Download citation
Download citation
link to html
The title compound, {[Cu2(CN)(C2H8N2)4(H2O)][Cu2Zn2(CN)9]}n, is a host–guest structure in which the host is constituted by the ZnII and CuI atoms bridged by cyanide ions, and the guest consists of CuII, ethyl­enediamine, a cyanide and a water mol­ecule. The guest and host species are linked through five N—H...N hydrogen bonds. ZnII and CuI in the host (or cation), have tetrahedral coordination. CuII in the guest (or anion) are penta- and hexacoordinated, leading to distorted square-pyramidal and square-bipyramidal structures, respectively

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032175/bt2425sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032175/bt2425Isup2.hkl
Contains datablock I

CCDC reference: 657589

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.037
  • wR factor = 0.101
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT110_ALERT_2_B ADDSYM Detects Potential Lattice Centering or Halving . ? PLAT213_ALERT_2_B Atom C18 has ADP max/min Ratio ............. 4.90 prola PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.05 Ratio PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C37 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for Cu1 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for Cu3 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N38 PLAT360_ALERT_2_B Short C(sp3)-C(sp3) Bond C36 - C37 ... 1.32 Ang.
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.929 0.983 Tmin and Tmax expected: 0.430 0.544 RR = 1.196 Please check that your absorption correction is appropriate. PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.21 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.55 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT220_ALERT_2_C Large Non-Solvent N Ueq(max)/Ueq(min) ... 2.66 Ratio PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.55 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N17 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C36 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C43 PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C47 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cu2 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT320_ALERT_2_C Check Hybridisation of C18 in Main Residue . ? PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 13 PLAT420_ALERT_2_C D-H Without Acceptor N31 - H31A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N31 - H31B ... ? PLAT420_ALERT_2_C D-H Without Acceptor N34 - H34A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N34 - H34B ... ? PLAT420_ALERT_2_C D-H Without Acceptor N35 - H35B ... ? PLAT420_ALERT_2_C D-H Without Acceptor N38 - H38A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N38 - H38B ... ? PLAT420_ALERT_2_C D-H Without Acceptor N44 - H44A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N45 - H45B ... ? PLAT420_ALERT_2_C D-H Without Acceptor N48 - H48A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N48 - H48B ... ? PLAT432_ALERT_2_C Short Inter X...Y Contact N44 .. C18 .. 3.01 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 C7 -ZN1 -C1 -N2 -167.00 9.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 2 C5 -ZN1 -C1 -N2 61.00 9.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 C3 -ZN1 -C1 -N2 -43.00 9.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 4 ZN1 -C1 -N2 -CU1 120.00 8.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 5 N4 -CU1 -N2 -C1 127.00 7.00 2.556 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 N6 -CU1 -N2 -C1 13.00 7.00 4.576 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 7 N17 -CU1 -N2 -C1 -110.00 7.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 8 C7 -ZN1 -C3 -N4 -161.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 9 C1 -ZN1 -C3 -N4 75.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 10 C5 -ZN1 -C3 -N4 -36.00 3.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 ZN1 -C3 -N4 -CU1 -35.00 8.00 1.555 1.555 1.555 2.546 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 15 ZN1 -C5 -N6 -CU1 28.00 10.00 1.555 1.555 1.555 4.575 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 16 C1 -ZN1 -C7 -N8 53.00 11.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 17 C5 -ZN1 -C7 -N8 18.00 0.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 18 C3 -ZN1 -C7 -N8 -67.00 11.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 19 ZN1 -C7 -N8 -CU2 -178.00 5.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 20 N13 -CU2 -N8 -C7 -52.00 10.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 21 N9 -CU2 -N8 -C7 18.00 0.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 22 N11 -CU2 -N8 -C7 67.00 10.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 26 CU2 -N9 -C10 -ZN2 134.00 17.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 27 C15 -ZN2 -C10 -N9 117.00 18.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 28 C14 -ZN2 -C10 -N9 -9.00 18.00 4.576 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 29 C12 -ZN2 -C10 -N9 -127.00 18.00 3.677 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 33 CU2 -N11 -C12 -ZN2 7.00 0.00 1.555 1.555 1.555 3.677 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 34 N8 -CU2 -N13 -C14 -157.00 5.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 35 N9 -CU2 -N13 -C14 -28.00 5.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 36 N11 -CU2 -N13 -C14 83.00 5.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 37 CU2 -N13 -C14 -ZN2 154.00 4.00 1.555 1.555 1.555 4.575 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 38 C10 -ZN2 -C15 -N16 60.00 4.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 39 C14 -ZN2 -C15 -N16 18.00 0.00 4.576 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 40 C12 -ZN2 -C15 -N16 -59.00 4.00 3.677 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 41 N2 -CU1 -N17 -C18 18.00 0.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 42 N4 -CU1 -N17 -C18 -57.00 6.00 2.556 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 43 N6 -CU1 -N17 -C18 58.00 6.00 4.576 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 86 N34 -CU3 -N3 -C4 -150.00 20.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 87 N35 -CU3 -N3 -C4 112.00 20.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 88 N31 -CU3 -N3 -C4 -66.00 20.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 89 N38 -CU3 -N3 -C4 30.00 20.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 92 CU3 -N3 -C4 -CU4 3.00 0.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 93 N45 -CU4 -C4 -N3 -114.00 16.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 94 N44 -CU4 -C4 -N3 63.00 16.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 95 N41 -CU4 -C4 -N3 147.00 16.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 96 N48 -CU4 -C4 -N3 -31.00 16.00 1.555 1.555 1.555 1.555
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.553 Tmax scaled 0.544 Tmin scaled 0.514 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.10 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (1) 1.18 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu3 (2) 1.92 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu4 (1) 0.99
0 ALERT level A = In general: serious problem 8 ALERT level B = Potentially serious problem 71 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 29 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 45 ALERT type 4 Improvement, methodology, query or suggestion 4 ALERT type 5 Informative message, check

Comment top

Cyanide–metal complexes which form host frameworks, is one of the archetypal host–guest materials and its discovery has spawned a very rich structural chemistry. Hofmann type clathrates of the general formula MLNi(CN)4.g (M=bivalent metal ion, L-Ligand, g-guest) have been studied extensively (Akyuz et al., 1974). However, studies on clathrates with Men2Ni(CN)4 and MenM'(CN)4 (M'=Cd, Zn, Hg, Ni; en=ethylenediamine) as hosts are limited in literature (Iwamoto & Shriver, 1972). During the process of synthesizing Men2M'(CN)4 (M'=Cd, Zn, Hg), the single crystals of the title compound were obtained.

The asymmetric unit contains two ZnII and two CuI atoms linked through nine cyanido ions and two CuII-en2 bridged through a CN group and a lattice water molecule as guest (Fig. 1). All the metal atoms in the host, ZnII and CuI, are observed to be tetra-coordinated whereas CuII atoms are penta- and hexa coordinated in the guest. The en molecules in guest are in the gauche conformation. The angle between the planes N35—Cu3—N38 and N31—Cu3—N34 is 16.6 (1)° while this value is 53.3 (2)° for planes N45—Cu4—N48 and N41—Cu4—N44. These values replicate the angle of orientation between the en2 molecules.

There are five intermolecular N—H···N hydrogen bonds in the structure through which guest and host molecules are linked (Table 2; Fig. 2).

Related literature top

For related literature, see: Akyuz et al. (1974); Iwamoto & Shriver (1972); Macrae et al. (2006).

Experimental top

5 mmol of ethylenediamine was added to 2.5 mmol of CuCl2 in 10 ml of water. This solution was mixed up with the 10 ml of water containing 2.5 mmol of K2Zn(CN)4. Tiny needle-shaped crystals were found within a week, at room temperature by slow evaporation.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.9 Å and N—H= 0.97 Å with Uiso(H) = 1.2Ueq (C or N). Attempts to locate the H atoms of the water oxygen present in the lattice were not successfull, due to the presence of heavy atoms in the structure.

Structure description top

Cyanide–metal complexes which form host frameworks, is one of the archetypal host–guest materials and its discovery has spawned a very rich structural chemistry. Hofmann type clathrates of the general formula MLNi(CN)4.g (M=bivalent metal ion, L-Ligand, g-guest) have been studied extensively (Akyuz et al., 1974). However, studies on clathrates with Men2Ni(CN)4 and MenM'(CN)4 (M'=Cd, Zn, Hg, Ni; en=ethylenediamine) as hosts are limited in literature (Iwamoto & Shriver, 1972). During the process of synthesizing Men2M'(CN)4 (M'=Cd, Zn, Hg), the single crystals of the title compound were obtained.

The asymmetric unit contains two ZnII and two CuI atoms linked through nine cyanido ions and two CuII-en2 bridged through a CN group and a lattice water molecule as guest (Fig. 1). All the metal atoms in the host, ZnII and CuI, are observed to be tetra-coordinated whereas CuII atoms are penta- and hexa coordinated in the guest. The en molecules in guest are in the gauche conformation. The angle between the planes N35—Cu3—N38 and N31—Cu3—N34 is 16.6 (1)° while this value is 53.3 (2)° for planes N45—Cu4—N48 and N41—Cu4—N44. These values replicate the angle of orientation between the en2 molecules.

There are five intermolecular N—H···N hydrogen bonds in the structure through which guest and host molecules are linked (Table 2; Fig. 2).

For related literature, see: Akyuz et al. (1974); Iwamoto & Shriver (1972); Macrae et al. (2006).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atom-numbering scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecules viewed down the b-axis. H-bonds are shown as dashed lines.
Poly[[aqua-µ-cyanido-tetrakis(ethylenediamine)dicopper(II)] [nona-µ-cyanido-dizincate(II)dicuprate(I)]] top
Crystal data top
{[Cu2(CN)(C2H8N2)4(H2O)][Cu2Zn2(CN)9]}F(000) = 1800
Mr = 901.52Dx = 1.726 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.1816 (9) ÅCell parameters from 25 reflections
b = 12.4844 (7) Åθ = 10.3–13.6°
c = 16.1923 (8) ŵ = 3.81 mm1
β = 109.246 (11)°T = 293 K
V = 3470.0 (3) Å3Needle, blue
Z = 40.26 × 0.19 × 0.16 mm
Data collection top
Enraf-Nonius MACH3 sealed tube
diffractometer
3637 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω–2θ scansh = 2120
Absorption correction: ψ scan
(North et al., 1968)
k = 114
Tmin = 0.929, Tmax = 0.983l = 019
6961 measured reflections3 standard reflections every 60 min
6089 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0329P)2 + 8.1818P]
where P = (Fo2 + 2Fc2)/3
6089 reflections(Δ/σ)max = 0.001
382 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
{[Cu2(CN)(C2H8N2)4(H2O)][Cu2Zn2(CN)9]}V = 3470.0 (3) Å3
Mr = 901.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.1816 (9) ŵ = 3.81 mm1
b = 12.4844 (7) ÅT = 293 K
c = 16.1923 (8) Å0.26 × 0.19 × 0.16 mm
β = 109.246 (11)°
Data collection top
Enraf-Nonius MACH3 sealed tube
diffractometer
3637 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.929, Tmax = 0.9833 standard reflections every 60 min
6961 measured reflections intensity decay: none
6089 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.04Δρmax = 0.75 e Å3
6089 reflectionsΔρmin = 0.56 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.11314 (4)0.68154 (6)0.68142 (4)0.03848 (18)
Zn20.55735 (4)0.79273 (5)1.12894 (4)0.03891 (18)
Cu10.05596 (4)0.78446 (5)0.86348 (4)0.03212 (17)
Cu20.39149 (3)0.81159 (5)0.81452 (4)0.02642 (15)
C10.0475 (3)0.7268 (5)0.7513 (3)0.0402 (14)
N20.0068 (3)0.7495 (4)0.7895 (3)0.0476 (13)
C30.1056 (3)0.5226 (5)0.6729 (4)0.0353 (13)
N40.0915 (3)0.4338 (4)0.6600 (3)0.0468 (13)
C50.0553 (3)0.7155 (5)0.5575 (4)0.0409 (14)
N60.0167 (3)0.7182 (4)0.4860 (3)0.0515 (14)
C70.2213 (3)0.7327 (5)0.7319 (4)0.0396 (14)
N80.2837 (3)0.7603 (4)0.7642 (3)0.0443 (12)
N90.4488 (3)0.7682 (4)0.9355 (3)0.0455 (12)
C100.4898 (3)0.7781 (5)1.0063 (4)0.0408 (14)
N110.3914 (3)0.9700 (4)0.8244 (3)0.0404 (12)
C120.4097 (3)1.0570 (5)0.8421 (4)0.0339 (13)
N130.4524 (3)0.7726 (4)0.7388 (3)0.0445 (12)
C140.4932 (3)0.7508 (5)0.7007 (3)0.0377 (13)
C150.6530 (4)0.7099 (5)1.1432 (4)0.0510 (16)
N160.7093 (4)0.6706 (6)1.1437 (5)0.108 (3)
N170.1511 (5)0.6910 (7)0.8548 (5)0.108 (3)
C180.2042 (5)0.6461 (9)0.8560 (7)0.137 (5)
Cu40.25758 (5)0.92268 (6)0.49821 (6)0.0483 (2)
N410.3639 (3)0.9584 (5)0.4690 (4)0.0615 (16)
H41A0.38080.89930.44910.074*
H41B0.35441.00930.42740.074*
C420.4230 (4)0.9960 (7)0.5493 (5)0.082 (2)
H42A0.45030.93500.58270.098*
H42B0.46081.04020.53450.098*
C430.3869 (5)1.0576 (8)0.6019 (6)0.094 (3)
H43A0.36751.12490.57290.112*
H43B0.42521.07360.65840.112*
N440.3220 (3)0.9955 (5)0.6141 (3)0.0709 (18)
H44A0.29111.03940.63210.085*
H44B0.34120.94530.65550.085*
N450.1873 (3)0.9957 (5)0.3858 (3)0.0560 (15)
H45A0.21441.04750.36990.067*
H45B0.17260.94720.34230.067*
C460.1189 (4)1.0420 (7)0.3983 (5)0.080 (2)
H46A0.07941.05490.34200.096*
H46B0.13211.11000.42850.096*
C470.0879 (5)0.9660 (8)0.4513 (5)0.090 (3)
H47A0.04530.99940.46520.108*
H47B0.06830.90170.41760.108*
N480.1501 (4)0.9382 (5)0.5316 (4)0.0691 (17)
H48A0.13910.87600.55320.083*
H48B0.15550.98970.57210.083*
Cu30.25415 (4)0.49772 (6)0.50091 (5)0.04579 (18)
N310.2732 (3)0.4842 (5)0.6358 (3)0.0608 (15)
H31A0.24650.53510.65310.073*
H31B0.25740.41960.64800.073*
N380.1321 (3)0.4859 (5)0.4631 (4)0.0679 (17)
H38A0.11870.43320.49320.082*
H38B0.11190.54780.47430.082*
N340.3741 (3)0.4748 (5)0.5404 (4)0.0677 (17)
H34A0.38580.42380.50740.081*
H34B0.39790.53600.53390.081*
N350.2314 (3)0.4734 (7)0.3669 (4)0.096 (3)
H35A0.25730.52190.34580.116*
H35B0.24670.40740.35720.116*
C330.4008 (4)0.4424 (8)0.6318 (5)0.083 (3)
H33A0.45560.45960.65810.100*
H33B0.39490.36550.63570.100*
C320.3559 (4)0.4971 (8)0.6801 (5)0.084 (3)
H32A0.36960.46770.73860.101*
H32B0.36880.57270.68500.101*
C370.1033 (5)0.4634 (13)0.3725 (6)0.153 (4)
H37A0.09090.38760.36580.184*
H37B0.05470.50210.34800.184*
N30.2591 (4)0.6693 (4)0.4970 (5)0.0652 (15)
C360.1473 (5)0.4855 (13)0.3244 (6)0.153 (4)
H36A0.13700.55880.30400.184*
H36B0.13140.43950.27320.184*
C40.2595 (4)0.7598 (5)0.4957 (5)0.0597 (17)
O1W0.2468 (5)0.2864 (6)0.4956 (6)0.161 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0349 (3)0.0439 (4)0.0356 (4)0.0074 (3)0.0101 (3)0.0064 (3)
Zn20.0438 (4)0.0372 (4)0.0365 (4)0.0040 (3)0.0143 (3)0.0010 (3)
Cu10.0380 (4)0.0311 (4)0.0274 (3)0.0056 (3)0.0109 (3)0.0005 (3)
Cu20.0245 (3)0.0282 (3)0.0249 (3)0.0051 (3)0.0059 (3)0.0044 (3)
C10.044 (3)0.043 (4)0.030 (3)0.004 (3)0.007 (3)0.006 (3)
N20.056 (3)0.053 (3)0.038 (3)0.011 (3)0.021 (3)0.006 (2)
C30.031 (3)0.041 (4)0.038 (3)0.007 (3)0.017 (3)0.004 (3)
N40.050 (3)0.042 (3)0.048 (3)0.009 (3)0.017 (3)0.003 (3)
C50.042 (3)0.040 (3)0.040 (3)0.006 (3)0.012 (3)0.003 (3)
N60.059 (3)0.055 (4)0.033 (3)0.015 (3)0.006 (2)0.000 (3)
C70.040 (3)0.040 (3)0.039 (3)0.011 (3)0.014 (3)0.010 (3)
N80.033 (3)0.054 (3)0.043 (3)0.013 (2)0.009 (2)0.014 (3)
N90.049 (3)0.050 (3)0.034 (3)0.004 (3)0.010 (2)0.002 (2)
C100.044 (3)0.041 (4)0.036 (3)0.004 (3)0.011 (3)0.003 (3)
N110.040 (3)0.033 (3)0.047 (3)0.002 (2)0.012 (2)0.008 (2)
C120.034 (3)0.035 (4)0.031 (3)0.002 (3)0.009 (2)0.003 (3)
N130.045 (3)0.048 (3)0.045 (3)0.002 (3)0.020 (2)0.011 (3)
C140.041 (3)0.039 (3)0.032 (3)0.003 (3)0.010 (3)0.005 (3)
C150.052 (4)0.045 (4)0.056 (4)0.004 (3)0.017 (3)0.014 (3)
N160.063 (4)0.111 (6)0.140 (7)0.027 (4)0.019 (4)0.059 (5)
N170.117 (6)0.096 (6)0.088 (5)0.006 (5)0.005 (5)0.038 (5)
C180.071 (6)0.148 (10)0.158 (10)0.068 (6)0.010 (6)0.104 (8)
Cu40.0679 (5)0.0376 (4)0.0450 (4)0.0025 (4)0.0263 (4)0.0003 (4)
N410.080 (4)0.047 (3)0.068 (4)0.004 (3)0.039 (3)0.008 (3)
C420.066 (5)0.097 (7)0.091 (6)0.000 (5)0.037 (5)0.016 (5)
C430.062 (5)0.123 (8)0.088 (6)0.011 (5)0.015 (5)0.031 (6)
N440.064 (4)0.105 (5)0.041 (3)0.004 (4)0.014 (3)0.004 (4)
N450.053 (3)0.071 (4)0.042 (3)0.010 (3)0.014 (3)0.003 (3)
C460.063 (5)0.106 (7)0.067 (5)0.001 (5)0.015 (4)0.013 (5)
C470.065 (5)0.137 (8)0.074 (6)0.038 (5)0.029 (5)0.024 (6)
N480.090 (4)0.063 (4)0.070 (4)0.023 (3)0.046 (4)0.003 (3)
Cu30.0310 (3)0.0597 (4)0.0480 (4)0.0039 (4)0.0149 (3)0.0018 (5)
N310.052 (3)0.073 (4)0.063 (4)0.002 (3)0.026 (3)0.001 (3)
N380.045 (3)0.088 (5)0.078 (4)0.001 (3)0.030 (3)0.010 (4)
N340.046 (3)0.088 (5)0.076 (4)0.024 (3)0.029 (3)0.016 (4)
N350.053 (4)0.159 (7)0.088 (5)0.027 (4)0.037 (4)0.049 (5)
C330.040 (4)0.125 (8)0.079 (6)0.021 (4)0.012 (4)0.039 (5)
C320.065 (5)0.129 (8)0.049 (4)0.017 (5)0.005 (4)0.002 (5)
C370.047 (4)0.319 (13)0.088 (5)0.012 (6)0.014 (3)0.032 (7)
N30.066 (4)0.040 (3)0.088 (4)0.003 (3)0.023 (3)0.000 (4)
C360.047 (4)0.319 (13)0.088 (5)0.012 (6)0.014 (3)0.032 (7)
C40.072 (5)0.042 (4)0.072 (4)0.006 (4)0.033 (4)0.004 (4)
O1W0.178 (8)0.106 (6)0.189 (9)0.019 (6)0.048 (7)0.001 (7)
Geometric parameters (Å, º) top
Zn1—C71.971 (6)C43—H43B0.9700
Zn1—C11.979 (6)N44—H44A0.9000
Zn1—C51.980 (6)N44—H44B0.9000
Zn1—C31.991 (6)N45—C461.445 (9)
Zn2—C101.969 (6)N45—H45A0.9000
Zn2—C151.970 (6)N45—H45B0.9000
Zn2—C14i1.974 (6)C46—C471.508 (11)
Zn2—C12ii1.978 (6)C46—H46A0.9700
Cu1—N21.957 (5)C46—H46B0.9700
Cu1—N4iii1.968 (5)C47—N481.456 (9)
Cu1—N6i1.989 (5)C47—H47A0.9700
Cu1—N172.053 (9)C47—H47B0.9700
Cu2—N131.966 (5)N48—H48A0.9000
Cu2—N81.966 (5)N48—H48B0.9000
Cu2—N91.968 (5)Cu3—N342.081 (5)
Cu2—N111.984 (5)Cu3—N352.092 (6)
C1—N21.144 (7)Cu3—N312.102 (5)
C3—N41.142 (7)Cu3—N382.103 (5)
N4—Cu1iv1.968 (5)Cu3—N32.145 (5)
C5—N61.139 (7)N31—C321.445 (8)
N6—Cu1v1.989 (5)N31—H31A0.9000
C7—N81.134 (6)N31—H31B0.9000
N9—C101.149 (7)N38—C371.413 (10)
N11—C121.145 (7)N38—H38A0.9000
C12—Zn2ii1.978 (6)N38—H38B0.9000
N13—C141.142 (6)N34—C331.455 (9)
C14—Zn2v1.974 (5)N34—H34A0.9000
C15—N161.132 (8)N34—H34B0.9000
N17—C181.122 (9)N35—C361.464 (10)
Cu4—C42.034 (7)N35—H35A0.9000
Cu4—N452.060 (5)N35—H35B0.9000
Cu4—N442.066 (5)C33—C321.471 (10)
Cu4—N412.182 (5)C33—H33A0.9700
Cu4—N482.202 (6)C33—H33B0.9700
N41—C421.465 (9)C32—H32A0.9700
N41—H41A0.9000C32—H32B0.9700
N41—H41B0.9000C37—C361.317 (12)
C42—C431.455 (10)C37—H37A0.9700
C42—H42A0.9700C37—H37B0.9700
C42—H42B0.9700N3—C41.131 (8)
C43—N441.479 (10)C36—H36A0.9700
C43—H43A0.9700C36—H36B0.9700
C7—Zn1—C1112.2 (2)H45A—N45—H45B108.0
C7—Zn1—C5118.4 (2)N45—C46—C47109.1 (7)
C1—Zn1—C5107.4 (2)N45—C46—H46A109.9
C7—Zn1—C3112.9 (2)C47—C46—H46A109.9
C1—Zn1—C3106.5 (2)N45—C46—H46B109.9
C5—Zn1—C398.1 (2)C47—C46—H46B109.9
C10—Zn2—C15107.6 (2)H46A—C46—H46B108.3
C10—Zn2—C14i105.9 (2)N48—C47—C46109.5 (6)
C15—Zn2—C14i117.2 (3)N48—C47—H47A109.8
C10—Zn2—C12ii111.5 (2)C46—C47—H47A109.8
C15—Zn2—C12ii106.5 (2)N48—C47—H47B109.8
C14i—Zn2—C12ii108.2 (2)C46—C47—H47B109.8
N2—Cu1—N4iii108.3 (2)H47A—C47—H47B108.2
N2—Cu1—N6i106.1 (2)C47—N48—Cu4107.0 (4)
N4iii—Cu1—N6i106.0 (2)C47—N48—H48A110.3
N2—Cu1—N17118.7 (3)Cu4—N48—H48A110.3
N4iii—Cu1—N17108.0 (3)C47—N48—H48B110.3
N6i—Cu1—N17109.1 (3)Cu4—N48—H48B110.3
N13—Cu2—N8110.53 (19)H48A—N48—H48B108.6
N13—Cu2—N9109.3 (2)N34—Cu3—N3597.3 (2)
N8—Cu2—N9116.8 (2)N34—Cu3—N3182.7 (2)
N13—Cu2—N11108.2 (2)N35—Cu3—N31166.9 (3)
N8—Cu2—N11109.3 (2)N34—Cu3—N38168.0 (2)
N9—Cu2—N11102.0 (2)N35—Cu3—N3881.9 (2)
N2—C1—Zn1176.6 (5)N31—Cu3—N3895.4 (2)
C1—N2—Cu1175.3 (5)N34—Cu3—N395.5 (2)
N4—C3—Zn1170.7 (5)N35—Cu3—N396.3 (3)
C3—N4—Cu1iv174.0 (5)N31—Cu3—N396.7 (3)
N6—C5—Zn1168.4 (5)N38—Cu3—N396.4 (2)
C5—N6—Cu1v175.8 (5)C32—N31—Cu3107.2 (4)
N8—C7—Zn1177.2 (5)C32—N31—H31A110.3
C7—N8—Cu2177.1 (5)Cu3—N31—H31A110.3
C10—N9—Cu2156.9 (5)C32—N31—H31B110.3
N9—C10—Zn2178.1 (5)Cu3—N31—H31B110.3
C12—N11—Cu2163.4 (5)H31A—N31—H31B108.5
N11—C12—Zn2ii178.8 (5)C37—N38—Cu3108.2 (5)
C14—N13—Cu2174.4 (5)C37—N38—H38A110.1
N13—C14—Zn2v175.9 (5)Cu3—N38—H38A110.1
N16—C15—Zn2171.4 (8)C37—N38—H38B110.1
C18—N17—Cu1173.3 (11)Cu3—N38—H38B110.1
C4—Cu4—N45115.8 (3)H38A—N38—H38B108.4
C4—Cu4—N44116.7 (3)C33—N34—Cu3108.3 (4)
N45—Cu4—N44127.5 (2)C33—N34—H34A110.0
C4—Cu4—N41100.2 (2)Cu3—N34—H34A110.0
N45—Cu4—N4193.1 (2)C33—N34—H34B110.0
N44—Cu4—N4180.2 (2)Cu3—N34—H34B110.0
C4—Cu4—N4896.6 (2)H34A—N34—H34B108.4
N45—Cu4—N4880.5 (2)C36—N35—Cu3107.0 (5)
N44—Cu4—N4891.3 (2)C36—N35—H35A110.3
N41—Cu4—N48163.1 (2)Cu3—N35—H35A110.3
C42—N41—Cu4108.5 (4)C36—N35—H35B110.3
C42—N41—H41A110.0Cu3—N35—H35B110.3
Cu4—N41—H41A110.0H35A—N35—H35B108.6
C42—N41—H41B110.0N34—C33—C32110.8 (6)
Cu4—N41—H41B110.0N34—C33—H33A109.5
H41A—N41—H41B108.4C32—C33—H33A109.5
C43—C42—N41110.4 (6)N34—C33—H33B109.5
C43—C42—H42A109.6C32—C33—H33B109.5
N41—C42—H42A109.6H33A—C33—H33B108.1
C43—C42—H42B109.6N31—C32—C33110.7 (6)
N41—C42—H42B109.6N31—C32—H32A109.5
H42A—C42—H42B108.1C33—C32—H32A109.5
C42—C43—N44109.5 (8)N31—C32—H32B109.5
C42—C43—H43A109.8C33—C32—H32B109.5
N44—C43—H43A109.8H32A—C32—H32B108.1
C42—C43—H43B109.8C36—C37—N38118.8 (9)
N44—C43—H43B109.8C36—C37—H37A107.6
H43A—C43—H43B108.2N38—C37—H37A107.6
C43—N44—Cu4110.4 (5)C36—C37—H37B107.6
C43—N44—H44A109.6N38—C37—H37B107.6
Cu4—N44—H44A109.6H37A—C37—H37B107.0
C43—N44—H44B109.6C4—N3—Cu3177.7 (6)
Cu4—N44—H44B109.6C37—C36—N35116.4 (9)
H44A—N44—H44B108.1C37—C36—H36A108.2
C46—N45—Cu4111.4 (4)N35—C36—H36A108.2
C46—N45—H45A109.3C37—C36—H36B108.2
Cu4—N45—H45A109.3N35—C36—H36B108.2
C46—N45—H45B109.3H36A—C36—H36B107.3
Cu4—N45—H45B109.3N3—C4—Cu4177.0 (7)
C7—Zn1—C1—N2167 (9)N41—C42—C43—N4451.5 (10)
C5—Zn1—C1—N261 (9)C42—C43—N44—Cu442.6 (8)
C3—Zn1—C1—N243 (9)C4—Cu4—N44—C43114.3 (6)
Zn1—C1—N2—Cu1120 (8)N45—Cu4—N44—C4368.5 (6)
N4iii—Cu1—N2—C1127 (7)N41—Cu4—N44—C4317.8 (5)
N6i—Cu1—N2—C113 (7)N48—Cu4—N44—C43147.6 (5)
N17—Cu1—N2—C1110 (7)C4—Cu4—N45—C46108.5 (5)
C7—Zn1—C3—N4161 (3)N44—Cu4—N45—C4668.7 (6)
C1—Zn1—C3—N475 (3)N41—Cu4—N45—C46148.6 (5)
C5—Zn1—C3—N436 (3)N48—Cu4—N45—C4615.6 (5)
Zn1—C3—N4—Cu1iv35 (8)Cu4—N45—C46—C4741.1 (7)
C7—Zn1—C5—N6144 (3)N45—C46—C47—N4853.5 (9)
C1—Zn1—C5—N688 (3)C46—C47—N48—Cu438.1 (8)
C3—Zn1—C5—N622 (3)C4—Cu4—N48—C47102.2 (6)
Zn1—C5—N6—Cu1v28 (10)N45—Cu4—N48—C4712.9 (5)
C1—Zn1—C7—N853 (11)N44—Cu4—N48—C47140.8 (5)
C5—Zn1—C7—N8179 (100)N41—Cu4—N48—C4781.7 (10)
C3—Zn1—C7—N867 (11)N34—Cu3—N31—C3215.6 (5)
Zn1—C7—N8—Cu2178 (5)N35—Cu3—N31—C32106.4 (11)
N13—Cu2—N8—C752 (10)N38—Cu3—N31—C32176.3 (5)
N9—Cu2—N8—C7178 (100)N3—Cu3—N31—C3279.2 (5)
N11—Cu2—N8—C767 (10)N34—Cu3—N38—C3784.1 (14)
N13—Cu2—N9—C1094.8 (12)N35—Cu3—N38—C372.9 (8)
N8—Cu2—N9—C10138.7 (12)N31—Cu3—N38—C37164.2 (8)
N11—Cu2—N9—C1019.6 (12)N3—Cu3—N38—C3798.4 (8)
Cu2—N9—C10—Zn2134 (17)N35—Cu3—N34—C33156.0 (6)
C15—Zn2—C10—N9117 (18)N31—Cu3—N34—C3310.8 (6)
C14i—Zn2—C10—N99 (18)N38—Cu3—N34—C3370.6 (13)
C12ii—Zn2—C10—N9127 (18)N3—Cu3—N34—C33106.9 (6)
N13—Cu2—N11—C1271.8 (17)N34—Cu3—N35—C36179.7 (8)
N8—Cu2—N11—C12167.8 (16)N31—Cu3—N35—C3690.5 (13)
N9—Cu2—N11—C1243.4 (17)N38—Cu3—N35—C3611.8 (8)
Cu2—N11—C12—Zn2ii73 (30)N3—Cu3—N35—C3683.9 (8)
N8—Cu2—N13—C14157 (5)Cu3—N34—C33—C3235.7 (8)
N9—Cu2—N13—C1428 (5)Cu3—N31—C32—C3339.7 (8)
N11—Cu2—N13—C1483 (5)N34—C33—C32—N3151.8 (10)
Cu2—N13—C14—Zn2v154 (4)Cu3—N38—C37—C3620.3 (16)
C10—Zn2—C15—N1660 (4)N34—Cu3—N3—C4150 (20)
C14i—Zn2—C15—N16179 (100)N35—Cu3—N3—C4112 (20)
C12ii—Zn2—C15—N1659 (4)N31—Cu3—N3—C466 (20)
N2—Cu1—N17—C18180 (100)N38—Cu3—N3—C430 (20)
N4iii—Cu1—N17—C1857 (6)N38—C37—C36—N3533 (2)
N6i—Cu1—N17—C1858 (6)Cu3—N35—C36—C3727.3 (15)
C4—Cu4—N41—C42106.7 (5)Cu3—N3—C4—Cu431 (34)
N45—Cu4—N41—C42136.4 (5)N45—Cu4—C4—N3114 (16)
N44—Cu4—N41—C428.9 (5)N44—Cu4—C4—N363 (16)
N48—Cu4—N41—C4269.3 (10)N41—Cu4—C4—N3147 (16)
Cu4—N41—C42—C4334.7 (9)N48—Cu4—C4—N331 (16)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+2, z+2; (iii) x, y+1/2, z+3/2; (iv) x, y1/2, z+3/2; (v) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N41—H41A···N9v0.902.483.352 (7)165
N41—H41B···N16vi0.902.423.242 (9)153
N44—H44B···N110.902.603.234 (7)128
N45—H45A···N16vi0.902.133.020 (8)170
N35—H35A···N11v0.902.583.280 (7)136
Symmetry codes: (v) x, y+3/2, z1/2; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula{[Cu2(CN)(C2H8N2)4(H2O)][Cu2Zn2(CN)9]}
Mr901.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)18.1816 (9), 12.4844 (7), 16.1923 (8)
β (°) 109.246 (11)
V3)3470.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.81
Crystal size (mm)0.26 × 0.19 × 0.16
Data collection
DiffractometerEnraf-Nonius MACH3 sealed tube
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.929, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
6961, 6089, 3637
Rint0.029
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.04
No. of reflections6089
No. of parameters382
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.56

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97.

Selected torsion angles (º) top
Zn1—C7—N8—Cu2178 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N41—H41A···N9i0.902.483.352 (7)164.8
N41—H41B···N16ii0.902.423.242 (9)152.6
N44—H44B···N110.902.603.234 (7)128.1
N45—H45A···N16ii0.902.133.020 (8)169.8
N35—H35A···N11i0.902.583.280 (7)135.6
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds