Download citation
Download citation
link to html
Anions and cations of the title compound, C5H8N3+·C4HO4, are connected by moderately strong inter­molecular N—H...O hydrogen bonds into an infinite three-dimensional network. Hydrogen squarate anions form dimers through strong O—H...O inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031170/bt2412sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031170/bt2412Isup2.hkl
Contains datablock I

CCDC reference: 657651

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.066
  • wR factor = 0.189
  • Data-to-parameter ratio = 11.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT230_ALERT_2_C Hirshfeld Test Diff for C3' - C4' .. 5.70 su PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.57
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the course of our spectroscopic and structural studies of pyridine derivatives (Kolev et al., 2004; Kolev, Wortmann et al.,2005; Kolev, Fiser et al., 2005; Kolev et al., 2007), the crystal structure of 3,4-diaminopyridinium hydrogensquarate is reported. Its molecular structure is depicted in Fig. 1. The crystal structure consists of chains of cations and anions connected by moderate hydrogen bonds (Fig. 2) with N···O lengths of 2.799 (4), 2.972 (4) and 2.973 (4) Å, respectively. Hydrogensquarate anions are linked into centrosymmetric dimers by strong O—H···O [O···O = 2.539 (3) Å] interactions.

Related literature top

For related literature, see: Kolev et al. (2004, 2007); Kolev, Fiser et al. (2005); Kolev, Wortmann et al. (2005).

Experimental top

3,4-diaminopyridinium hydrogensquarate was obtained by mixing an equimolar ratio of 3,4-diaminopyridine (Merck) and squaric acid (Sigma-Aldrich) in 10 ml e thanol. Suitable crystals for X-ray analysis, were grown by allowing the solution to slowly evaporate for 10 days, and were subsequently filtered off, washed with methanol and dried under air.

Refinement top

H atoms were constrained to idealized positions and refined using a riding model, with C—H distances of 0.93 Å [Uiso(H) = 1.2 Uiso(C)], NH distances of 0.86 Å [Uiso(H) = 1.5 Uiso(N) and O—H distances of 0.82 Å [Uiso(H) = 1.5 Uiso(O)].

Structure description top

In the course of our spectroscopic and structural studies of pyridine derivatives (Kolev et al., 2004; Kolev, Wortmann et al.,2005; Kolev, Fiser et al., 2005; Kolev et al., 2007), the crystal structure of 3,4-diaminopyridinium hydrogensquarate is reported. Its molecular structure is depicted in Fig. 1. The crystal structure consists of chains of cations and anions connected by moderate hydrogen bonds (Fig. 2) with N···O lengths of 2.799 (4), 2.972 (4) and 2.973 (4) Å, respectively. Hydrogensquarate anions are linked into centrosymmetric dimers by strong O—H···O [O···O = 2.539 (3) Å] interactions.

For related literature, see: Kolev et al. (2004, 2007); Kolev, Fiser et al. (2005); Kolev, Wortmann et al. (2005).

Computing details top

Data collection: R3m/V (Siemens, 1989); cell refinement: R3m/V; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding between the anions and cations of (I).
3,4-Diaminopyridinium hydrogen squarate top
Crystal data top
C5H8N3+·C4HO4F(000) = 464
Mr = 223.19Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 10.069 (2) Åθ = 7.5–15°
b = 7.1925 (14) ŵ = 0.12 mm1
c = 13.480 (3) ÅT = 294 K
β = 96.56 (3)°Prsim, colourless
V = 969.8 (3) Å30.58 × 0.48 × 0.46 mm
Z = 4
Data collection top
Siemens P4 four-circle
diffractometer
1172 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω scansh = 111
Absorption correction: ψ scan
(XPREP; Sheldrick, 1995)
k = 18
Tmin = 0.844, Tmax = 0.938l = 1616
2310 measured reflections3 standard reflections every 100 reflections
1698 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0946P)2 + 0.5492P]
where P = (Fo2 + 2Fc2)/3
1698 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C5H8N3+·C4HO4V = 969.8 (3) Å3
Mr = 223.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.069 (2) ŵ = 0.12 mm1
b = 7.1925 (14) ÅT = 294 K
c = 13.480 (3) Å0.58 × 0.48 × 0.46 mm
β = 96.56 (3)°
Data collection top
Siemens P4 four-circle
diffractometer
1172 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XPREP; Sheldrick, 1995)
Rint = 0.044
Tmin = 0.844, Tmax = 0.9383 standard reflections every 100 reflections
2310 measured reflections intensity decay: 1%
1698 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 1.09Δρmax = 0.24 e Å3
1698 reflectionsΔρmin = 0.38 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7328 (3)0.3740 (5)1.0145 (2)0.0559 (9)
H10.65860.39901.03750.067*
C20.8249 (3)0.2759 (5)1.0705 (3)0.0520 (9)
H20.80860.23681.13380.062*
C30.9425 (3)0.2325 (5)1.0359 (2)0.0472 (9)
H31.00570.16241.07540.057*
N21.0874 (2)0.2506 (4)0.9064 (2)0.0498 (8)
H211.10310.28650.84800.060*
H221.14650.18770.94340.060*
C40.9699 (3)0.2929 (5)0.9401 (2)0.0400 (8)
N30.8886 (3)0.4537 (5)0.7857 (2)0.0568 (9)
H310.82700.51500.75030.068*
H320.96200.42770.76190.068*
C50.8693 (3)0.3965 (5)0.8816 (2)0.0403 (8)
C60.7522 (3)0.4362 (5)0.9219 (3)0.0511 (9)
H60.68600.50610.88540.061*
C1'0.2926 (3)0.0429 (5)0.2041 (2)0.0429 (8)
O1'0.1804 (2)0.0879 (4)0.22347 (18)0.0579 (8)
C2'0.3618 (3)0.0417 (5)0.1124 (2)0.0417 (8)
O2'0.3283 (2)0.0894 (4)0.02326 (16)0.0519 (7)
C3'0.4780 (3)0.0317 (5)0.1697 (2)0.0414 (8)
O3'0.5998 (2)0.0799 (4)0.15119 (17)0.0576 (8)
H3'0.60300.08140.09070.086*
C4'0.4173 (3)0.0327 (5)0.2619 (3)0.0465 (9)
O4'0.4548 (2)0.0753 (4)0.34977 (18)0.0589 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0358 (14)0.072 (2)0.062 (2)0.0045 (15)0.0139 (13)0.0134 (18)
C20.049 (2)0.060 (2)0.048 (2)0.0107 (18)0.0109 (16)0.0025 (18)
C30.0440 (17)0.052 (2)0.0449 (19)0.0018 (16)0.0021 (14)0.0001 (17)
N20.0357 (14)0.063 (2)0.0504 (17)0.0070 (13)0.0061 (12)0.0012 (15)
C40.0335 (15)0.0413 (18)0.0444 (18)0.0026 (14)0.0012 (13)0.0080 (15)
N30.0509 (17)0.076 (2)0.0430 (17)0.0126 (16)0.0020 (13)0.0090 (16)
C50.0364 (16)0.0447 (19)0.0389 (17)0.0023 (14)0.0003 (13)0.0048 (15)
C60.0375 (17)0.056 (2)0.058 (2)0.0015 (16)0.0040 (15)0.0087 (19)
C1'0.0296 (15)0.053 (2)0.0465 (18)0.0003 (14)0.0043 (13)0.0021 (16)
O1'0.0304 (11)0.090 (2)0.0544 (14)0.0110 (12)0.0107 (10)0.0002 (14)
C2'0.0284 (15)0.053 (2)0.0438 (18)0.0011 (14)0.0040 (13)0.0060 (16)
O2'0.0322 (11)0.0770 (18)0.0462 (14)0.0142 (11)0.0023 (9)0.0022 (13)
C3'0.0277 (14)0.056 (2)0.0415 (18)0.0034 (14)0.0076 (12)0.0001 (16)
O3'0.0303 (11)0.094 (2)0.0500 (14)0.0170 (12)0.0092 (10)0.0092 (14)
C4'0.0272 (15)0.059 (2)0.053 (2)0.0003 (15)0.0026 (14)0.0006 (18)
O4'0.0330 (12)0.095 (2)0.0495 (14)0.0065 (12)0.0070 (10)0.0134 (14)
Geometric parameters (Å, º) top
N1—C21.330 (5)N3—H320.8600
N1—C61.360 (5)C5—C61.383 (4)
N1—H10.8600C6—H60.9300
C2—C31.358 (5)C1'—O1'1.232 (4)
C2—H20.9300C1'—C2'1.486 (4)
C3—C41.420 (5)C1'—C4'1.501 (4)
C3—H30.9300C2'—O2'1.259 (4)
N2—C41.349 (4)C2'—C3'1.427 (4)
N2—H210.8600C3'—O3'1.325 (3)
N2—H220.8600C3'—C4'1.446 (4)
C4—C51.421 (4)O3'—H3'0.8200
N3—C51.391 (4)C4'—O4'1.241 (4)
N3—H310.8600
C2—N1—C6122.1 (3)C6—C5—C4118.4 (3)
C2—N1—H1118.9N3—C5—C4120.3 (3)
C6—N1—H1118.9N1—C6—C5120.7 (3)
N1—C2—C3120.4 (3)N1—C6—H6119.7
N1—C2—H2119.8C5—C6—H6119.7
C3—C2—H2119.8O1'—C1'—C2'134.9 (3)
C2—C3—C4120.7 (3)O1'—C1'—C4'135.9 (3)
C2—C3—H3119.7C2'—C1'—C4'89.2 (2)
C4—C3—H3119.7O2'—C2'—C3'137.0 (3)
C4—N2—H21120.0O2'—C2'—C1'133.8 (3)
C4—N2—H22120.0C3'—C2'—C1'89.2 (3)
H21—N2—H22120.0O3'—C3'—C2'135.6 (3)
N2—C4—C5121.9 (3)O3'—C3'—C4'130.7 (3)
N2—C4—C3120.4 (3)C2'—C3'—C4'93.8 (2)
C5—C4—C3117.7 (3)C3'—O3'—H3'109.5
C5—N3—H31120.0O4'—C4'—C3'135.2 (3)
C5—N3—H32120.0O4'—C4'—C1'136.9 (3)
H31—N3—H32120.0C3'—C4'—C1'87.9 (3)
C6—C5—N3121.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.762.539 (3)159
N2—H21···O1ii0.862.132.972 (4)166
N1—H1···O4iii0.862.012.799 (4)152
N2—H22···O2iv0.862.142.973 (3)164
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C4HO4
Mr223.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.069 (2), 7.1925 (14), 13.480 (3)
β (°) 96.56 (3)
V3)969.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.58 × 0.48 × 0.46
Data collection
DiffractometerSiemens P4 four-circle
Absorption correctionψ scan
(XPREP; Sheldrick, 1995)
Tmin, Tmax0.844, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
2310, 1698, 1172
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.189, 1.09
No. of reflections1698
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.38

Computer programs: R3m/V (Siemens, 1989), R3m/V, XDISK (Siemens, 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1995), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3'—H3'···O2'i0.821.762.539 (3)159.2
N2—H21···O1'ii0.862.132.972 (4)166.0
N1—H1···O4'iii0.862.012.799 (4)152.1
N2—H22···O2'iv0.862.142.973 (3)164.4
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds