)
C190.062 (2)0.0402 (19)0.046 (2)0.0099 (18)0.0236 (19)0.0043 (16)
C200.118 (5)0.052 (3)0.071 (3)0.033 (3)0.051 (3)0.001 (2)
C210.068 (3)0.050 (2)0.0363 (19)0.005 (2)0.0253 (19)0.0044 (17)
C220.062 (2)0.0432 (19)0.0322 (17)0.0102 (18)0.0198 (17)0.0034 (15)
Geometric parameters (Å, º) top
Cu1—O11.980 (3)C12—H12C0.9600
Cu1—O22.486 (3)C13—C141.391 (5)
Cu1—O31.961 (3)C13—C151.427 (6)
Cu1—O42.580 (4)C14—C181.435 (5)
Cu1—N12.009 (3)C15—C161.360 (6)
Cu1—N22.000 (3)C15—H150.9300
Cu1—C12.543 (4)C16—C171.430 (5)
O1—C11.271 (5)C16—H160.9300
O2—C11.234 (5)C17—C181.398 (5)
O3—C51.274 (5)C17—C191.425 (6)
O4—C51.241 (5)C19—C211.371 (6)
N1—C91.319 (5)C19—C201.510 (6)
N1—C141.365 (5)C20—H20A0.9600
N2—C221.330 (5)C20—H20B0.9600
N2—C181.355 (4)C20—H20C0.9600
C1—C21.510 (5)C21—C221.383 (6)
C2—C4i1.386 (5)C21—H210.9300
C2—C31.395 (5)C22—H220.9300
C3—C41.391 (5)O5—C291.275 (10)
C3—H30.9300O5—H5O0.9300
C4—C2i1.386 (5)O6—C291.273 (10)
C4—H40.9300O7—C301.297 (10)
C5—C61.504 (5)O7—H7O0.9300
C6—C71.383 (6)O8—C301.295 (10)
C6—C8ii1.401 (6)C23—C241.3900
C7—C81.386 (5)C23—C281.3900
C7—H70.9300C23—C291.496 (6)
C8—C6ii1.401 (6)C24—C251.3900
C8—H80.9300C24—H240.9300
C9—C101.396 (6)C25—C261.3900
C9—H90.9300C25—H250.9300
C10—C111.371 (6)C26—C271.3900
C10—H100.9300C26—C301.514 (6)
C11—C131.422 (5)C27—C281.3900
C11—C121.493 (6)C27—H270.9300
C12—H12A0.9600C28—H280.9300
C12—H12B0.9600
O1—Cu1—O395.4 (1)C14—C13—C11117.6 (4)
O1—Cu1—N1165.7 (1)C14—C13—C15118.0 (3)
O1—Cu1—N291.9 (1)C11—C13—C15124.4 (4)
O3—Cu1—N193.0 (1)N1—C14—C13123.7 (3)
O3—Cu1—N2168.9 (1)N1—C14—C18115.6 (3)
N1—Cu1—N281.6 (1)C13—C14—C18120.7 (3)
O3—Cu1—C193.05 (12)C16—C15—C13121.4 (4)
O1—Cu1—C129.41 (11)C16—C15—H15119.3
N2—Cu1—C197.39 (12)C13—C15—H15119.3
N1—Cu1—C1138.58 (12)C15—C16—C17121.7 (4)
C1—O1—Cu1100.7 (2)C15—C16—H16119.2
C5—O3—Cu1104.2 (2)C17—C16—H16119.2
C9—N1—C14117.6 (3)C18—C17—C19117.2 (3)
C9—N1—Cu1129.3 (3)C18—C17—C16117.7 (4)
C14—N1—Cu1112.9 (2)C19—C17—C16125.1 (3)
C22—N2—C18118.2 (3)N2—C18—C17123.5 (3)
C22—N2—Cu1128.4 (3)N2—C18—C14116.0 (3)
C18—N2—Cu1113.4 (2)C17—C18—C14120.5 (3)
O2—C1—O1123.1 (3)C21—C19—C17117.7 (4)
O2—C1—C2120.2 (4)C21—C19—C20120.9 (4)
O1—C1—C2116.7 (3)C17—C19—C20121.3 (4)
O2—C1—Cu173.2 (2)C19—C20—H20A109.5
O1—C1—Cu149.90 (17)C19—C20—H20B109.5
C2—C1—Cu1166.2 (3)H20A—C20—H20B109.5
C4i—C2—C3119.8 (3)C19—C20—H20C109.5
C4i—C2—C1119.1 (3)H20A—C20—H20C109.5
C3—C2—C1121.0 (3)H20B—C20—H20C109.5
C4—C3—C2121.0 (3)C19—C21—C22121.4 (4)
C4—C3—H3119.5C19—C21—H21119.3
C2—C3—H3119.5C22—C21—H21119.3
C2i—C4—C3119.2 (3)N2—C22—C21121.9 (4)
C2i—C4—H4120.4N2—C22—H22119.0
C3—C4—H4120.4C21—C22—H22119.0
O4—C5—O3123.1 (4)C29—O5—H5O120.0
O4—C5—C6120.3 (4)C30—O7—H7O120.0
O3—C5—C6116.6 (3)C24—C23—C28120.0
C7—C6—C8ii119.3 (3)C24—C23—C29120.2 (6)
C7—C6—C5120.8 (4)C28—C23—C29119.8 (6)
C8ii—C6—C5119.9 (3)C23—C24—C25120.0
C6—C7—C8120.5 (4)C23—C24—H24120.0
C6—C7—H7119.8C25—C24—H24120.0
C8—C7—H7119.8C24—C25—C26120.0
C7—C8—C6ii120.2 (4)C24—C25—H25120.0
C7—C8—H8119.9C26—C25—H25120.0
C6ii—C8—H8119.9C25—C26—C27120.0
N1—C9—C10122.5 (4)C25—C26—C30120.3 (6)
N1—C9—H9118.8C27—C26—C30119.7 (6)
C10—C9—H9118.8C28—C27—C26120.0
C11—C10—C9120.9 (4)C28—C27—H27120.0
C11—C10—H10119.6C26—C27—H27120.0
C9—C10—H10119.6C27—C28—C23120.0
C10—C11—C13117.7 (4)C27—C28—H28120.0
C10—C11—C12121.5 (4)C23—C28—H28120.0
C13—C11—C12120.8 (4)O6—C29—O5127.6 (10)
C11—C12—H12A109.5O6—C29—C23116.2 (9)
C11—C12—H12B109.5O5—C29—C23116.1 (9)
H12A—C12—H12B109.5O8—C30—O7131.0 (10)
C11—C12—H12C109.5O8—C30—C26114.4 (9)
H12A—C12—H12C109.5O7—C30—C26114.6 (9)
H12B—C12—H12C109.5
O3—Cu1—O1—C186.5 (2)C9—C10—C11—C12179.2 (5)
N2—Cu1—O1—C1101.8 (2)C10—C11—C13—C140.0 (5)
N1—Cu1—O1—C139.1 (6)C12—C11—C13—C14179.5 (4)
O1—Cu1—O3—C583.7 (3)C10—C11—C13—C15179.5 (4)
N2—Cu1—O3—C547.5 (7)C12—C11—C13—C150.0 (7)
N1—Cu1—O3—C5107.9 (3)C9—N1—C14—C130.7 (5)
C1—Cu1—O3—C5113.1 (3)Cu1—N1—C14—C13175.4 (3)
O3—Cu1—N1—C98.1 (4)C9—N1—C14—C18177.9 (3)
O1—Cu1—N1—C9117.8 (5)Cu1—N1—C14—C186.0 (4)
N2—Cu1—N1—C9178.4 (4)C11—C13—C14—N10.2 (5)
C1—Cu1—N1—C989.9 (4)C15—C13—C14—N1179.7 (4)
O3—Cu1—N1—C14176.4 (2)C11—C13—C14—C18178.3 (3)
O1—Cu1—N1—C1457.7 (6)C15—C13—C14—C181.2 (5)
N2—Cu1—N1—C146.1 (2)C14—C13—C15—C162.1 (6)
C1—Cu1—N1—C1485.6 (3)C11—C13—C15—C16177.4 (4)
O3—Cu1—N2—C22114.9 (7)C13—C15—C16—C171.0 (7)
O1—Cu1—N2—C2216.6 (4)C15—C16—C17—C181.0 (7)
N1—Cu1—N2—C22176.2 (4)C15—C16—C17—C19178.7 (4)
C1—Cu1—N2—C2245.6 (4)C22—N2—C18—C171.8 (5)
O3—Cu1—N2—C1866.5 (7)Cu1—N2—C18—C17176.9 (3)
O1—Cu1—N2—C18162.0 (3)C22—N2—C18—C14177.8 (3)
N1—Cu1—N2—C185.2 (2)Cu1—N2—C18—C143.5 (4)
C1—Cu1—N2—C18133.0 (3)C19—C17—C18—N21.7 (6)
Cu1—O1—C1—O23.3 (4)C16—C17—C18—N2178.5 (4)
Cu1—O1—C1—C2175.6 (2)C19—C17—C18—C14177.9 (4)
O3—Cu1—C1—O287.2 (2)C16—C17—C18—C141.9 (6)
O1—Cu1—C1—O2177.1 (3)N1—C14—C18—N21.8 (5)
N2—Cu1—C1—O296.5 (2)C13—C14—C18—N2179.6 (3)
N1—Cu1—C1—O210.8 (3)N1—C14—C18—C17177.9 (3)
O3—Cu1—C1—O195.7 (2)C13—C14—C18—C170.8 (5)
N2—Cu1—C1—O180.6 (2)C18—C17—C19—C210.3 (6)
N1—Cu1—C1—O1166.4 (2)C16—C17—C19—C21180.0 (4)
O3—Cu1—C1—C279.0 (11)C18—C17—C19—C20178.2 (5)
O1—Cu1—C1—C216.6 (10)C16—C17—C19—C201.5 (7)
N2—Cu1—C1—C297.3 (11)C17—C19—C21—C220.9 (7)
N1—Cu1—C1—C2177.0 (10)C20—C19—C21—C22179.4 (5)
O2—C1—C2—C4i29.4 (5)C18—N2—C22—C210.5 (6)
O1—C1—C2—C4i149.5 (3)Cu1—N2—C22—C21178.0 (3)
Cu1—C1—C2—C4i135.3 (10)C19—C21—C22—N20.9 (7)
O2—C1—C2—C3152.0 (4)C28—C23—C24—C250.0
O1—C1—C2—C329.1 (5)C29—C23—C24—C25179 (3)
Cu1—C1—C2—C343.3 (12)C23—C24—C25—C260.0
C4i—C2—C3—C41.7 (6)C24—C25—C26—C270.0
C1—C2—C3—C4176.9 (3)C24—C25—C26—C30179 (3)
C2—C3—C4—C2i1.7 (6)C25—C26—C27—C280.0
Cu1—O3—C5—O41.4 (5)C30—C26—C27—C28179 (3)
Cu1—O3—C5—C6177.5 (3)C26—C27—C28—C230.0
O4—C5—C6—C7172.1 (4)C24—C23—C28—C270.0
O3—C5—C6—C76.7 (5)C29—C23—C28—C27179 (3)
O4—C5—C6—C8ii6.7 (6)C24—C23—C29—O6168 (2)
O3—C5—C6—C8ii174.4 (3)C28—C23—C29—O611 (2)
C8ii—C6—C7—C80.9 (6)C24—C23—C29—O512 (2)
C5—C6—C7—C8178.0 (3)C28—C23—C29—O5169 (2)
C6—C7—C8—C6ii0.9 (6)C25—C26—C30—O813 (2)
C14—N1—C9—C101.0 (6)C27—C26—C30—O8166 (2)
Cu1—N1—C9—C10174.3 (3)C25—C26—C30—O7167 (2)
N1—C9—C10—C110.8 (7)C27—C26—C30—O714 (2)
C9—C10—C11—C130.3 (6)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C8H4O4)(C14H12N2)]·0.5C8H6O4
Mr518.97
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)18.764 (5), 17.769 (5), 14.749 (5)
β (°) 117.841 (5)
V3)4348 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.33 × 0.20 × 0.08
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalStructure; Rigaku, 2000)
Tmin, Tmax0.828, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
16066, 4914, 4295
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.225, 1.15
No. of reflections4914
No. of parameters290
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.41, 0.88

Computer programs: CrystalClear (Rigaku, 2005), CrystalClear, CrystaClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected geometric parameters (Å, º) top
Cu1—O11.980 (3)Cu1—O42.580 (4)
Cu1—O22.486 (3)Cu1—N12.009 (3)
Cu1—O31.961 (3)Cu1—N22.000 (3)
O1—Cu1—O395.4 (1)O3—Cu1—N193.0 (1)
O1—Cu1—N1165.7 (1)O3—Cu1—N2168.9 (1)
O1—Cu1—N291.9 (1)N1—Cu1—N281.6 (1)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds