Download citation
Download citation
link to html
In the title compound, C16H14N4O4, the central C3N2 ring is planar, with an r.m.s. deviation of 0.0253 (2) Å for the five fitted atoms, and forms dihedral angles of 5.66 (6) and 46.54 (5)°, respectively, with the (5-nitro­furan-2-yl)methyl­ene and phenyl groups. The mol­ecules adopt a layered arrangement, with the nitro groups accepting C—H...O inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034502/bi2210sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034502/bi2210Isup2.hkl
Contains datablock I

CCDC reference: 657799

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.055
  • wR factor = 0.154
  • Data-to-parameter ratio = 12.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al.,2001). As part of an investigation of the coordination properties of Shiff bases functioning as ligands, we report the synthesis and structure of the title compound.

The molecular structure (Figure 1) has expected geometric parameters. The central chromophore (C6–C8/N3/N4) is planar, with an r.m.s. deviation for the fitted atoms of 0.0253 (2) Å. The 5-nitrofuran-2-carbaldehyde group (C1–C4/O3) and phenyl ring (C11–C16) are also planar, with r.m.s. deviations of 0.0013 (3) and 0.0084 (4) Å, respectively. The dihedral angles between these latter two planes and the plane through the C6–C8/N3/N4 ring are 5.66 (6)° and 46.54 (5)°, respectively, while the C1–C4/O3 and C11–C16 planes form an angle of 46.97 (4) Å. The molecules adopt a layered arrangement (Figure 2), with C—H···O interactions formed to the NO2 group.

Related literature top

For related literature, see: Kahwa et al. (1986); Santos et al. (2001).

Experimental top

An anhydrous ethanol solution (50 ml) of 5-nitrofuran-2-carbaldehyde (1.41 g,10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture was stirred at 350 K for 6 h under N2, forming a red solution. The solvent was removed and the residue was recrystallized from anhydrous ethanol then dried in vacuo to give the title compound in 88% yield. Red single crystals suitable for X-ray analysis were obtained by slow evaporation of an anhydrous ethanol solution.

Refinement top

H atoms were included in calculated positions, with C—H = 0.93 (aromatic) or 0.96 Å (methyl), and refined using a riding model, with Uiso(H) = 1.2Ueq(aromatic C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate about their local threefold axes.

Structure description top

Metal complexes based on Schiff bases have attracted much attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al.,2001). As part of an investigation of the coordination properties of Shiff bases functioning as ligands, we report the synthesis and structure of the title compound.

The molecular structure (Figure 1) has expected geometric parameters. The central chromophore (C6–C8/N3/N4) is planar, with an r.m.s. deviation for the fitted atoms of 0.0253 (2) Å. The 5-nitrofuran-2-carbaldehyde group (C1–C4/O3) and phenyl ring (C11–C16) are also planar, with r.m.s. deviations of 0.0013 (3) and 0.0084 (4) Å, respectively. The dihedral angles between these latter two planes and the plane through the C6–C8/N3/N4 ring are 5.66 (6)° and 46.54 (5)°, respectively, while the C1–C4/O3 and C11–C16 planes form an angle of 46.97 (4) Å. The molecules adopt a layered arrangement (Figure 2), with C—H···O interactions formed to the NO2 group.

For related literature, see: Kahwa et al. (1986); Santos et al. (2001).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CrystalStructure (Rigaku/MSC, 2005); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. Packing view along the c-axis. Dashed lines denote C—H···O interactions.
(4E)-1,5-Dimethyl-4-[(5-nitrofuran-2-yl)methyleneamino]-2-phenyl-1H-pyrazol- 3(2H)-one top
Crystal data top
C16H14N4O4F(000) = 680
Mr = 326.31Dx = 1.406 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3365 reflections
a = 7.0722 (14) Åθ = 2.6–27.9°
b = 7.8143 (16) ŵ = 0.10 mm1
c = 27.917 (6) ÅT = 293 K
β = 91.75 (3)°Block, red
V = 1542.1 (6) Å30.10 × 0.08 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
2723 independent reflections
Radiation source: rotating anode2175 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.047
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 88
Tmin = 0.990, Tmax = 0.996k = 99
9081 measured reflectionsl = 3325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.2344P]
where P = (Fo2 + 2Fc2)/3
2723 reflections(Δ/σ)max = 0.005
219 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H14N4O4V = 1542.1 (6) Å3
Mr = 326.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0722 (14) ŵ = 0.10 mm1
b = 7.8143 (16) ÅT = 293 K
c = 27.917 (6) Å0.10 × 0.08 × 0.04 mm
β = 91.75 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
2723 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2175 reflections with I > 2σ(I)
Tmin = 0.990, Tmax = 0.996Rint = 0.047
9081 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.17Δρmax = 0.25 e Å3
2723 reflectionsΔρmin = 0.32 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6509 (3)0.9463 (2)1.07595 (9)0.0716 (7)
O20.5483 (3)0.8358 (3)1.14189 (8)0.0708 (7)
O30.7068 (2)0.64324 (18)1.03917 (6)0.0381 (4)
O40.8983 (3)0.4723 (2)0.88083 (6)0.0466 (5)
N10.6087 (3)0.8236 (3)1.10124 (9)0.0507 (6)
N20.7851 (3)0.2637 (2)0.97211 (6)0.0353 (5)
N30.9515 (3)0.1961 (2)0.85268 (7)0.0373 (5)
N40.9140 (3)0.0287 (2)0.86905 (7)0.0370 (5)
C10.6319 (3)0.6556 (3)1.08303 (8)0.0374 (6)
C20.5889 (4)0.5012 (3)1.10137 (9)0.0423 (6)
H20.53680.47911.13090.051*
C30.6386 (4)0.3810 (3)1.06675 (8)0.0406 (6)
H30.62530.26291.06880.049*
C40.7105 (3)0.4706 (3)1.02929 (8)0.0342 (5)
C50.7813 (3)0.4231 (3)0.98341 (8)0.0350 (6)
H50.82350.50600.96240.042*
C60.8485 (3)0.2121 (3)0.92785 (8)0.0327 (5)
C70.8621 (3)0.0419 (3)0.91528 (8)0.0345 (5)
C80.8995 (3)0.3150 (3)0.88740 (8)0.0341 (5)
C90.8329 (4)0.1113 (3)0.94581 (10)0.0501 (7)
H9A0.77070.19910.92710.075*
H9B0.75610.08100.97230.075*
H9C0.95320.15280.95770.075*
C101.0214 (4)0.1151 (3)0.84999 (10)0.0463 (6)
H10A1.15410.09660.85620.069*
H10B0.99730.12370.81600.069*
H10C0.98330.21920.86520.069*
C110.9627 (3)0.2297 (3)0.80267 (8)0.0366 (6)
C120.8539 (4)0.1400 (3)0.76909 (9)0.0450 (6)
H120.76890.05720.77890.054*
C130.8724 (4)0.1746 (3)0.72060 (9)0.0524 (7)
H130.80210.11260.69790.063*
C140.9938 (4)0.2999 (3)0.70615 (10)0.0535 (7)
H141.00570.32260.67370.064*
C151.0986 (4)0.3926 (3)0.73983 (10)0.0520 (7)
H151.17810.47970.72990.062*
C161.0858 (4)0.3564 (3)0.78811 (9)0.0453 (6)
H161.15910.41660.81060.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0948 (18)0.0325 (11)0.0871 (16)0.0013 (10)0.0040 (13)0.0034 (10)
O20.0737 (15)0.0753 (15)0.0635 (14)0.0122 (11)0.0050 (12)0.0309 (11)
O30.0455 (10)0.0303 (8)0.0387 (9)0.0018 (7)0.0023 (7)0.0004 (7)
O40.0676 (13)0.0290 (9)0.0437 (10)0.0025 (8)0.0109 (9)0.0037 (7)
N10.0510 (14)0.0420 (13)0.0585 (15)0.0044 (10)0.0068 (12)0.0146 (11)
N20.0389 (11)0.0359 (11)0.0311 (10)0.0004 (8)0.0016 (8)0.0018 (8)
N30.0514 (12)0.0288 (10)0.0322 (10)0.0041 (9)0.0088 (9)0.0047 (8)
N40.0469 (12)0.0254 (10)0.0391 (11)0.0016 (8)0.0064 (9)0.0022 (8)
C10.0384 (13)0.0385 (13)0.0355 (13)0.0003 (10)0.0006 (10)0.0060 (10)
C20.0474 (15)0.0443 (14)0.0355 (13)0.0001 (11)0.0053 (11)0.0018 (10)
C30.0508 (15)0.0318 (12)0.0393 (14)0.0000 (10)0.0052 (11)0.0049 (10)
C40.0355 (13)0.0289 (11)0.0381 (13)0.0008 (9)0.0019 (10)0.0010 (9)
C50.0363 (14)0.0362 (13)0.0324 (12)0.0016 (10)0.0002 (10)0.0041 (9)
C60.0351 (13)0.0296 (12)0.0337 (12)0.0006 (9)0.0032 (10)0.0023 (9)
C70.0363 (13)0.0335 (12)0.0337 (12)0.0011 (10)0.0013 (10)0.0025 (9)
C80.0382 (13)0.0292 (12)0.0351 (12)0.0024 (9)0.0020 (10)0.0007 (9)
C90.0706 (19)0.0340 (13)0.0461 (15)0.0027 (12)0.0076 (13)0.0088 (11)
C100.0572 (17)0.0329 (13)0.0492 (15)0.0031 (11)0.0075 (12)0.0042 (11)
C110.0406 (14)0.0360 (12)0.0337 (12)0.0025 (10)0.0091 (10)0.0028 (9)
C120.0497 (16)0.0396 (14)0.0457 (15)0.0061 (11)0.0042 (12)0.0021 (11)
C130.0683 (19)0.0502 (15)0.0385 (14)0.0023 (14)0.0031 (13)0.0041 (12)
C140.073 (2)0.0522 (16)0.0368 (14)0.0094 (14)0.0157 (13)0.0059 (12)
C150.0587 (18)0.0511 (15)0.0473 (16)0.0062 (13)0.0207 (13)0.0080 (12)
C160.0486 (16)0.0461 (14)0.0415 (14)0.0078 (12)0.0072 (12)0.0018 (11)
Geometric parameters (Å, º) top
O1—N11.233 (3)C6—C71.380 (3)
O2—N11.229 (3)C6—C81.441 (3)
O3—C11.352 (3)C7—C91.488 (3)
O3—C41.378 (3)C9—H9A0.960
O4—C81.242 (3)C9—H9B0.960
N1—C11.419 (3)C9—H9C0.960
N2—C51.285 (3)C10—H10A0.960
N2—C61.387 (3)C10—H10B0.960
N3—C81.400 (3)C10—H10C0.960
N3—N41.413 (2)C11—C121.385 (3)
N3—C111.425 (3)C11—C161.388 (3)
N4—C71.357 (3)C12—C131.390 (4)
N4—C101.466 (3)C12—H120.930
C1—C21.349 (3)C13—C141.371 (4)
C2—C31.400 (4)C13—H130.930
C2—H20.930C14—C151.384 (4)
C3—C41.369 (3)C14—H140.930
C3—H30.930C15—C161.383 (4)
C4—C51.438 (3)C15—H150.930
C5—H50.930C16—H160.930
C1—O3—C4105.17 (17)O4—C8—C6131.8 (2)
O2—N1—O1124.4 (2)N3—C8—C6104.42 (19)
O2—N1—C1116.8 (2)C7—C9—H9A109.5
O1—N1—C1118.8 (2)C7—C9—H9B109.5
C5—N2—C6120.64 (19)H9A—C9—H9B109.5
C8—N3—N4109.55 (18)C7—C9—H9C109.5
C8—N3—C11125.39 (19)H9A—C9—H9C109.5
N4—N3—C11120.27 (18)H9B—C9—H9C109.5
C7—N4—N3107.26 (17)N4—C10—H10A109.5
C7—N4—C10124.19 (19)N4—C10—H10B109.5
N3—N4—C10119.18 (19)H10A—C10—H10B109.5
C2—C1—O3112.3 (2)N4—C10—H10C109.5
C2—C1—N1131.4 (2)H10A—C10—H10C109.5
O3—C1—N1116.3 (2)H10B—C10—H10C109.5
C1—C2—C3105.9 (2)C12—C11—C16120.2 (2)
C1—C2—H2127.1C12—C11—N3121.6 (2)
C3—C2—H2127.1C16—C11—N3118.2 (2)
C4—C3—C2107.0 (2)C11—C12—C13119.6 (2)
C4—C3—H3126.5C11—C12—H12120.2
C2—C3—H3126.5C13—C12—H12120.2
C3—C4—O3109.8 (2)C14—C13—C12120.3 (2)
C3—C4—C5134.1 (2)C14—C13—H13119.9
O3—C4—C5116.1 (2)C12—C13—H13119.9
N2—C5—C4118.6 (2)C13—C14—C15120.1 (3)
N2—C5—H5120.7C13—C14—H14120.0
C4—C5—H5120.7C15—C14—H14120.0
C7—C6—N2122.2 (2)C16—C15—C14120.4 (3)
C7—C6—C8108.5 (2)C16—C15—H15119.8
N2—C6—C8129.1 (2)C14—C15—H15119.8
N4—C7—C6109.74 (19)C15—C16—C11119.4 (2)
N4—C7—C9122.0 (2)C15—C16—H16120.3
C6—C7—C9128.2 (2)C11—C16—H16120.3
O4—C8—N3123.7 (2)
C8—N3—N4—C77.3 (2)C10—N4—C7—C927.0 (3)
C11—N3—N4—C7164.1 (2)N2—C6—C7—N4175.44 (19)
C8—N3—N4—C10155.3 (2)C8—C6—C7—N41.4 (3)
C11—N3—N4—C1048.0 (3)N2—C6—C7—C96.5 (4)
C4—O3—C1—C20.2 (3)C8—C6—C7—C9176.7 (2)
C4—O3—C1—N1178.63 (19)N4—N3—C8—O4172.3 (2)
O2—N1—C1—C24.5 (4)C11—N3—C8—O417.0 (4)
O1—N1—C1—C2176.1 (3)N4—N3—C8—C66.2 (2)
O2—N1—C1—O3177.0 (2)C11—N3—C8—C6161.5 (2)
O1—N1—C1—O32.5 (3)C7—C6—C8—O4175.4 (2)
O3—C1—C2—C30.3 (3)N2—C6—C8—O41.2 (4)
N1—C1—C2—C3178.2 (2)C7—C6—C8—N33.0 (2)
C1—C2—C3—C40.4 (3)N2—C6—C8—N3179.6 (2)
C2—C3—C4—O30.3 (3)C8—N3—C11—C12120.2 (3)
C2—C3—C4—C5178.5 (2)N4—N3—C11—C1232.7 (3)
C1—O3—C4—C30.1 (2)C8—N3—C11—C1659.5 (3)
C1—O3—C4—C5178.64 (19)N4—N3—C11—C16147.6 (2)
C6—N2—C5—C4178.65 (19)C16—C11—C12—C131.7 (4)
C3—C4—C5—N20.8 (4)N3—C11—C12—C13178.6 (2)
O3—C4—C5—N2178.96 (19)C11—C12—C13—C141.8 (4)
C5—N2—C6—C7177.2 (2)C12—C13—C14—C150.0 (4)
C5—N2—C6—C86.6 (4)C13—C14—C15—C161.9 (4)
N3—N4—C7—C65.3 (3)C14—C15—C16—C111.9 (4)
C10—N4—C7—C6151.2 (2)C12—C11—C16—C150.1 (4)
N3—N4—C7—C9172.9 (2)N3—C11—C16—C15179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.493.407 (3)170
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC16H14N4O4
Mr326.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.0722 (14), 7.8143 (16), 27.917 (6)
β (°) 91.75 (3)
V3)1542.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.10 × 0.08 × 0.04
Data collection
DiffractometerRigaku Saturn CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.990, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
9081, 2723, 2175
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.154, 1.17
No. of reflections2723
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.32

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalClear, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), CrystalStructure (Rigaku/MSC, 2005), CrystalStructure.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.932.493.407 (3)170
Symmetry code: (i) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds