Download citation
Download citation
link to html
The mol­ecular structure of the title compound, C22H28N6S2, is the first crystallographically determined guanidine ligand containing sulfur. It shows two guanidyl groups bridged by a diphenyl­disulfanyl linker with localized C=N bonds. The C—S—S—C group has a folded nonplanar conformation like that found in H2O2 or H2S2, with a torsion angle of 84.65 (10)°. The S—S bond length is 2.0435 (7) Å. Molecules are linked by C—H...N hydrogen bonds. The crystal studied was an inversion twin with approximately 2:1 components.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033405/bt2431sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033405/bt2431Isup2.hkl
Contains datablock I

CCDC reference: 657748

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.035
  • wR factor = 0.088
  • Data-to-parameter ratio = 15.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT034_ALERT_1_C No Flack Parameter Given. Z .GT. Si, NonCentro . ?
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.87 From the CIF: _reflns_number_total 4209 Count of symmetry unique reflns 2655 Completeness (_total/calc) 158.53% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1554 Fraction of Friedel pairs measured 0.585 Are heavy atom types Z>Si present yes PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The synthesis and characterization of molecules containing nitrogen and sulfur as donor functions is important for biomimetic coordination chemistry. The use of this molecules as ligands in the synthesis of copper-complexes as mimics for active centres like the CuA in cytochrome-c-oxidase and N2O-reductase is currently of considerable interest in bioinorganic chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene and its complexes with Cu, Fe, Ni and Mn have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Wittmann et al., 2001; Herres et al., 2005, Neuba et al., 2007). We have now developed the title compound with disulfide group as novel ligand with redoxactivity for use in biomimetic copper-sulfur chemistry.

The most interesting feature are the torsion angles τ C–S1–S2–C' and C–C'–S1–S2 which indicate pπ-dπ interactions between the fully occupied pz orbital on the carbon C atom (part of the aromatic π system) with an empty d orbital on the S atom as reported for 2,2'-diaminodiphenyl disulfide (Lee & Bryant, 1970). The S–S bond length in disulfide compounds is correlated with the C–S–S–C torsion angles, being around 2.031 Å (τ = 75–105°) or 2.070 Å (t = 0–20°) (Allen et al., 1987). For (I) τ is 84.65 (10)° and the S1–S2 bond length 2.0435 (7) Å matching these ranges. As may be seen from the geometric bonding parameters (Table 1), the guanidyl double bonds C1 N1 and C18N14 are clearly localized.

The packing pattern shows intermolecular C–H···N hydrogen interactions (Table 2) with molecules stacked in [010] direction.

Related literature top

For related literature, see: Allen et al. (1987); Gomes de Mesquita (1967); Harmjanz (1997); Herres et al. (2005); Kaitner & Pavlovic (1997); Lee & Bryant (1970); Neuba et al. (2007); Pohl et al. (2000); Schneider (2000); Waden (1999); Wittmann et al. (2001).

Experimental top

A solution of dimethylethylenechloroformamidinium chloride (5.07 g, 30 mmol) in dry MeCN was added dropwise to an ice-cooled solution of 2,2'-dithiodianiline (3.73 g, 15 mmol) and triethylamine (4.18 ml, 3.03 g, 30 mmol) in dry MeCN. After 3 h under reflux, a solution of NaOH (1.2 g, 30 mmol) in water was added. The solvents and NEt3 were then evaporated under vacuum. In order to deprotonate the bis-hydrochloride, 50 wt% KOH (aqueous, 15 ml) was added and the free base was extracted into the THF phase (3 x 80 ml). The organic phase was dried with Na2SO4. After filtration, the solvent was evaporated under reduced pressure. Colourless crystals suitable for X-ray diffraction were obtained by diffusion of Et2O into a cold saturated MeCN solution.

1H NMR (500 MHz, CDCl3): δ 2.65 (s, 12H, Me), 3.3 (s, 8H, CH2), 6.79 (m, 4H, CHarom), 6.95 (m, 2H, CHarom), 7.45 (m, 2H, CHarom); 13C NMR (125 MHz, CDCl3): δ 43.8 (Me), 48.4 (CH2), 121.1 (CHarom), 122.0 (CHarom), 125.2 (CHarom), 125.8 (CHarom), 128.9 (Cquart), 147.2 (Cquart), 155.5 (Cgua); IR (KBr, \v, cm-1): 3035 (w), 2946 (m), 2858 (m), 1636 (versus, C N), 1613 (versus, CN), 1568 (versus), 1441 (s), 1283 (s), 1034 (s), 966 (m), 740 (m). EI—MS: m/z (%) 440 (40) [M+], 344 (70), 248 (85), 220 (90), 165 (80), 124 (90), 80 (75), 44 (80), 28 (30); Elemental analysis (M = 440.63 g mol-1): calcd. for C22H28N6S2: C: 59.97; H: 6.41; N: 19.07; found C: 60.05, H: 6.62, N: 19.00.

Refinement top

Hydrogen atoms located from difference Fourier maps were refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(CH3). All CH3 hydrogen atoms were allowed to rotate but not to tip. The crystal was refined as an inversion twin with the ratio of the two domains of 0.34 (6)/0.66 (6).

Structure description top

The synthesis and characterization of molecules containing nitrogen and sulfur as donor functions is important for biomimetic coordination chemistry. The use of this molecules as ligands in the synthesis of copper-complexes as mimics for active centres like the CuA in cytochrome-c-oxidase and N2O-reductase is currently of considerable interest in bioinorganic chemistry. In search of multifunctional ligands we have extended our studies to guanidyl-type systems with N-donor functions. The first derivative, the ligand bis(tetramethyl-guanidino)propylene and its complexes with Cu, Fe, Ni and Mn have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Wittmann et al., 2001; Herres et al., 2005, Neuba et al., 2007). We have now developed the title compound with disulfide group as novel ligand with redoxactivity for use in biomimetic copper-sulfur chemistry.

The most interesting feature are the torsion angles τ C–S1–S2–C' and C–C'–S1–S2 which indicate pπ-dπ interactions between the fully occupied pz orbital on the carbon C atom (part of the aromatic π system) with an empty d orbital on the S atom as reported for 2,2'-diaminodiphenyl disulfide (Lee & Bryant, 1970). The S–S bond length in disulfide compounds is correlated with the C–S–S–C torsion angles, being around 2.031 Å (τ = 75–105°) or 2.070 Å (t = 0–20°) (Allen et al., 1987). For (I) τ is 84.65 (10)° and the S1–S2 bond length 2.0435 (7) Å matching these ranges. As may be seen from the geometric bonding parameters (Table 1), the guanidyl double bonds C1 N1 and C18N14 are clearly localized.

The packing pattern shows intermolecular C–H···N hydrogen interactions (Table 2) with molecules stacked in [010] direction.

For related literature, see: Allen et al. (1987); Gomes de Mesquita (1967); Harmjanz (1997); Herres et al. (2005); Kaitner & Pavlovic (1997); Lee & Bryant (1970); Neuba et al. (2007); Pohl et al. (2000); Schneider (2000); Waden (1999); Wittmann et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular structure of I. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of I viewed along [010] with hydrogen bond indicated as dashed lines. H-atoms not involved are omitted.
N,N'-Bis(1,3-dimethylimidazolidin-2-ylidene)-2,2'-dithiodianiline top
Crystal data top
C22H28N6S2F(000) = 468
Mr = 440.62Dx = 1.317 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 913 reflections
a = 8.2794 (12) Åθ = 2.5–28.2°
b = 10.1065 (14) ŵ = 0.26 mm1
c = 13.7018 (19) ÅT = 120 K
β = 104.333 (3)°Prism, colourless
V = 1110.8 (3) Å30.42 × 0.39 × 0.36 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
4209 independent reflections
Radiation source: sealed tube4074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 109
Tmin = 0.898, Tmax = 0.912k = 1313
8801 measured reflectionsl = 1518
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.051P)2 + 0.0758P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4209 reflectionsΔρmax = 0.35 e Å3
276 parametersΔρmin = 0.23 e Å3
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.34 (6)
Crystal data top
C22H28N6S2V = 1110.8 (3) Å3
Mr = 440.62Z = 2
Monoclinic, PcMo Kα radiation
a = 8.2794 (12) ŵ = 0.26 mm1
b = 10.1065 (14) ÅT = 120 K
c = 13.7018 (19) Å0.42 × 0.39 × 0.36 mm
β = 104.333 (3)°
Data collection top
Bruker SMART APEX
diffractometer
4209 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4074 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.912Rint = 0.033
8801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.35 e Å3
S = 1.06Δρmin = 0.23 e Å3
4209 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
276 parametersAbsolute structure parameter: 0.34 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55549 (6)0.30126 (4)0.67932 (4)0.02459 (12)
S20.65522 (6)0.12261 (4)0.73258 (4)0.02580 (12)
N10.4194 (2)0.50987 (16)0.54669 (13)0.0256 (4)
N20.3726 (2)0.72951 (16)0.57965 (14)0.0254 (4)
N30.5600 (2)0.69499 (14)0.49018 (14)0.0263 (4)
N40.8884 (2)0.09539 (16)0.77503 (14)0.0272 (4)
N51.0402 (2)0.1713 (2)0.94000 (15)0.0329 (4)
N60.9051 (2)0.31590 (17)0.82600 (16)0.0338 (5)
C10.4521 (2)0.63399 (19)0.53619 (15)0.0232 (4)
C20.2088 (3)0.7044 (2)0.5944 (2)0.0382 (6)
H2A0.20520.61500.62150.057*
H2B0.12580.71200.52980.057*
H2C0.18420.76920.64200.057*
C30.4088 (3)0.86078 (19)0.54545 (18)0.0309 (5)
H3A0.42610.92630.60080.037*
H3B0.31790.89180.48860.037*
C40.5678 (3)0.8371 (2)0.51246 (18)0.0310 (5)
H4A0.56990.88990.45190.037*
H4B0.66730.85910.56690.037*
C50.7065 (3)0.6331 (2)0.46938 (19)0.0320 (5)
H5A0.68300.60920.39790.048*
H5B0.73480.55330.51060.048*
H5C0.80030.69520.48550.048*
C60.4730 (2)0.40803 (19)0.49286 (16)0.0243 (4)
C70.4507 (3)0.4075 (2)0.38863 (18)0.0312 (5)
H7A0.40410.48290.35060.037*
C80.4953 (3)0.2983 (2)0.33941 (18)0.0343 (5)
H8A0.48070.30010.26840.041*
C90.5613 (3)0.1865 (2)0.39408 (19)0.0330 (5)
H9A0.59160.11170.36060.040*
C100.5827 (3)0.18485 (18)0.49752 (18)0.0282 (4)
H10A0.62880.10880.53500.034*
C110.5374 (2)0.29307 (17)0.54681 (16)0.0224 (4)
C120.8746 (3)0.14206 (19)0.75131 (15)0.0246 (4)
C130.9518 (3)0.2624 (2)0.74463 (18)0.0313 (5)
H13A0.88640.34040.72900.038*
C141.1245 (3)0.2698 (2)0.76067 (19)0.0378 (5)
H14A1.17690.35220.75560.045*
C151.2188 (3)0.1562 (3)0.78401 (19)0.0370 (5)
H15A1.33650.16080.79490.044*
C161.1434 (3)0.0360 (2)0.79161 (17)0.0317 (5)
H16A1.21010.04120.80770.038*
C170.9701 (3)0.02614 (19)0.77599 (15)0.0249 (4)
C180.9436 (3)0.1845 (2)0.84325 (17)0.0268 (4)
C191.0216 (4)0.0560 (3)1.0000 (2)0.0419 (6)
H19A0.92210.06651.02590.063*
H19B1.00990.02360.95800.063*
H19C1.12010.04731.05660.063*
C201.0484 (3)0.2999 (2)0.9920 (2)0.0411 (6)
H20A0.96610.30451.03350.049*
H20B1.16130.31651.03540.049*
C211.0063 (3)0.3963 (2)0.9055 (2)0.0383 (6)
H21A1.10800.42840.88730.046*
H21B0.94280.47290.92140.046*
C220.8467 (4)0.3676 (2)0.7259 (2)0.0429 (6)
H22A0.94030.40680.70410.064*
H22B0.79800.29590.67980.064*
H22C0.76200.43550.72530.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0266 (3)0.0221 (2)0.0259 (2)0.00218 (18)0.00804 (19)0.00260 (18)
S20.0213 (2)0.0223 (2)0.0330 (3)0.00125 (17)0.00521 (19)0.00647 (19)
N10.0261 (9)0.0233 (7)0.0274 (9)0.0044 (6)0.0064 (7)0.0029 (6)
N20.0258 (9)0.0230 (7)0.0263 (9)0.0023 (6)0.0047 (7)0.0028 (6)
N30.0282 (10)0.0219 (7)0.0296 (10)0.0016 (6)0.0088 (7)0.0014 (6)
N40.0230 (9)0.0245 (7)0.0306 (9)0.0001 (6)0.0001 (7)0.0027 (7)
N50.0265 (10)0.0428 (10)0.0273 (10)0.0012 (8)0.0025 (8)0.0063 (8)
N60.0294 (10)0.0259 (8)0.0419 (12)0.0045 (7)0.0008 (9)0.0063 (7)
C10.0196 (10)0.0277 (9)0.0197 (10)0.0042 (7)0.0000 (8)0.0017 (7)
C20.0278 (12)0.0357 (11)0.0533 (17)0.0040 (9)0.0143 (11)0.0082 (10)
C30.0346 (12)0.0245 (9)0.0316 (12)0.0037 (8)0.0045 (9)0.0000 (8)
C40.0332 (12)0.0229 (9)0.0346 (12)0.0009 (8)0.0043 (9)0.0012 (8)
C50.0273 (11)0.0335 (11)0.0375 (12)0.0011 (8)0.0121 (9)0.0009 (8)
C60.0199 (10)0.0250 (8)0.0275 (11)0.0011 (7)0.0049 (8)0.0009 (7)
C70.0262 (11)0.0344 (10)0.0296 (11)0.0053 (8)0.0006 (9)0.0037 (9)
C80.0327 (13)0.0448 (12)0.0244 (11)0.0012 (9)0.0054 (9)0.0046 (9)
C90.0332 (13)0.0322 (10)0.0352 (13)0.0012 (8)0.0117 (10)0.0105 (9)
C100.0259 (11)0.0225 (8)0.0365 (12)0.0008 (7)0.0085 (9)0.0012 (8)
C110.0172 (9)0.0244 (8)0.0255 (10)0.0021 (7)0.0048 (7)0.0001 (7)
C120.0214 (10)0.0276 (9)0.0235 (10)0.0028 (7)0.0029 (8)0.0006 (7)
C130.0316 (12)0.0257 (9)0.0352 (12)0.0040 (8)0.0055 (9)0.0040 (8)
C140.0332 (13)0.0407 (11)0.0368 (13)0.0137 (9)0.0038 (10)0.0074 (9)
C150.0224 (11)0.0543 (13)0.0326 (12)0.0061 (10)0.0036 (9)0.0097 (10)
C160.0234 (11)0.0409 (11)0.0292 (11)0.0032 (8)0.0039 (8)0.0061 (9)
C170.0250 (10)0.0285 (9)0.0198 (9)0.0021 (7)0.0032 (7)0.0014 (7)
C180.0182 (10)0.0292 (9)0.0311 (11)0.0012 (7)0.0025 (8)0.0017 (7)
C190.0423 (14)0.0529 (13)0.0310 (13)0.0202 (11)0.0100 (10)0.0038 (10)
C200.0300 (13)0.0553 (14)0.0368 (14)0.0031 (10)0.0060 (10)0.0198 (11)
C210.0261 (12)0.0350 (11)0.0524 (16)0.0036 (8)0.0071 (10)0.0190 (10)
C220.0491 (16)0.0256 (10)0.0465 (15)0.0001 (9)0.0020 (12)0.0008 (9)
Geometric parameters (Å, º) top
S1—C111.786 (2)C6—C111.409 (3)
S1—S22.0435 (7)C7—C81.390 (3)
S2—C121.781 (2)C7—H7A0.9500
N1—C11.299 (3)C8—C91.391 (3)
N1—C61.401 (3)C8—H8A0.9500
N2—C11.383 (3)C9—C101.384 (3)
N2—C21.442 (3)C9—H9A0.9500
N2—C31.463 (3)C10—C111.385 (3)
N3—C11.362 (3)C10—H10A0.9500
N3—C51.454 (3)C12—C131.388 (3)
N3—C41.466 (2)C12—C171.407 (3)
N4—C181.297 (3)C13—C141.394 (3)
N4—C171.401 (3)C13—H13A0.9500
N5—C181.375 (3)C14—C151.380 (4)
N5—C191.457 (3)C14—H14A0.9500
N5—C201.475 (3)C15—C161.382 (3)
N6—C181.373 (3)C15—H15A0.9500
N6—C221.435 (3)C16—C171.401 (3)
N6—C211.448 (3)C16—H16A0.9500
C2—H2A0.9800C19—H19A0.9800
C2—H2B0.9800C19—H19B0.9800
C2—H2C0.9800C19—H19C0.9800
C3—C41.513 (3)C20—C211.507 (4)
C3—H3A0.9900C20—H20A0.9900
C3—H3B0.9900C20—H20B0.9900
C4—H4A0.9900C21—H21A0.9900
C4—H4B0.9900C21—H21B0.9900
C5—H5A0.9800C22—H22A0.9800
C5—H5B0.9800C22—H22B0.9800
C5—H5C0.9800C22—H22C0.9800
C6—C71.394 (3)
C11—S1—S2104.29 (6)C10—C9—H9A120.2
C12—S2—S1105.15 (7)C8—C9—H9A120.2
C1—N1—C6123.32 (19)C9—C10—C11120.54 (19)
C1—N2—C2120.12 (17)C9—C10—H10A119.7
C1—N2—C3109.76 (19)C11—C10—H10A119.7
C2—N2—C3118.61 (18)C10—C11—C6120.6 (2)
C1—N3—C5124.81 (16)C10—C11—S1124.58 (16)
C1—N3—C4110.31 (18)C6—C11—S1114.86 (15)
C5—N3—C4117.79 (18)C13—C12—C17120.3 (2)
C18—N4—C17121.27 (18)C13—C12—S2123.86 (17)
C18—N5—C19120.3 (2)C17—C12—S2115.80 (15)
C18—N5—C20109.09 (19)C12—C13—C14120.5 (2)
C19—N5—C20115.5 (2)C12—C13—H13A119.8
C18—N6—C22121.73 (19)C14—C13—H13A119.8
C18—N6—C21110.3 (2)C15—C14—C13119.5 (2)
C22—N6—C21120.65 (19)C15—C14—H14A120.3
N1—C1—N3131.85 (19)C13—C14—H14A120.3
N1—C1—N2119.5 (2)C14—C15—C16120.6 (2)
N3—C1—N2108.66 (17)C14—C15—H15A119.7
N2—C2—H2A109.5C16—C15—H15A119.7
N2—C2—H2B109.5C15—C16—C17121.0 (2)
H2A—C2—H2B109.5C15—C16—H16A119.5
N2—C2—H2C109.5C17—C16—H16A119.5
H2A—C2—H2C109.5N4—C17—C16122.52 (19)
H2B—C2—H2C109.5N4—C17—C12119.12 (19)
N2—C3—C4102.41 (16)C16—C17—C12118.11 (18)
N2—C3—H3A111.3N4—C18—N6121.5 (2)
C4—C3—H3A111.3N4—C18—N5130.2 (2)
N2—C3—H3B111.3N6—C18—N5108.33 (18)
C4—C3—H3B111.3N5—C19—H19A109.5
H3A—C3—H3B109.2N5—C19—H19B109.5
N3—C4—C3102.73 (17)H19A—C19—H19B109.5
N3—C4—H4A111.2N5—C19—H19C109.5
C3—C4—H4A111.2H19A—C19—H19C109.5
N3—C4—H4B111.2H19B—C19—H19C109.5
C3—C4—H4B111.2N5—C20—C21102.4 (2)
H4A—C4—H4B109.1N5—C20—H20A111.3
N3—C5—H5A109.5C21—C20—H20A111.3
N3—C5—H5B109.5N5—C20—H20B111.3
H5A—C5—H5B109.5C21—C20—H20B111.3
N3—C5—H5C109.5H20A—C20—H20B109.2
H5A—C5—H5C109.5N6—C21—C20101.97 (19)
H5B—C5—H5C109.5N6—C21—H21A111.4
C7—C6—N1124.29 (18)C20—C21—H21A111.4
C7—C6—C11118.10 (18)N6—C21—H21B111.4
N1—C6—C11117.25 (19)C20—C21—H21B111.4
C8—C7—C6121.1 (2)H21A—C21—H21B109.2
C8—C7—H7A119.4N6—C22—H22A109.5
C6—C7—H7A119.4N6—C22—H22B109.5
C7—C8—C9120.0 (2)H22A—C22—H22B109.5
C7—C8—H8A120.0N6—C22—H22C109.5
C9—C8—H8A120.0H22A—C22—H22C109.5
C10—C9—C8119.7 (2)H22B—C22—H22C109.5
C11—S1—S2—C1284.65 (10)S1—S2—C12—C139.0 (2)
C6—N1—C1—N312.6 (3)S1—S2—C12—C17172.24 (15)
C6—N1—C1—N2169.64 (18)C17—C12—C13—C141.0 (4)
C5—N3—C1—N121.9 (4)S2—C12—C13—C14179.77 (19)
C4—N3—C1—N1171.5 (2)C12—C13—C14—C150.4 (4)
C5—N3—C1—N2156.0 (2)C13—C14—C15—C160.0 (4)
C4—N3—C1—N26.4 (2)C14—C15—C16—C170.1 (4)
C2—N2—C1—N128.6 (3)C18—N4—C17—C1645.6 (3)
C3—N2—C1—N1171.40 (18)C18—N4—C17—C12140.4 (2)
C2—N2—C1—N3153.2 (2)C15—C16—C17—N4174.7 (2)
C3—N2—C1—N310.4 (2)C15—C16—C17—C120.6 (3)
C1—N2—C3—C421.8 (2)C13—C12—C17—N4175.4 (2)
C2—N2—C3—C4165.25 (19)S2—C12—C17—N45.8 (3)
C1—N3—C4—C319.5 (2)C13—C12—C17—C161.1 (3)
C5—N3—C4—C3171.50 (19)S2—C12—C17—C16179.95 (17)
N2—C3—C4—N323.9 (2)C17—N4—C18—N6156.8 (2)
C1—N1—C6—C750.4 (3)C17—N4—C18—N524.8 (4)
C1—N1—C6—C11136.7 (2)C22—N6—C18—N419.0 (4)
N1—C6—C7—C8174.8 (2)C21—N6—C18—N4169.2 (2)
C11—C6—C7—C82.0 (3)C22—N6—C18—N5162.3 (2)
C6—C7—C8—C90.9 (4)C21—N6—C18—N512.1 (3)
C7—C8—C9—C100.2 (4)C19—N5—C18—N434.9 (4)
C8—C9—C10—C110.6 (3)C20—N5—C18—N4171.7 (2)
C9—C10—C11—C61.7 (3)C19—N5—C18—N6143.7 (2)
C9—C10—C11—S1178.80 (17)C20—N5—C18—N66.8 (3)
C7—C6—C11—C102.3 (3)C18—N5—C20—C2121.7 (3)
N1—C6—C11—C10175.74 (19)C19—N5—C20—C21160.8 (2)
C7—C6—C11—S1178.12 (16)C18—N6—C21—C2025.1 (3)
N1—C6—C11—S14.7 (2)C22—N6—C21—C20175.6 (2)
S2—S1—C11—C100.55 (19)N5—C20—C21—N627.1 (2)
S2—S1—C11—C6178.97 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N2i0.952.543.463 (3)165
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC22H28N6S2
Mr440.62
Crystal system, space groupMonoclinic, Pc
Temperature (K)120
a, b, c (Å)8.2794 (12), 10.1065 (14), 13.7018 (19)
β (°) 104.333 (3)
V3)1110.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.42 × 0.39 × 0.36
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.898, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
8801, 4209, 4074
Rint0.033
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.06
No. of reflections4209
No. of parameters276
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.23
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.34 (6)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXTL (Bruker, 2002), SHELXTL.

Selected geometric parameters (Å, º) top
S1—C111.786 (2)N3—C11.362 (3)
S1—S22.0435 (7)N4—C181.297 (3)
S2—C121.781 (2)N4—C171.401 (3)
N1—C11.299 (3)N5—C181.375 (3)
N1—C61.401 (3)N6—C181.373 (3)
N2—C11.383 (3)
C11—S1—S2104.29 (6)C1—N1—C6123.32 (19)
C12—S2—S1105.15 (7)C18—N4—C17121.27 (18)
C11—S1—S2—C1284.65 (10)S1—S2—C12—C139.0 (2)
S2—S1—C11—C100.55 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···N2i0.952.543.463 (3)164.8
Symmetry code: (i) x, y+1, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds