Download citation
Download citation
link to html
In the title compound, [Sn (C25H18N2O6)]n, the Sn atom shows a trigonal bipyramidal coordination with equatorial phenyl groups and axial carboxylates linking the metal atoms into a polymeric chain. The nitro groups are slightly twisted away from the attached aromatic ring. In the crystal structure, the chains are linked by inter­molecular C—H...O inter­actions, forming columns along the b axis. In addition, the crystal structure is further stabilized by inter­molecular π–π inter­actions, with centroid-to-centroid distance of 3.5538 (15) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807035556/bt2448sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807035556/bt2448Isup2.hkl
Contains datablock I

CCDC reference: 657631

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.038
  • wR factor = 0.120
  • Data-to-parameter ratio = 33.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT220_ALERT_2_C Large Non-Solvent O Ueq(max)/Ueq(min) ... 2.65 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Besides their significant industrial applications (Willem et al., 1997; Novelli et al., 1999; Gielen et al., 2000), organotin (IV) complexes are reported to exhibit antimicrobial and antitumour properties. Generally triphenyltin(IV) carboxylate complexes exist as monomeric structures with four-coordinate distorted tetrahedal or five-coordinate trigonal bypyramid geometries (Baul et al., 2001; Yeap & Teoh, 2003; Win et al., 2006). Recently, (3,5-dintrobenzoato)triphenyltin(IV) is reported to existed as a monomeric structure with four-coordinate distorted tetrahedral geometry (Win et al., 2006). Both the nitro groups are substituted at ortho and para positions of the benzene rings in (2,4-dinitrobenzoato)triphenyl(IV) complex whereas the dinitro groups occupy the meta position in (3,5-dinitrobenzoato)triphenyltin(IV) complex. In the crystal structure, the title molecules form polymeric chains along the a axis. As such, the complex obtained in this study exist as a polymeric structure with a five-coordinate trigonal bypyramid geometry (Scheme). The Sn coordination is a distorted trigonal bipyramid (scheme and Table 1). Bond lengths and angles in (I) (Figure 1) have normal values (Allen et al., 1987) and agree well with those found in related structures (Win et al., 2007). The nitro groups at C23 and C25 are slightly twisted away from attached benzene rings with torsion angle O3—N1—C25—C20 = -14.2 (3)°, and O5—N2—C23—C22 = -16.7 (4)°, respectively.

The intramolecular C8—H8A···O1 and C18—H18A···O1 interactions (Table 1 and figure 1) generate S(5) ring motifs (Bernstein et al., 1995). In the crystal structure, the molecules linked by intermolecular C17—H17A···O6, C21—H21A···O5, C12—H12A···O2 and C14—H14A···O2 interactions to form columns along the b axis (Figure 2). In addition, the crystal packing is further stabilized by the weak intermolecular π-π interactions involving the C1—C6 ring (centroid Cg1) and the C20—C25 (centroid Cg2) benzene rings with a Cg1···Cg2iv distance of 3.5538 (15)Å [symmetry code: iv (1 + x, y, z)].

Related literature top

For literature on hydrogen-bond motifs, see Bernstein et al. (1995). For data on bond lengths and angles, see Allen et al. (1987). For related literature, see: Baul et al. (2001); Gielen et al. (2000); Novelli et al. (1999); Willem et al. (1997); Win et al. (2006); Win et al. (2007); Yeap & Teoh (2003).

Experimental top

The complex (2,4-dinitrobenzoato)diphenyltin(IV) was obtained by heating under reflux a 1:1 molar mixture of triphenyltin(IV) hydroxide (1.10 g, 3 mmole) and 2,4-dinitrobenzoic acid (0.64 g, 3 mmole) in ethanol (50 ml) for two hours. A clear yellowish solution was isolated by filtration and kept in a bottle. After two weeks, some yellowish precipitate (1.38 g, 82.3% yield) were obtained which are then recrystallized. Melting point: 160.4 - 161.2°C. Analysis found for C25H18N2O6Sn: C, 53.31; H, 3.00; N, 4.91; Sn. 21.03%; calculated for C25H18N2O6Sn: C, 53.51; H, 3.23; N, 5.00; Sn, 21.15%. FTIR as KBr disc (cm-1): v(C—H) aromatic 3069, 3051, 3023; v(COO)as 1599, v(COO)s 1345, v(NO2) 1541, v(Sn—O) 453. 1H-NMR: δ: phenyl protons 7.47 - 7.50 (9H, m); 7.75 - 7.78 (6H, m); benzene 7.90 - 7.92 (1H, d, J = 8.4 Hz); 8.35 - 8.38 (1H, dd, J = 8.4 Hz); 8.60 - 8.61 (1H, d, 2.1 Hz)p.p.m.. 13C-NMR: δ:phenyl carbons Cipso 137.68 (655.6 Hz), Cortho 137.27 (48.9 Hz), Cmeta 129,66 (65.1 Hz), Cpara 131.17 (13.1 Hz); benzene 119.58, 127.26, 132.21, 134.58, 148,73, 148.97; COO 168.56 p.p.m.. 119Sn-NMR: δ: -81.04 p.p.m..

Refinement top

The H atoms were positional geometrically and treated as riding, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Besides their significant industrial applications (Willem et al., 1997; Novelli et al., 1999; Gielen et al., 2000), organotin (IV) complexes are reported to exhibit antimicrobial and antitumour properties. Generally triphenyltin(IV) carboxylate complexes exist as monomeric structures with four-coordinate distorted tetrahedal or five-coordinate trigonal bypyramid geometries (Baul et al., 2001; Yeap & Teoh, 2003; Win et al., 2006). Recently, (3,5-dintrobenzoato)triphenyltin(IV) is reported to existed as a monomeric structure with four-coordinate distorted tetrahedral geometry (Win et al., 2006). Both the nitro groups are substituted at ortho and para positions of the benzene rings in (2,4-dinitrobenzoato)triphenyl(IV) complex whereas the dinitro groups occupy the meta position in (3,5-dinitrobenzoato)triphenyltin(IV) complex. In the crystal structure, the title molecules form polymeric chains along the a axis. As such, the complex obtained in this study exist as a polymeric structure with a five-coordinate trigonal bypyramid geometry (Scheme). The Sn coordination is a distorted trigonal bipyramid (scheme and Table 1). Bond lengths and angles in (I) (Figure 1) have normal values (Allen et al., 1987) and agree well with those found in related structures (Win et al., 2007). The nitro groups at C23 and C25 are slightly twisted away from attached benzene rings with torsion angle O3—N1—C25—C20 = -14.2 (3)°, and O5—N2—C23—C22 = -16.7 (4)°, respectively.

The intramolecular C8—H8A···O1 and C18—H18A···O1 interactions (Table 1 and figure 1) generate S(5) ring motifs (Bernstein et al., 1995). In the crystal structure, the molecules linked by intermolecular C17—H17A···O6, C21—H21A···O5, C12—H12A···O2 and C14—H14A···O2 interactions to form columns along the b axis (Figure 2). In addition, the crystal packing is further stabilized by the weak intermolecular π-π interactions involving the C1—C6 ring (centroid Cg1) and the C20—C25 (centroid Cg2) benzene rings with a Cg1···Cg2iv distance of 3.5538 (15)Å [symmetry code: iv (1 + x, y, z)].

For literature on hydrogen-bond motifs, see Bernstein et al. (1995). For data on bond lengths and angles, see Allen et al. (1987). For related literature, see: Baul et al. (2001); Gielen et al. (2000); Novelli et al. (1999); Willem et al. (1997); Win et al. (2006); Win et al. (2007); Yeap & Teoh (2003).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. The dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. The intermolecular C—H···O hydrogen bonds are shown as dashed lines.
catena-Poly[[triphenyltin(IV)]-µ-2,4-dinitrobenzoato] top
Crystal data top
[Sn(C25H18N2O6)]F(000) = 1120
Mr = 561.10Dx = 1.661 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5968 reflections
a = 6.5835 (1) Åθ = 1.4–35.6°
b = 11.8399 (2) ŵ = 1.18 mm1
c = 29.0173 (4) ÅT = 100 K
β = 97.317 (1)°Block, colourless
V = 2243.42 (6) Å30.27 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10230 independent reflections
Radiation source: fine-focus sealed tube8104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 8.33 pixels mm-1θmax = 35.6°, θmin = 1.4°
ω scansh = 109
Absorption correction: multi-scan
SADABS (Bruker, 2005)
k = 1918
Tmin = 0.813, Tmax = 0.887l = 4747
45670 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0546P)2 + 2.2536P]
where P = (Fo2 + 2Fc2)/3
10230 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Sn(C25H18N2O6)]V = 2243.42 (6) Å3
Mr = 561.10Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5835 (1) ŵ = 1.18 mm1
b = 11.8399 (2) ÅT = 100 K
c = 29.0173 (4) Å0.27 × 0.14 × 0.10 mm
β = 97.317 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10230 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2005)
8104 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.887Rint = 0.047
45670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.10Δρmax = 0.77 e Å3
10230 reflectionsΔρmin = 0.87 e Å3
307 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.87124 (2)0.294273 (13)0.087817 (5)0.01171 (5)
O10.5266 (3)0.29990 (15)0.07927 (7)0.0159 (3)
O20.2108 (3)0.31893 (15)0.09542 (7)0.0163 (3)
O30.2851 (3)0.11530 (17)0.03396 (6)0.0215 (4)
O40.3619 (4)0.06212 (18)0.04299 (7)0.0272 (4)
O50.5299 (4)0.1099 (2)0.25504 (9)0.0421 (6)
O60.3845 (4)0.21551 (18)0.19930 (9)0.0334 (5)
N10.3405 (3)0.03299 (19)0.05774 (7)0.0160 (4)
N20.4504 (4)0.1246 (2)0.21479 (9)0.0243 (5)
C10.8850 (4)0.1206 (2)0.10719 (8)0.0140 (4)
C20.9165 (4)0.0846 (2)0.15348 (8)0.0147 (4)
H2A0.93140.13750.17730.018*
C30.9257 (4)0.0307 (2)0.16399 (9)0.0182 (4)
H3A0.94860.05400.19480.022*
C40.9008 (4)0.1108 (2)0.12863 (10)0.0205 (5)
H4A0.90630.18740.13580.025*
C50.8678 (4)0.0763 (2)0.08267 (9)0.0185 (5)
H5A0.85030.12970.05900.022*
C60.8607 (4)0.0389 (2)0.07174 (9)0.0164 (4)
H6A0.83970.06160.04080.020*
C70.8551 (4)0.3266 (2)0.01530 (8)0.0161 (4)
C80.6708 (4)0.3126 (2)0.01376 (9)0.0200 (5)
H8A0.55340.29140.00120.024*
C90.6616 (5)0.3300 (3)0.06136 (10)0.0280 (6)
H9A0.53790.32100.08040.034*
C100.8351 (6)0.3608 (3)0.08061 (10)0.0302 (7)
H10A0.82850.37250.11250.036*
C111.0176 (5)0.3741 (3)0.05225 (10)0.0279 (6)
H11A1.13440.39470.06510.034*
C121.0296 (4)0.3571 (2)0.00454 (10)0.0206 (5)
H12A1.15410.36610.01420.025*
C130.8637 (3)0.4209 (2)0.14002 (8)0.0142 (4)
C141.0354 (4)0.4420 (2)0.17288 (9)0.0216 (5)
H14A1.15140.39700.17340.026*
C151.0334 (5)0.5301 (3)0.20481 (10)0.0262 (6)
H15A1.14810.54300.22640.031*
C160.8629 (5)0.5983 (3)0.20472 (10)0.0258 (6)
H16A0.86330.65780.22570.031*
C170.6903 (5)0.5767 (3)0.17276 (10)0.0250 (5)
H17A0.57390.62130.17280.030*
C180.6912 (4)0.4891 (2)0.14096 (9)0.0189 (5)
H18A0.57490.47570.11990.023*
C190.3747 (3)0.2646 (2)0.09720 (8)0.0126 (4)
C200.3959 (3)0.1593 (2)0.12628 (8)0.0135 (4)
C210.4358 (4)0.1730 (2)0.17424 (9)0.0159 (4)
H21A0.44890.24540.18670.019*
C220.4562 (4)0.0801 (2)0.20357 (8)0.0180 (5)
H22A0.48430.08910.23560.022*
C230.4338 (4)0.0263 (2)0.18396 (9)0.0172 (4)
C240.3965 (4)0.0443 (2)0.13664 (9)0.0161 (4)
H24A0.38400.11680.12420.019*
C250.3789 (3)0.0502 (2)0.10870 (8)0.0131 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.00987 (7)0.01279 (7)0.01270 (7)0.00097 (5)0.00238 (5)0.00141 (5)
O10.0082 (7)0.0209 (8)0.0193 (8)0.0007 (6)0.0048 (6)0.0025 (7)
O20.0104 (7)0.0169 (8)0.0226 (9)0.0018 (6)0.0059 (6)0.0001 (7)
O30.0290 (10)0.0208 (9)0.0139 (8)0.0013 (8)0.0001 (7)0.0011 (7)
O40.0394 (12)0.0199 (9)0.0217 (10)0.0019 (9)0.0019 (8)0.0077 (8)
O50.0514 (16)0.0440 (15)0.0275 (12)0.0072 (12)0.0085 (11)0.0198 (11)
O60.0495 (15)0.0187 (10)0.0337 (12)0.0065 (10)0.0122 (11)0.0075 (9)
N10.0125 (8)0.0193 (10)0.0165 (9)0.0006 (7)0.0035 (7)0.0025 (7)
N20.0239 (11)0.0236 (11)0.0262 (12)0.0059 (9)0.0065 (9)0.0105 (9)
C10.0140 (9)0.0137 (9)0.0141 (10)0.0017 (8)0.0013 (7)0.0000 (8)
C20.0148 (10)0.0161 (10)0.0131 (9)0.0010 (8)0.0013 (7)0.0001 (8)
C30.0176 (10)0.0193 (11)0.0178 (11)0.0022 (9)0.0029 (8)0.0058 (9)
C40.0228 (12)0.0127 (10)0.0260 (13)0.0013 (9)0.0033 (10)0.0040 (9)
C50.0188 (11)0.0164 (11)0.0210 (12)0.0010 (9)0.0054 (9)0.0034 (9)
C60.0177 (10)0.0178 (11)0.0140 (10)0.0000 (8)0.0024 (8)0.0005 (8)
C70.0223 (11)0.0144 (10)0.0125 (9)0.0016 (9)0.0053 (8)0.0016 (8)
C80.0195 (11)0.0228 (12)0.0176 (11)0.0028 (9)0.0017 (9)0.0014 (9)
C90.0388 (17)0.0268 (14)0.0169 (12)0.0035 (13)0.0024 (11)0.0021 (10)
C100.055 (2)0.0230 (13)0.0135 (11)0.0108 (13)0.0079 (12)0.0050 (10)
C110.0412 (17)0.0230 (13)0.0232 (13)0.0080 (12)0.0178 (12)0.0075 (10)
C120.0255 (12)0.0177 (11)0.0202 (12)0.0017 (10)0.0086 (9)0.0045 (9)
C130.0115 (9)0.0162 (10)0.0156 (10)0.0004 (8)0.0050 (7)0.0020 (8)
C140.0221 (12)0.0254 (13)0.0170 (11)0.0004 (10)0.0015 (9)0.0049 (9)
C150.0318 (15)0.0299 (14)0.0166 (11)0.0044 (12)0.0021 (10)0.0060 (10)
C160.0315 (15)0.0254 (14)0.0218 (13)0.0005 (11)0.0084 (11)0.0063 (10)
C170.0306 (14)0.0220 (13)0.0236 (13)0.0078 (11)0.0076 (11)0.0014 (10)
C180.0223 (12)0.0175 (11)0.0176 (11)0.0041 (9)0.0049 (9)0.0010 (9)
C190.0104 (9)0.0134 (9)0.0137 (9)0.0013 (7)0.0004 (7)0.0010 (7)
C200.0111 (9)0.0160 (10)0.0132 (9)0.0007 (8)0.0007 (7)0.0003 (8)
C210.0144 (10)0.0176 (10)0.0155 (10)0.0006 (8)0.0010 (8)0.0021 (8)
C220.0157 (10)0.0271 (12)0.0112 (9)0.0029 (9)0.0013 (8)0.0016 (9)
C230.0139 (10)0.0191 (11)0.0189 (11)0.0039 (8)0.0037 (8)0.0049 (9)
C240.0138 (9)0.0167 (10)0.0183 (10)0.0020 (8)0.0037 (8)0.0014 (8)
C250.0105 (9)0.0161 (10)0.0132 (9)0.0004 (7)0.0030 (7)0.0010 (8)
Geometric parameters (Å, º) top
Sn1—C72.128 (2)C9—C101.383 (5)
Sn1—C12.130 (2)C9—H9A0.9300
Sn1—C132.136 (2)C10—C111.376 (5)
Sn1—O2i2.2370 (18)C10—H10A0.9300
Sn1—O12.2517 (17)C11—C121.391 (4)
O1—C191.257 (3)C11—H11A0.9300
O2—C191.252 (3)C12—H12A0.9300
O2—Sn1ii2.2370 (18)C13—C181.397 (3)
O3—N11.223 (3)C13—C141.405 (3)
O4—N11.219 (3)C14—C151.396 (4)
O5—N21.230 (3)C14—H14A0.9300
O6—N21.224 (3)C15—C161.383 (4)
N1—C251.482 (3)C15—H15A0.9300
N2—C231.463 (3)C16—C171.396 (4)
C1—C21.400 (3)C16—H16A0.9300
C1—C61.406 (3)C17—C181.388 (4)
C2—C31.398 (4)C17—H17A0.9300
C2—H2A0.9300C18—H18A0.9300
C3—C41.392 (4)C19—C201.502 (3)
C3—H3A0.9300C20—C251.388 (3)
C4—C51.385 (4)C20—C211.392 (3)
C4—H4A0.9300C21—C221.387 (4)
C5—C61.400 (4)C21—H21A0.9300
C5—H5A0.9300C22—C231.382 (4)
C6—H6A0.9300C22—H22A0.9300
C7—C121.396 (4)C23—C241.380 (4)
C7—C81.397 (4)C24—C251.378 (3)
C8—C91.390 (4)C24—H24A0.9300
C8—H8A0.9300
C7—Sn1—C1115.46 (9)C9—C10—H10A120.3
C7—Sn1—C13124.90 (9)C10—C11—C12120.9 (3)
C1—Sn1—C13119.61 (9)C10—C11—H11A119.6
C7—Sn1—O2i89.85 (9)C12—C11—H11A119.6
C1—Sn1—O2i95.25 (8)C11—C12—C7120.1 (3)
C13—Sn1—O2i87.22 (8)C11—C12—H12A119.9
C7—Sn1—O187.89 (9)C7—C12—H12A119.9
C1—Sn1—O193.78 (8)C18—C13—C14118.0 (2)
C13—Sn1—O186.75 (8)C18—C13—Sn1120.80 (18)
O2i—Sn1—O1170.79 (7)C14—C13—Sn1121.12 (18)
C19—O1—Sn1142.06 (16)C15—C14—C13120.6 (3)
C19—O2—Sn1ii141.46 (17)C15—C14—H14A119.7
O4—N1—O3125.3 (2)C13—C14—H14A119.7
O4—N1—C25117.7 (2)C16—C15—C14120.8 (3)
O3—N1—C25117.0 (2)C16—C15—H15A119.6
O6—N2—O5124.1 (3)C14—C15—H15A119.6
O6—N2—C23118.6 (2)C15—C16—C17119.1 (3)
O5—N2—C23117.3 (3)C15—C16—H16A120.4
C2—C1—C6118.8 (2)C17—C16—H16A120.4
C2—C1—Sn1122.94 (18)C18—C17—C16120.4 (3)
C6—C1—Sn1118.29 (17)C18—C17—H17A119.8
C3—C2—C1120.3 (2)C16—C17—H17A119.8
C3—C2—H2A119.9C17—C18—C13121.2 (3)
C1—C2—H2A119.9C17—C18—H18A119.4
C4—C3—C2120.5 (2)C13—C18—H18A119.4
C4—C3—H3A119.8O2—C19—O1122.6 (2)
C2—C3—H3A119.8O2—C19—C20117.9 (2)
C5—C4—C3119.8 (2)O1—C19—C20119.1 (2)
C5—C4—H4A120.1C25—C20—C21118.2 (2)
C3—C4—H4A120.1C25—C20—C19124.6 (2)
C4—C5—C6120.2 (2)C21—C20—C19117.2 (2)
C4—C5—H5A119.9C22—C21—C20120.8 (2)
C6—C5—H5A119.9C22—C21—H21A119.6
C5—C6—C1120.5 (2)C20—C21—H21A119.6
C5—C6—H6A119.8C23—C22—C21118.2 (2)
C1—C6—H6A119.8C23—C22—H22A120.9
C12—C7—C8118.6 (2)C21—C22—H22A120.9
C12—C7—Sn1120.95 (19)C24—C23—C22123.1 (2)
C8—C7—Sn1120.4 (2)C24—C23—N2118.4 (2)
C9—C8—C7120.5 (3)C22—C23—N2118.5 (2)
C9—C8—H8A119.8C25—C24—C23116.8 (2)
C7—C8—H8A119.8C25—C24—H24A121.6
C10—C9—C8120.5 (3)C23—C24—H24A121.6
C10—C9—H9A119.8C24—C25—C20122.9 (2)
C8—C9—H9A119.8C24—C25—N1117.8 (2)
C11—C10—C9119.4 (3)C20—C25—N1119.4 (2)
C11—C10—H10A120.3
C7—Sn1—O1—C19154.9 (3)C1—Sn1—C13—C1469.1 (2)
C1—Sn1—O1—C1939.5 (3)O2i—Sn1—C13—C1425.4 (2)
C13—Sn1—O1—C1980.0 (3)O1—Sn1—C13—C14161.6 (2)
C7—Sn1—C1—C2173.48 (19)C18—C13—C14—C151.1 (4)
C13—Sn1—C1—C28.6 (2)Sn1—C13—C14—C15175.6 (2)
O2i—Sn1—C1—C281.1 (2)C13—C14—C15—C160.1 (5)
O1—Sn1—C1—C297.1 (2)C14—C15—C16—C171.2 (5)
C7—Sn1—C1—C66.7 (2)C15—C16—C17—C181.1 (5)
C13—Sn1—C1—C6171.17 (17)C16—C17—C18—C130.1 (4)
O2i—Sn1—C1—C699.04 (19)C14—C13—C18—C171.2 (4)
O1—Sn1—C1—C682.76 (19)Sn1—C13—C18—C17175.5 (2)
C6—C1—C2—C30.7 (4)Sn1ii—O2—C19—O1143.0 (2)
Sn1—C1—C2—C3179.48 (18)Sn1ii—O2—C19—C2043.6 (4)
C1—C2—C3—C40.9 (4)Sn1—O1—C19—O2149.4 (2)
C2—C3—C4—C50.4 (4)Sn1—O1—C19—C2023.9 (4)
C3—C4—C5—C60.4 (4)O2—C19—C20—C25103.4 (3)
C4—C5—C6—C10.6 (4)O1—C19—C20—C2583.0 (3)
C2—C1—C6—C50.0 (4)O2—C19—C20—C2176.7 (3)
Sn1—C1—C6—C5179.79 (19)O1—C19—C20—C2196.9 (3)
C1—Sn1—C7—C1299.5 (2)C25—C20—C21—C220.5 (4)
C13—Sn1—C7—C1282.8 (2)C19—C20—C21—C22179.6 (2)
O2i—Sn1—C7—C123.7 (2)C20—C21—C22—C230.7 (4)
O1—Sn1—C7—C12167.3 (2)C21—C22—C23—C241.5 (4)
C1—Sn1—C7—C877.5 (2)C21—C22—C23—N2178.6 (2)
C13—Sn1—C7—C8100.2 (2)O6—N2—C23—C2417.0 (4)
O2i—Sn1—C7—C8173.3 (2)O5—N2—C23—C24163.3 (3)
O1—Sn1—C7—C815.7 (2)O6—N2—C23—C22163.1 (3)
C12—C7—C8—C90.8 (4)O5—N2—C23—C2216.7 (4)
Sn1—C7—C8—C9177.8 (2)C22—C23—C24—C251.0 (4)
C7—C8—C9—C100.4 (4)N2—C23—C24—C25179.1 (2)
C8—C9—C10—C110.0 (5)C23—C24—C25—C200.3 (4)
C9—C10—C11—C120.1 (5)C23—C24—C25—N1179.5 (2)
C10—C11—C12—C70.3 (4)C21—C20—C25—C241.0 (4)
C8—C7—C12—C110.7 (4)C19—C20—C25—C24179.1 (2)
Sn1—C7—C12—C11177.7 (2)C21—C20—C25—N1178.8 (2)
C7—Sn1—C13—C1863.3 (2)C19—C20—C25—N11.1 (3)
C1—Sn1—C13—C18114.3 (2)O4—N1—C25—C2412.5 (3)
O2i—Sn1—C13—C18151.2 (2)O3—N1—C25—C24165.9 (2)
O1—Sn1—C13—C1821.8 (2)O4—N1—C25—C20167.4 (2)
C7—Sn1—C13—C14113.3 (2)O3—N1—C25—C2014.2 (3)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10.932.372.977 (3)123
C18—H18A···O10.932.392.984 (3)121
C12—H12A···O2i0.932.403.026 (3)124
C14—H14A···O2i0.932.523.028 (3)115
C17—H17A···O6iii0.932.473.331 (4)153
C21—H21A···O5iv0.932.403.279 (3)158
Symmetry codes: (i) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C25H18N2O6)]
Mr561.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.5835 (1), 11.8399 (2), 29.0173 (4)
β (°) 97.317 (1)
V3)2243.42 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.27 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 2005)
Tmin, Tmax0.813, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
45670, 10230, 8104
Rint0.047
(sin θ/λ)max1)0.818
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.120, 1.10
No. of reflections10230
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.87

Computer programs: APEX2 (Bruker, 2005), APEX2, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Sn1—C72.128 (2)Sn1—O2i2.2370 (18)
Sn1—C12.130 (2)Sn1—O12.2517 (17)
Sn1—C132.136 (2)
C7—Sn1—C1115.46 (9)C13—Sn1—O2i87.22 (8)
C7—Sn1—C13124.90 (9)C7—Sn1—O187.89 (9)
C1—Sn1—C13119.61 (9)C1—Sn1—O193.78 (8)
C7—Sn1—O2i89.85 (9)C13—Sn1—O186.75 (8)
C1—Sn1—O2i95.25 (8)O2i—Sn1—O1170.79 (7)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···O10.932.372.977 (3)123
C18—H18A···O10.932.392.984 (3)121
C12—H12A···O2i0.932.403.026 (3)124
C14—H14A···O2i0.932.523.028 (3)115
C17—H17A···O6ii0.932.473.331 (4)153
C21—H21A···O5iii0.932.403.279 (3)158
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds