Download citation
Download citation
link to html
The conformation of the N—H bond in the structure of the title compound, C13H9Cl2NO, is anti to the meta-chloro substituent in the dichlorophenyl ring, similar to that observed with respect to the meta-chloro substituent in N-(3,4-dichloro­phen­yl)acetamide and ortho-chloro substituent in N-(2-chloro­phen­yl)benzamide, but in contrast to the syn conformation observed with respect to both the ortho-chloro and meta-chloro substituents in N-(2,3-dichloro­phen­yl)benzamide. The bond parameters are similar to those in 2-chloro-N-phenyl­benzamide, N-(2-chloro­phen­yl)benzamide and N-(2,3-dichloro­phen­yl)benzamide. The mol­ecules are packed into chains in the direction of the b axis through N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031571/bt2417sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031571/bt2417Isup2.hkl
Contains datablock I

CCDC reference: 657658

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C)= 0.003 Å
  • R factor = 0.033
  • wR factor = 0.093
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

In the present work, the structure of N-(3,4-dichlorophenyl)-benzamide has been determined to explore the substituent effects on the structures of N-aromatic amides (Gowda et al., 2003; Gowda, Kozisek et al., 2007; Gowda, Sowmya, Kožíšek et al. 2007; Gowda, Sowmya, Tokarcik et al., 2007). The conformation of the N—H bond (Fig. 1) is anti to the meta-chloro substituent in the aniline phenyl ring, similar to that observed with respect to the meta chloro substituent in N-(3,4-dichlorophenyl)-acetamide (Jones et al., 1990) and ortho chloro substituent in N-(2-chlorophenyl)-benzamide (Gowda, Sowmya, Kožíšek et al. 2007), but in contrast to the syn conformation observed with respect to both the ortho-chloro and meta-chloro substituents in N-(2,3-dichlorophenyl)-benzamide (Gowda, Sowmya, Tokarcik et al., 2007). The bond parameters are similar to those in N-(phenyl)-2-chlorobenzamide (Gowda et al., 2003), N-(2-chlorophenyl)-benzamide (Gowda, Sowmya, Kožíšek et al. 2007) and N-(2,3-dichlorophenyl)-benzamide (Gowda, Sowmya, Tokarcik et al., 2007). Hydrogen bond link the molecules to chains running along the b axis (Fig.2).

Related literature top

For related literature, see: Gowda et al. (2003); Gowda, Kozisek et al. (2007); Gowda, Sowmya, Kožíšek et al. (2007); Gowda, Sowmya, Tokarcik et al. (2007); Jones et al. (1990); Clark & Reid (1995).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

H atoms were seen in difference map and refined using a riding model with C–H distances 0.93Å for the ring hydrogen atoms, 0.86Å for the H(N) atom, and with Uiso(H) = 1.2 Ueq(C) for all H atoms.

Structure description top

In the present work, the structure of N-(3,4-dichlorophenyl)-benzamide has been determined to explore the substituent effects on the structures of N-aromatic amides (Gowda et al., 2003; Gowda, Kozisek et al., 2007; Gowda, Sowmya, Kožíšek et al. 2007; Gowda, Sowmya, Tokarcik et al., 2007). The conformation of the N—H bond (Fig. 1) is anti to the meta-chloro substituent in the aniline phenyl ring, similar to that observed with respect to the meta chloro substituent in N-(3,4-dichlorophenyl)-acetamide (Jones et al., 1990) and ortho chloro substituent in N-(2-chlorophenyl)-benzamide (Gowda, Sowmya, Kožíšek et al. 2007), but in contrast to the syn conformation observed with respect to both the ortho-chloro and meta-chloro substituents in N-(2,3-dichlorophenyl)-benzamide (Gowda, Sowmya, Tokarcik et al., 2007). The bond parameters are similar to those in N-(phenyl)-2-chlorobenzamide (Gowda et al., 2003), N-(2-chlorophenyl)-benzamide (Gowda, Sowmya, Kožíšek et al. 2007) and N-(2,3-dichlorophenyl)-benzamide (Gowda, Sowmya, Tokarcik et al., 2007). Hydrogen bond link the molecules to chains running along the b axis (Fig.2).

For related literature, see: Gowda et al. (2003); Gowda, Kozisek et al. (2007); Gowda, Sowmya, Kožíšek et al. (2007); Gowda, Sowmya, Tokarcik et al. (2007); Jones et al. (1990); Clark & Reid (1995).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of the title; hydrogen bonds shown as dashes lines. H atoms not involved in hydrogen bonding have been omitted. Symmetry code (i): x, y - 1, z.
N-(3,4-Dichlorophenyl)benzamide top
Crystal data top
C13H9Cl2NOF(000) = 544
Mr = 266.11Dx = 1.498 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7847 reflections
a = 11.2828 (2) Åθ = 3.6–29.5°
b = 5.1400 (1) ŵ = 0.53 mm1
c = 20.9368 (5) ÅT = 295 K
β = 103.657 (2)°Prism, colorless
V = 1179.87 (4) Å30.32 × 0.09 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
2316 independent reflections
Graphite monochromator1788 reflections with I > 2σ(I)
Detector resolution: 10.4340 pixels mm-1Rint = 0.025
ω scans with κ offsetsθmax = 26.0°, θmin = 4.1°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1313
Tmin = 0.811, Tmax = 0.963k = 56
18488 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.093H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.043P)2 + 0.3587P]
where P = (Fo2 + 2Fc2)/3
2316 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C13H9Cl2NOV = 1179.87 (4) Å3
Mr = 266.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2828 (2) ŵ = 0.53 mm1
b = 5.1400 (1) ÅT = 295 K
c = 20.9368 (5) Å0.32 × 0.09 × 0.05 mm
β = 103.657 (2)°
Data collection top
Oxford Diffraction Xcalibur System
diffractometer
2316 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
1788 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.963Rint = 0.025
18488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
2316 reflectionsΔρmin = 0.24 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06707 (16)0.6618 (3)0.07436 (9)0.0408 (4)
C20.17812 (16)0.6102 (3)0.02116 (9)0.0403 (4)
C30.20601 (19)0.7783 (4)0.03154 (10)0.0517 (5)
H30.15330.91450.03450.062*
C40.3116 (2)0.7460 (5)0.07990 (11)0.0657 (6)
H40.32930.86020.11530.079*
C50.3899 (2)0.5489 (5)0.07623 (11)0.0650 (6)
H50.46070.52770.10920.078*
C60.3641 (2)0.3810 (4)0.02368 (12)0.0662 (6)
H60.41810.24740.02080.079*
C70.25851 (19)0.4096 (4)0.02470 (11)0.0557 (5)
H70.24110.29410.05990.067*
C80.07957 (16)0.4545 (3)0.16650 (9)0.0400 (4)
C90.17486 (16)0.6320 (3)0.17660 (9)0.0437 (4)
H90.17840.75550.14460.052*
C100.26459 (16)0.6244 (3)0.23455 (9)0.0446 (4)
C110.25928 (17)0.4446 (4)0.28304 (9)0.0452 (4)
C120.16527 (18)0.2642 (4)0.27169 (10)0.0498 (5)
H120.16220.13930.30340.06*
C130.07682 (17)0.2684 (4)0.21419 (9)0.0455 (4)
H130.01450.14570.20710.055*
N10.01460 (13)0.4513 (3)0.10875 (7)0.0438 (4)
H10.04140.30120.09390.053*
O10.02755 (13)0.8827 (2)0.08692 (7)0.0553 (4)
Cl10.38564 (5)0.83887 (10)0.24432 (3)0.06298 (19)
Cl20.36741 (5)0.43840 (12)0.35648 (3)0.0683 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0444 (10)0.0324 (9)0.0443 (10)0.0021 (8)0.0079 (8)0.0013 (7)
C20.0415 (10)0.0337 (9)0.0444 (10)0.0007 (7)0.0077 (8)0.0044 (7)
C30.0554 (12)0.0465 (11)0.0502 (11)0.0031 (9)0.0065 (9)0.0026 (9)
C40.0719 (15)0.0642 (14)0.0517 (12)0.0027 (12)0.0041 (11)0.0066 (11)
C50.0529 (13)0.0624 (14)0.0672 (14)0.0036 (11)0.0109 (10)0.0110 (11)
C60.0482 (12)0.0563 (13)0.0852 (16)0.0118 (10)0.0021 (11)0.0018 (12)
C70.0500 (12)0.0441 (11)0.0668 (13)0.0064 (9)0.0014 (10)0.0067 (10)
C80.0421 (10)0.0300 (9)0.0465 (10)0.0025 (7)0.0077 (8)0.0030 (7)
C90.0420 (10)0.0341 (10)0.0526 (11)0.0001 (8)0.0062 (8)0.0035 (8)
C100.0384 (10)0.0367 (10)0.0566 (11)0.0008 (8)0.0071 (8)0.0052 (8)
C110.0433 (10)0.0433 (10)0.0466 (10)0.0094 (8)0.0056 (8)0.0033 (8)
C120.0537 (12)0.0437 (11)0.0518 (11)0.0047 (9)0.0121 (9)0.0070 (9)
C130.0468 (11)0.0339 (10)0.0550 (11)0.0028 (8)0.0106 (9)0.0001 (8)
N10.0454 (9)0.0276 (7)0.0529 (9)0.0039 (6)0.0008 (7)0.0025 (6)
O10.0621 (9)0.0302 (7)0.0630 (8)0.0058 (6)0.0065 (7)0.0000 (6)
Cl10.0441 (3)0.0544 (3)0.0815 (4)0.0097 (2)0.0030 (2)0.0019 (3)
Cl20.0620 (4)0.0785 (4)0.0540 (3)0.0084 (3)0.0070 (2)0.0007 (3)
Geometric parameters (Å, º) top
C1—O11.225 (2)C8—C91.388 (2)
C1—N11.356 (2)C8—C131.388 (3)
C1—C21.491 (2)C8—N11.409 (2)
C2—C31.378 (3)C9—C101.385 (3)
C2—C71.387 (3)C9—H90.93
C3—C41.379 (3)C10—C111.384 (3)
C3—H30.93C10—Cl11.7293 (18)
C4—C51.358 (3)C11—C121.387 (3)
C4—H40.93C11—Cl21.7228 (19)
C5—C61.375 (3)C12—C131.371 (3)
C5—H50.93C12—H120.93
C6—C71.377 (3)C13—H130.93
C6—H60.93N1—H10.86
C7—H70.93
O1—C1—N1122.29 (16)C9—C8—C13119.44 (16)
O1—C1—C2121.63 (16)C9—C8—N1122.58 (16)
N1—C1—C2116.07 (14)C13—C8—N1117.97 (16)
C3—C2—C7118.71 (17)C10—C9—C8119.65 (17)
C3—C2—C1118.64 (16)C10—C9—H9120.2
C7—C2—C1122.51 (16)C8—C9—H9120.2
C2—C3—C4120.44 (19)C11—C10—C9120.79 (17)
C2—C3—H3119.8C11—C10—Cl1120.56 (15)
C4—C3—H3119.8C9—C10—Cl1118.63 (14)
C5—C4—C3120.6 (2)C10—C11—C12118.98 (17)
C5—C4—H4119.7C10—C11—Cl2121.52 (15)
C3—C4—H4119.7C12—C11—Cl2119.50 (15)
C4—C5—C6119.8 (2)C13—C12—C11120.59 (18)
C4—C5—H5120.1C13—C12—H12119.7
C6—C5—H5120.1C11—C12—H12119.7
C5—C6—C7120.3 (2)C12—C13—C8120.48 (17)
C5—C6—H6119.9C12—C13—H13119.8
C7—C6—H6119.9C8—C13—H13119.8
C6—C7—C2120.2 (2)C1—N1—C8126.38 (14)
C6—C7—H7119.9C1—N1—H1116.8
C2—C7—H7119.9C8—N1—H1116.8
O1—C1—C2—C328.3 (3)C8—C9—C10—Cl1177.27 (14)
N1—C1—C2—C3153.17 (17)C9—C10—C11—C122.7 (3)
O1—C1—C2—C7147.4 (2)Cl1—C10—C11—C12175.68 (14)
N1—C1—C2—C731.1 (3)C9—C10—C11—Cl2177.98 (14)
C7—C2—C3—C40.4 (3)Cl1—C10—C11—Cl23.6 (2)
C1—C2—C3—C4176.28 (18)C10—C11—C12—C131.9 (3)
C2—C3—C4—C50.3 (3)Cl2—C11—C12—C13178.72 (15)
C3—C4—C5—C60.4 (4)C11—C12—C13—C80.4 (3)
C4—C5—C6—C70.9 (4)C9—C8—C13—C121.9 (3)
C5—C6—C7—C20.8 (3)N1—C8—C13—C12179.20 (17)
C3—C2—C7—C60.1 (3)O1—C1—N1—C88.0 (3)
C1—C2—C7—C6175.59 (19)C2—C1—N1—C8170.51 (16)
C13—C8—C9—C101.2 (3)C9—C8—N1—C137.6 (3)
N1—C8—C9—C10179.99 (16)C13—C8—N1—C1143.61 (18)
C8—C9—C10—C111.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.162.9568 (19)153
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H9Cl2NO
Mr266.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.2828 (2), 5.1400 (1), 20.9368 (5)
β (°) 103.657 (2)
V3)1179.87 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.32 × 0.09 × 0.05
Data collection
DiffractometerOxford Diffraction Xcalibur System
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.811, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
18488, 2316, 1788
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.07
No. of reflections2316
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.162.9568 (19)153
Symmetry code: (i) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds