Download citation
Download citation
link to html
The title compound, [Cd2(C7H4NO4)2(C6H10N4O2S2)2](C7H4NO4)2, consists of dimeric CdII complex cations and uncoordinated 4-nitro­benzoate anions. Within the complex cation, each CdII cation assumes a distorted octa­hedral coordination geometry, formed by a diamino­bithia­zole (DABT) ligand, a 4-nitro­benzoate anion and two coordinated water mol­ecules. Two coordinated water mol­ecules bridge two CdII cations to form the dimeric complex cation across an inversion centre. The two thia­zole rings of the chelating DABT ligand are twisted with respect to each other, forming a dihedral angle of 3.91 (18)°. The centroid-to-centroid separation of 3.7601 (19) Å indicates the existence of π–π stacking between nearly parallel thia­zole rings in the crystal structure. O—H...O and N—H...O hydrogen bonding between complex cations and uncoordinated 4-nitro­benzoate anions, and between complex cations, helps to stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028462/xu2275sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028462/xu2275Isup2.hkl
Contains datablock I

CCDC reference: 654769

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.032
  • wR factor = 0.072
  • Data-to-parameter ratio = 12.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 3.00 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N21 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.34 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.64 PLAT322_ALERT_2_C Check Hybridisation of S11 in Main Residue . ? PLAT322_ALERT_2_C Check Hybridisation of S12 in Main Residue . ?
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cd (2) 2.13
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic material (Sun et al., 1997) and biological activities, such as the effective inhibitors of DNA synthesis of the tumor cells (Waring, 1981; Fisher et al., 1985). As part of serial structural investigation of metal complexes with DABT (Liu & Xu, 2004), the title CdII complex was recently prepared and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The crystal of the title compound consists of the dimeric CdII complex cations and uncoordinated 4-nitrobenzoate anions. Within the complex cation, each CdII cation assumes a distorted octahedral coordination geometry (Table 1), formed by DABT, 4-nitrobenzoate anion and two coordinated water molecules. Two coordinated water molecules bridges two CdII cations to form the dimeric complex cation across on an inversion center.

Whithin the complex, the DABT molecule shows approximately coplanar configuration with the dihedral angle 3.91 (18)° between two thiazole rings, which comparable to 2.6 (1)° found in [Mn(C6H6N4S2)(C8H4O4)(H2O)2].2H2O (Liu et al., 2006) and 4.57 (7)° in [Mn(DABT)(oxydiacetate)] (Luo et al., 2004), but different from 17.23 (7)° found in [Cr(C4H5NO4)(C6H6N4S2)(H2O)]Cl.H2O, (Liu et al., 2004) and 20.02 (8)° found in [Ni(DABT)(iminodiacetate)] (Liu & Xu, 2005).

One oxygen atom O21 of carboxyl group of the 4-nitrobenzoate anion chelates to CdII atom, and hydrogen bonded to the amino group of DABT within the complex, another uncoordinated oxygen atom(O22) is hydrogen bonded to the coordinated water within the complex (Table 2), which helps to stabilize the crystal structure.

The separations of 3.7601 (19) Å between nearly parallel thiazole rings (1 - x,-y,1 - z) suggests the existence of π-π stacking (Fig. 2).

Related literature top

For general background, see: Sun et al. (1997); Waring (1981); Fisher et al. (1985); Liu & Xu (2004). For related structures, see: Luo et al. (2004); Liu et al. (2004, 2006); Liu & Xu (2005).

Experimental top

An ethanol solution (20 ml) containing DABT (0.20 g, 1 mmol) and CdCl2.2.5(H2O) (0.22 g, 1 mmol) was mixed with an aqueous solution (10 ml) of 4-nitrobenzoic acid (0.34 g, 2 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 6 h. After cooling to room temperature the solution was filtered. Single crystals of the title compound were obtained from the filtrate after 7 d.

Refinement top

H atoms on carbon atoms were placed in calculated positions with C—H distances = 0.93 Å (aromatic), and were included in the final cycles of refinement in riding mode with Uiso(H) = 1.2Ueq(C). H atoms of amino groups and water molecules were located in a difference Fourier map and included in the structure factor calculations with fixed positional and Uiso(H) = 0.05 Å2.

Structure description top

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential application in the field of soft magnetic material (Sun et al., 1997) and biological activities, such as the effective inhibitors of DNA synthesis of the tumor cells (Waring, 1981; Fisher et al., 1985). As part of serial structural investigation of metal complexes with DABT (Liu & Xu, 2004), the title CdII complex was recently prepared and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The crystal of the title compound consists of the dimeric CdII complex cations and uncoordinated 4-nitrobenzoate anions. Within the complex cation, each CdII cation assumes a distorted octahedral coordination geometry (Table 1), formed by DABT, 4-nitrobenzoate anion and two coordinated water molecules. Two coordinated water molecules bridges two CdII cations to form the dimeric complex cation across on an inversion center.

Whithin the complex, the DABT molecule shows approximately coplanar configuration with the dihedral angle 3.91 (18)° between two thiazole rings, which comparable to 2.6 (1)° found in [Mn(C6H6N4S2)(C8H4O4)(H2O)2].2H2O (Liu et al., 2006) and 4.57 (7)° in [Mn(DABT)(oxydiacetate)] (Luo et al., 2004), but different from 17.23 (7)° found in [Cr(C4H5NO4)(C6H6N4S2)(H2O)]Cl.H2O, (Liu et al., 2004) and 20.02 (8)° found in [Ni(DABT)(iminodiacetate)] (Liu & Xu, 2005).

One oxygen atom O21 of carboxyl group of the 4-nitrobenzoate anion chelates to CdII atom, and hydrogen bonded to the amino group of DABT within the complex, another uncoordinated oxygen atom(O22) is hydrogen bonded to the coordinated water within the complex (Table 2), which helps to stabilize the crystal structure.

The separations of 3.7601 (19) Å between nearly parallel thiazole rings (1 - x,-y,1 - z) suggests the existence of π-π stacking (Fig. 2).

For general background, see: Sun et al. (1997); Waring (1981); Fisher et al. (1985); Liu & Xu (2004). For related structures, see: Luo et al. (2004); Liu et al. (2004, 2006); Liu & Xu (2005).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines showing the hydrogen bonding.
[Figure 2] Fig. 2. The unit cell packing diagram showing π-π stacking between the S11-thiazole and S12i-thiazole rings [symmetry code: (i) 1 - x,-y,1 - z]. H atoms have been omitted for clarity.
Di-µ2-aqua-bis[aqua(2,2'-diamino-4,4'-bi-1,3-thiazole-κ2N,N')(4- nitrobenzoato-κO)cadmium(II)] bis(4-nitrobenzoate) top
Crystal data top
[Cd2(C7H4NO4)2(C6H10N4O2S2)2](C7H4NO4)2Z = 1
Mr = 1357.85F(000) = 680
Triclinic, P1Dx = 1.810 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6045 (10) ÅCell parameters from 4280 reflections
b = 10.7869 (14) Åθ = 2.0–25.0°
c = 16.118 (2) ŵ = 1.11 mm1
α = 97.741 (1)°T = 295 K
β = 102.600 (1)°Prism, red
γ = 100.817 (1)°0.30 × 0.26 × 0.17 mm
V = 1245.9 (3) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4310 independent reflections
Radiation source: fine-focus sealed tube3751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 1.9°
ω scansh = 89
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1212
Tmin = 0.710, Tmax = 0.825l = 1419
6467 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.027P)2 + 0.7682P]
where P = (Fo2 + 2Fc2)/3
4310 reflections(Δ/σ)max = 0.001
352 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cd2(C7H4NO4)2(C6H10N4O2S2)2](C7H4NO4)2γ = 100.817 (1)°
Mr = 1357.85V = 1245.9 (3) Å3
Triclinic, P1Z = 1
a = 7.6045 (10) ÅMo Kα radiation
b = 10.7869 (14) ŵ = 1.11 mm1
c = 16.118 (2) ÅT = 295 K
α = 97.741 (1)°0.30 × 0.26 × 0.17 mm
β = 102.600 (1)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
4310 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3751 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.825Rint = 0.019
6467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
4310 reflectionsΔρmin = 0.40 e Å3
352 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.57818 (3)0.34675 (2)0.481336 (15)0.03068 (9)
O10.6890 (3)0.56396 (19)0.52648 (14)0.0318 (5)
H1A0.73000.59380.48770.050*
H1B0.77720.58900.57500.050*
O20.8663 (3)0.3128 (2)0.50161 (16)0.0460 (6)
H2A0.90320.28980.45780.050*
H2B0.95500.34910.54320.050*
O210.5914 (3)0.3862 (2)0.34503 (14)0.0425 (6)
O220.7996 (3)0.5726 (2)0.38119 (14)0.0419 (6)
O230.8204 (5)0.5367 (3)0.0475 (2)0.0797 (10)
O240.6407 (6)0.3528 (4)0.0772 (2)0.0953 (12)
O311.1054 (3)0.3710 (2)0.32199 (15)0.0488 (7)
O320.9237 (4)0.2072 (2)0.35451 (16)0.0506 (7)
O330.6588 (5)0.0802 (4)0.0749 (2)0.0964 (13)
O340.8323 (6)0.0790 (4)0.1054 (2)0.0932 (12)
N110.3961 (4)0.1488 (2)0.42375 (17)0.0316 (6)
N120.3833 (5)0.1243 (3)0.27703 (19)0.0543 (9)
H12A0.33110.08150.22570.050*
H12B0.46300.19920.28580.050*
N130.5098 (3)0.2598 (2)0.59931 (16)0.0301 (6)
N140.6762 (4)0.4014 (3)0.72924 (18)0.0460 (8)
H14A0.68240.42450.78320.050*
H14B0.72250.45570.70000.050*
N210.7267 (5)0.4480 (4)0.0264 (2)0.0540 (9)
N310.7664 (6)0.0236 (4)0.0541 (2)0.0660 (11)
S110.16984 (14)0.05631 (9)0.33490 (6)0.0464 (2)
S120.44067 (14)0.18707 (9)0.73631 (6)0.0455 (2)
C110.3181 (4)0.0854 (3)0.4812 (2)0.0321 (8)
C120.1944 (5)0.0249 (3)0.4448 (2)0.0436 (9)
H120.13050.07740.47490.052*
C130.3308 (5)0.0853 (3)0.3445 (2)0.0358 (8)
C140.3819 (4)0.1423 (3)0.5736 (2)0.0320 (8)
C150.3295 (5)0.0901 (3)0.6382 (2)0.0424 (9)
H150.24500.01250.63080.051*
C160.5543 (5)0.2946 (3)0.6835 (2)0.0314 (7)
C210.7022 (4)0.4717 (3)0.2335 (2)0.0315 (7)
C220.8271 (5)0.5632 (3)0.2099 (2)0.0427 (9)
H220.90640.62960.25200.051*
C230.8349 (5)0.5569 (4)0.1256 (2)0.0483 (10)
H230.91920.61810.11000.058*
C240.7163 (5)0.4590 (4)0.0644 (2)0.0409 (9)
C250.5894 (5)0.3676 (4)0.0844 (2)0.0462 (10)
H250.51030.30190.04180.055*
C260.5824 (5)0.3758 (4)0.1701 (2)0.0436 (9)
H260.49550.31570.18510.052*
C270.6992 (5)0.4782 (3)0.3278 (2)0.0339 (8)
C310.9354 (5)0.2001 (3)0.2088 (2)0.0357 (8)
C321.0135 (5)0.2538 (4)0.1488 (2)0.0475 (10)
H321.10440.32940.16660.057*
C330.9584 (6)0.1967 (4)0.0623 (3)0.0544 (11)
H331.00990.23390.02180.065*
C340.8269 (6)0.0847 (4)0.0378 (2)0.0492 (10)
C350.7478 (6)0.0278 (4)0.0956 (3)0.0634 (12)
H350.65960.04920.07770.076*
C360.8020 (6)0.0875 (4)0.1808 (3)0.0554 (11)
H360.74710.05110.22070.067*
C370.9909 (5)0.2639 (3)0.3028 (2)0.0368 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.03806 (15)0.02893 (14)0.02221 (14)0.00009 (10)0.00893 (10)0.00328 (10)
O10.0354 (12)0.0313 (12)0.0234 (12)0.0019 (10)0.0074 (10)0.0001 (10)
O20.0371 (14)0.0617 (17)0.0345 (14)0.0039 (12)0.0113 (11)0.0015 (12)
O210.0548 (16)0.0443 (15)0.0226 (13)0.0031 (12)0.0102 (11)0.0050 (11)
O220.0441 (14)0.0511 (15)0.0238 (13)0.0024 (12)0.0107 (11)0.0014 (12)
O230.096 (2)0.102 (3)0.0470 (19)0.004 (2)0.0346 (18)0.0315 (19)
O240.147 (3)0.094 (3)0.0289 (18)0.008 (2)0.028 (2)0.0048 (18)
O310.0586 (17)0.0476 (16)0.0267 (14)0.0062 (13)0.0004 (12)0.0037 (12)
O320.0660 (18)0.0468 (15)0.0332 (15)0.0044 (13)0.0203 (13)0.0017 (12)
O330.095 (3)0.097 (3)0.058 (2)0.017 (2)0.0033 (19)0.040 (2)
O340.132 (3)0.101 (3)0.0348 (19)0.017 (2)0.015 (2)0.0051 (19)
N110.0427 (17)0.0273 (14)0.0219 (15)0.0031 (12)0.0078 (13)0.0015 (12)
N120.077 (2)0.050 (2)0.0205 (16)0.0115 (17)0.0068 (16)0.0017 (14)
N130.0339 (15)0.0330 (15)0.0227 (15)0.0032 (12)0.0087 (12)0.0063 (12)
N140.065 (2)0.0427 (18)0.0246 (16)0.0062 (15)0.0155 (15)0.0041 (14)
N210.066 (2)0.073 (3)0.0280 (19)0.018 (2)0.0177 (17)0.0140 (19)
N310.070 (3)0.082 (3)0.037 (2)0.019 (2)0.006 (2)0.014 (2)
S110.0512 (6)0.0347 (5)0.0402 (6)0.0036 (4)0.0019 (5)0.0038 (4)
S120.0630 (6)0.0451 (5)0.0279 (5)0.0006 (5)0.0185 (5)0.0108 (4)
C110.0358 (19)0.0293 (18)0.0302 (19)0.0040 (14)0.0086 (15)0.0061 (15)
C120.044 (2)0.038 (2)0.043 (2)0.0046 (16)0.0094 (18)0.0060 (17)
C130.044 (2)0.0265 (18)0.031 (2)0.0039 (15)0.0044 (16)0.0007 (15)
C140.0351 (19)0.0304 (18)0.0302 (19)0.0032 (14)0.0104 (15)0.0067 (15)
C150.050 (2)0.038 (2)0.037 (2)0.0031 (17)0.0166 (18)0.0098 (17)
C160.041 (2)0.0330 (18)0.0225 (18)0.0066 (15)0.0111 (15)0.0087 (15)
C210.0342 (18)0.0354 (19)0.0247 (18)0.0072 (15)0.0082 (15)0.0042 (15)
C220.049 (2)0.046 (2)0.028 (2)0.0026 (17)0.0129 (17)0.0010 (17)
C230.057 (2)0.054 (2)0.036 (2)0.0010 (19)0.0230 (19)0.0121 (19)
C240.054 (2)0.050 (2)0.0256 (19)0.0143 (18)0.0184 (17)0.0105 (17)
C250.060 (2)0.046 (2)0.0240 (19)0.0029 (18)0.0064 (18)0.0024 (17)
C260.050 (2)0.050 (2)0.0257 (19)0.0037 (18)0.0128 (17)0.0079 (17)
C270.0358 (19)0.042 (2)0.0234 (18)0.0071 (16)0.0071 (15)0.0066 (16)
C310.0357 (19)0.039 (2)0.0279 (19)0.0058 (15)0.0035 (15)0.0001 (15)
C320.055 (2)0.044 (2)0.033 (2)0.0054 (18)0.0081 (18)0.0003 (17)
C330.074 (3)0.053 (3)0.033 (2)0.007 (2)0.013 (2)0.0062 (19)
C340.057 (2)0.053 (2)0.028 (2)0.012 (2)0.0003 (18)0.0077 (18)
C350.066 (3)0.058 (3)0.047 (3)0.014 (2)0.007 (2)0.007 (2)
C360.065 (3)0.049 (2)0.039 (2)0.010 (2)0.013 (2)0.0036 (19)
C370.039 (2)0.037 (2)0.030 (2)0.0069 (16)0.0046 (16)0.0017 (16)
Geometric parameters (Å, º) top
Cd—O12.294 (2)S11—C131.734 (3)
Cd—O1i2.393 (2)S12—C151.717 (4)
Cd—O22.250 (2)S12—C161.740 (3)
Cd—O212.313 (2)C11—C121.340 (5)
Cd—N112.266 (3)C11—C141.468 (5)
Cd—N132.344 (2)C12—H120.9300
O1—H1A0.8319C14—C151.347 (5)
O1—H1B0.8843C15—H150.9300
O2—H2A0.8386C21—C261.379 (5)
O2—H2B0.8316C21—C221.388 (5)
O21—C271.267 (4)C21—C271.516 (4)
O22—C271.244 (4)C22—C231.367 (5)
O23—N211.216 (4)C22—H220.9300
O24—N211.200 (4)C23—C241.370 (5)
O31—C371.263 (4)C23—H230.9300
O32—C371.239 (4)C24—C251.368 (5)
O33—N311.213 (5)C25—C261.386 (5)
O34—N311.223 (5)C25—H250.9300
N11—C131.306 (4)C26—H260.9300
N11—C111.391 (4)C31—C321.377 (5)
N12—C131.331 (4)C31—C361.377 (5)
N12—H12A0.8599C31—C371.510 (5)
N12—H12B0.8876C32—C331.383 (5)
N13—C161.309 (4)C32—H320.9300
N13—C141.395 (4)C33—C341.365 (5)
N14—C161.342 (4)C33—H330.9300
N14—H14A0.8607C34—C351.366 (6)
N14—H14B0.8708C35—C361.374 (5)
N21—C241.473 (4)C35—H350.9300
N31—C341.472 (5)C36—H360.9300
S11—C121.720 (4)
O2—Cd—N11103.40 (9)N12—C13—S11122.6 (3)
O2—Cd—O191.73 (8)C15—C14—N13115.3 (3)
N11—Cd—O1164.40 (8)C15—C14—C11125.7 (3)
O2—Cd—O2188.97 (9)N13—C14—C11118.9 (3)
N11—Cd—O2190.87 (9)C14—C15—S12110.4 (3)
O1—Cd—O2185.56 (8)C14—C15—H15124.8
O2—Cd—N1396.10 (9)S12—C15—H15124.8
N11—Cd—N1374.66 (9)N13—C16—N14125.9 (3)
O1—Cd—N13107.87 (8)N13—C16—S12113.9 (2)
O21—Cd—N13165.41 (9)N14—C16—S12120.1 (2)
O2—Cd—O1i166.01 (8)C26—C21—C22118.9 (3)
N11—Cd—O1i90.59 (8)C26—C21—C27121.0 (3)
O1—Cd—O1i74.30 (8)C22—C21—C27120.0 (3)
O21—Cd—O1i90.54 (8)C23—C22—C21120.8 (3)
N13—Cd—O1i87.80 (8)C23—C22—H22119.6
Cd—O1—Cdi105.70 (8)C21—C22—H22119.6
Cd—O1—H1A108.5C22—C23—C24118.8 (3)
Cdi—O1—H1A100.5C22—C23—H23120.6
Cd—O1—H1B116.5C24—C23—H23120.6
Cdi—O1—H1B116.7C25—C24—C23122.5 (3)
H1A—O1—H1B107.5C25—C24—N21117.9 (3)
Cd—O2—H2A118.1C23—C24—N21119.7 (3)
Cd—O2—H2B125.5C24—C25—C26118.0 (3)
H2A—O2—H2B110.8C24—C25—H25121.0
C27—O21—Cd126.5 (2)C26—C25—H25121.0
C13—N11—C11111.2 (3)C21—C26—C25120.9 (3)
C13—N11—Cd133.0 (2)C21—C26—H26119.5
C11—N11—Cd115.3 (2)C25—C26—H26119.5
C13—N12—H12A119.8O22—C27—O21125.5 (3)
C13—N12—H12B118.4O22—C27—C21118.2 (3)
H12A—N12—H12B121.4O21—C27—C21116.4 (3)
C16—N13—C14110.8 (3)C32—C31—C36118.4 (3)
C16—N13—Cd136.9 (2)C32—C31—C37121.1 (3)
C14—N13—Cd112.3 (2)C36—C31—C37120.4 (3)
C16—N14—H14A119.9C31—C32—C33120.9 (3)
C16—N14—H14B117.0C31—C32—H32119.6
H14A—N14—H14B120.8C33—C32—H32119.6
O24—N21—O23122.2 (4)C34—C33—C32118.6 (4)
O24—N21—C24119.1 (4)C34—C33—H33120.7
O23—N21—C24118.6 (4)C32—C33—H33120.7
O33—N31—O34123.3 (4)C33—C34—C35122.2 (4)
O33—N31—C34118.8 (4)C33—C34—N31119.0 (4)
O34—N31—C34117.8 (4)C35—C34—N31118.8 (4)
C12—S11—C1389.26 (17)C34—C35—C36118.2 (4)
C15—S12—C1689.57 (16)C34—C35—H35120.9
C12—C11—N11114.9 (3)C36—C35—H35120.9
C12—C11—C14127.1 (3)C35—C36—C31121.7 (4)
N11—C11—C14118.0 (3)C35—C36—H36119.1
C11—C12—S11110.8 (3)C31—C36—H36119.1
C11—C12—H12124.6O32—C37—O31125.6 (3)
S11—C12—H12124.6O32—C37—C31118.0 (3)
N11—C13—N12123.5 (3)O31—C37—C31116.3 (3)
N11—C13—S11113.9 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O220.831.902.662 (3)151
O1—H1B···O31ii0.881.662.522 (3)164
O2—H2A···O320.841.832.650 (4)164
O2—H2B···O22ii0.831.952.766 (3)165
N12—H12A···O33iii0.862.453.164 (4)141
N12—H12A···O34iii0.862.353.192 (5)165
N12—H12B···O210.892.072.901 (4)156
N14—H14A···O24iv0.862.543.292 (4)147
N14—H14B···O31ii0.872.193.014 (4)158
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd2(C7H4NO4)2(C6H10N4O2S2)2](C7H4NO4)2
Mr1357.85
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.6045 (10), 10.7869 (14), 16.118 (2)
α, β, γ (°)97.741 (1), 102.600 (1), 100.817 (1)
V3)1245.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.30 × 0.26 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.710, 0.825
No. of measured, independent and
observed [I > 2σ(I)] reflections
6467, 4310, 3751
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.072, 1.05
No. of reflections4310
No. of parameters352
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.40

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC and Rigaku, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cd—O12.294 (2)Cd—O212.313 (2)
Cd—O1i2.393 (2)Cd—N112.266 (3)
Cd—O22.250 (2)Cd—N132.344 (2)
Cd—O1—Cdi105.70 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O220.831.902.662 (3)151
O1—H1B···O31ii0.881.662.522 (3)164
O2—H2A···O320.841.832.650 (4)164
O2—H2B···O22ii0.831.952.766 (3)165
N12—H12A···O33iii0.862.453.164 (4)141
N12—H12A···O34iii0.862.353.192 (5)165
N12—H12B···O210.892.072.901 (4)156
N14—H14A···O24iv0.862.543.292 (4)147
N14—H14B···O31ii0.872.193.014 (4)158
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+1, y, z; (iv) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds