Download citation
Download citation
link to html
The title complex, K[V(C8H3NO6)O2]·H2O, was synthesized by reacting 4-carboxy­pyridine-2,6-dicarboxylic acid (contaminated as a potassium salt) with NH4VO3 in aqueous solution. The title complex, with a vanadium(V) metal center, is a distorted square-based pyramid. Its structure consists of chains of the anionic complexes in the direction of the b axis connected by potassium-oxygen inter­actions which range from 2.5981 (18) to 3.0909 (18) Å. These chains are linked to each other by hydrogen bonding between the O atoms of the complex and the water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031418/cf2108sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031418/cf2108Isup2.hkl
Contains datablock I

CCDC reference: 657525

Key indicators

  • Single-crystal X-ray study
  • T = 153 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.032
  • wR factor = 0.079
  • Data-to-parameter ratio = 11.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.25 Ratio
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for V1 (4) 4.76
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Pyridine-2,6-dicarboxylic acid (dipicolinic acid, abbreviated as H2dipic) has been found to be an interesting and versatile ligand for several reasons: (1) it can function as a tridentate ligand; (2) the carboxylate groups sometimes bridge two metal atoms (Cingi et al., 1971); (3) coordination to a metal atom can occur through dianionic (dipic2-) (Lukes & Jurecek, 1948, Dutta & Ghosh, 1967, Drew et al., 1970), monoanionic (Hdipic-) (Murtha & Walton, 1973, Gaw et al., 1971), or neutral (H2dipic) forms of this ligand (Drew et al., 1970). Based on these facts, a large number of divalent or trivalent transition metal and lanthanide(III) complexes of dipicolinic acid have been studied (Payne et al., 2007, Cassellato & Vigato, 1978, D'Ascenzo et al., 1978, Ghosh et al., 1978, Furst et al., 1978). Recently, a number of cobalt- and vanadium-containing complexes with either 4-hydroxypyridine-2,6-dicarboxylic acid or dipicolinic acid as ligand, were reported to be insulin-like in nature (Crans, Mahroof-Tahir et al., 2003, Crans, Yang et al., 2003, Crans et al., 2000, Yang et al., 2002).As part of our interest in the coordination chemistry of analogues of dipicolinic acid, we now extend this chemistry to include the structural elucidation of the [VO2(dipic-CO2H]- anion. The title complex, with a vanadium(V) metal centre, is a distorted square-based pyramid.

Related literature top

For related literature, see: Cassellato & Vigato (1978); Crans et al. (2000); Crans, Mahroof-Tahir et al. (2003); Crans, Yang et al. (2003); D'Ascenzo et al. (1978); Drew et al. (1970); Dutta & Ghosh (1967); Furst et al. (1978); Gaw et al. (1971); Ghosh et al. (1978); Lukes & Jurecek (1948); Murtha & Walton (1973); Payne et al. (2007); Syper et al. (1980); Yang et al. (2002).

For related literature, see: Cingi et al. (1971).

Experimental top

H2dipic-CO2H was synthesized by the literature procedure (Syper et al., 1980). Deionized water (20 cm3) was added to a mixture of H2dipic-CO2H (3.15 g, 14.8 mmol) and NH4VO3 (1.74 g, 14.9 mmol) in a 50 cm3 beaker. The mixture was then heated to 353–363 K until the solution became clear yellow; while hot, the pH of the solution was reduced to 1.1 with 2 M HCl. The mixture was then heated for an additional 15 minutes and filtered to give a bright yellow-orange solution. Upon standing, a yellowish-white solid was formed. The crude product was filtered off and recrystallized from a minimum of hot water to give a solid, which was found to be the potassium salt, K[VO2(dipic-CO2H].H2O, as confirmed by X-ray crystallography.

FT IR (cm-1): 3470 (br, ν (OH)), 1682 (versus, νas(CO2-)), and 928 (versus, ν (V=O)). 51V NMR (H2O): δ = -533 p.p.m.

Refinement top

Positions of the water H atoms were determined from a difference Fourier map and their coordinates were refined freely. All remaining H atoms were geometrically positioned and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, O—H = 0.83 Å, and Uiso(H) = 1.2Ueq(C,O).

Structure description top

Pyridine-2,6-dicarboxylic acid (dipicolinic acid, abbreviated as H2dipic) has been found to be an interesting and versatile ligand for several reasons: (1) it can function as a tridentate ligand; (2) the carboxylate groups sometimes bridge two metal atoms (Cingi et al., 1971); (3) coordination to a metal atom can occur through dianionic (dipic2-) (Lukes & Jurecek, 1948, Dutta & Ghosh, 1967, Drew et al., 1970), monoanionic (Hdipic-) (Murtha & Walton, 1973, Gaw et al., 1971), or neutral (H2dipic) forms of this ligand (Drew et al., 1970). Based on these facts, a large number of divalent or trivalent transition metal and lanthanide(III) complexes of dipicolinic acid have been studied (Payne et al., 2007, Cassellato & Vigato, 1978, D'Ascenzo et al., 1978, Ghosh et al., 1978, Furst et al., 1978). Recently, a number of cobalt- and vanadium-containing complexes with either 4-hydroxypyridine-2,6-dicarboxylic acid or dipicolinic acid as ligand, were reported to be insulin-like in nature (Crans, Mahroof-Tahir et al., 2003, Crans, Yang et al., 2003, Crans et al., 2000, Yang et al., 2002).As part of our interest in the coordination chemistry of analogues of dipicolinic acid, we now extend this chemistry to include the structural elucidation of the [VO2(dipic-CO2H]- anion. The title complex, with a vanadium(V) metal centre, is a distorted square-based pyramid.

For related literature, see: Cassellato & Vigato (1978); Crans et al. (2000); Crans, Mahroof-Tahir et al. (2003); Crans, Yang et al. (2003); D'Ascenzo et al. (1978); Drew et al. (1970); Dutta & Ghosh (1967); Furst et al. (1978); Gaw et al. (1971); Ghosh et al. (1978); Lukes & Jurecek (1948); Murtha & Walton (1973); Payne et al. (2007); Syper et al. (1980); Yang et al. (2002).

For related literature, see: Cingi et al. (1971).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid drawing (50% probability level) of the vanadate complex.
[Figure 2] Fig. 2. The complex-potassium network. [Symmetry codes: (A) -x, 1/2 + y, 1/2 - z; (B) -1/2 + x, 1/2 + y, z; (C) 1/2 + x, 1/2 + y, z.]
Potassium (4-carboxypyridine-2,6-dicarboxylato)dioxidovanadate(V) monohydrate top
Crystal data top
K[V(C8H3NO6)O2]·H2ODx = 1.985 Mg m3
Mr = 349.17Mo Kα radiation, λ = 0.7107 Å
Orthorhombic, PbcaCell parameters from 8517 reflections
a = 7.8086 (16) Åθ = 3.1–26.4°
b = 16.342 (3) ŵ = 1.25 mm1
c = 18.316 (4) ÅT = 153 K
V = 2337.2 (8) Å3Plate, colorless
Z = 80.50 × 0.50 × 0.12 mm
F(000) = 1392
Data collection top
Rigaku Mercury CCD
diffractometer
2099 independent reflections
Radiation source: Sealed Tube1951 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.034
Detector resolution: 14.6306 pixels mm-1θmax = 25.2°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(REQAB; Rigaku/MSC, 1999)
k = 1919
Tmin = 0.573, Tmax = 0.864l = 2121
17213 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0337P)2 + 2.9965P]
where P = (Fo2 + 2Fc2)/3
2099 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
K[V(C8H3NO6)O2]·H2OV = 2337.2 (8) Å3
Mr = 349.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.8086 (16) ŵ = 1.25 mm1
b = 16.342 (3) ÅT = 153 K
c = 18.316 (4) Å0.50 × 0.50 × 0.12 mm
Data collection top
Rigaku Mercury CCD
diffractometer
2099 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku/MSC, 1999)
1951 reflections with I > 2σ(I)
Tmin = 0.573, Tmax = 0.864Rint = 0.034
17213 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.38 e Å3
2099 reflectionsΔρmin = 0.42 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.01940 (5)0.56611 (2)0.17052 (2)0.01377 (14)
K10.20989 (6)0.21723 (3)0.20644 (3)0.02000 (16)
O10.1877 (2)0.65071 (9)0.13611 (9)0.0165 (3)
O20.0321 (2)0.45032 (10)0.19712 (9)0.0187 (4)
O30.4445 (2)0.67819 (10)0.08618 (9)0.0192 (4)
O40.0627 (2)0.32230 (10)0.21357 (9)0.0203 (4)
O50.0230 (2)0.60987 (10)0.24834 (9)0.0192 (4)
O60.1336 (2)0.58848 (10)0.11431 (9)0.0207 (4)
O70.7845 (2)0.40826 (10)0.03885 (9)0.0199 (4)
H70.87210.38040.03250.024*
O80.6847 (2)0.29294 (10)0.09009 (9)0.0219 (4)
O91.0655 (2)0.33250 (12)0.02454 (11)0.0209 (4)
H9A1.067 (5)0.288 (2)0.0436 (19)0.038 (10)*
H9B1.104 (5)0.333 (2)0.017 (2)0.058 (13)*
N10.2394 (2)0.50057 (11)0.14296 (10)0.0138 (4)
C10.3378 (3)0.63102 (14)0.11050 (12)0.0153 (5)
C20.3713 (3)0.54026 (14)0.11337 (12)0.0145 (5)
C30.5159 (3)0.49909 (14)0.09037 (12)0.0146 (5)
H30.61120.52770.06940.018*
C40.5181 (3)0.41440 (15)0.09881 (12)0.0157 (5)
C50.3811 (3)0.37328 (14)0.13113 (12)0.0162 (5)
H50.38280.31500.13770.019*
C60.2425 (3)0.42000 (14)0.15330 (12)0.0151 (5)
C70.0808 (3)0.39222 (14)0.19098 (13)0.0173 (5)
C80.6716 (3)0.36540 (14)0.07538 (12)0.0169 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0131 (2)0.0131 (2)0.0151 (2)0.00022 (14)0.00020 (15)0.00044 (15)
K10.0174 (3)0.0170 (3)0.0256 (3)0.00151 (19)0.0029 (2)0.0042 (2)
O10.0159 (8)0.0123 (8)0.0212 (8)0.0005 (6)0.0008 (7)0.0006 (7)
O20.0163 (8)0.0155 (8)0.0244 (9)0.0001 (7)0.0035 (7)0.0029 (7)
O30.0183 (8)0.0152 (8)0.0242 (9)0.0039 (7)0.0023 (7)0.0025 (7)
O40.0220 (9)0.0129 (9)0.0260 (9)0.0027 (7)0.0025 (7)0.0023 (7)
O50.0211 (9)0.0174 (9)0.0191 (8)0.0023 (7)0.0032 (7)0.0016 (7)
O60.0182 (8)0.0208 (9)0.0230 (9)0.0033 (7)0.0042 (7)0.0044 (7)
O70.0165 (8)0.0204 (9)0.0228 (9)0.0025 (7)0.0029 (7)0.0001 (7)
O80.0241 (9)0.0184 (9)0.0231 (9)0.0042 (7)0.0006 (7)0.0025 (7)
O90.0223 (9)0.0196 (10)0.0208 (10)0.0035 (7)0.0036 (7)0.0025 (8)
N10.0158 (9)0.0128 (10)0.0128 (9)0.0006 (7)0.0003 (8)0.0010 (7)
C10.0163 (11)0.0156 (12)0.0139 (11)0.0007 (9)0.0012 (9)0.0004 (9)
C20.0158 (11)0.0157 (11)0.0120 (11)0.0031 (9)0.0027 (9)0.0003 (9)
C30.0156 (11)0.0156 (12)0.0127 (11)0.0007 (9)0.0008 (9)0.0002 (9)
C40.0167 (11)0.0197 (12)0.0106 (11)0.0002 (9)0.0032 (9)0.0014 (9)
C50.0195 (12)0.0148 (11)0.0144 (11)0.0002 (9)0.0041 (9)0.0003 (9)
C60.0167 (11)0.0163 (12)0.0124 (10)0.0023 (9)0.0024 (9)0.0005 (9)
C70.0177 (11)0.0174 (13)0.0167 (11)0.0037 (9)0.0015 (9)0.0008 (9)
C80.0167 (11)0.0190 (13)0.0148 (11)0.0014 (9)0.0018 (9)0.0010 (9)
Geometric parameters (Å, º) top
V1—O61.6187 (17)O5—K1vi2.6593 (17)
V1—O51.6287 (17)O5—K1ix2.8313 (18)
V1—O21.9949 (17)O6—K1ix2.9612 (19)
V1—O12.0091 (17)O7—C81.310 (3)
V1—N12.086 (2)O7—H70.830
K1—O8i2.5981 (18)O8—C81.219 (3)
K1—O5ii2.6593 (17)O8—K1x2.5981 (18)
K1—O42.7377 (18)O9—H9A0.81 (4)
K1—O5iii2.8313 (18)O9—H9B0.81 (4)
K1—O4iv2.8721 (18)N1—C61.330 (3)
K1—O6iii2.9612 (19)N1—C21.332 (3)
K1—O1ii3.0867 (18)C1—C21.507 (3)
K1—O3v3.0909 (18)C2—C31.380 (3)
O1—C11.303 (3)C3—C41.393 (3)
O1—K1vi3.0867 (18)C3—H30.960
O2—C71.301 (3)C4—C51.395 (3)
O3—C11.219 (3)C4—C81.504 (3)
O3—K1vii3.0909 (18)C5—C61.385 (3)
O4—C71.224 (3)C5—H50.960
O4—K1viii2.8721 (18)C6—C71.509 (3)
O6—V1—O5107.90 (9)V1—O1—K1vi89.19 (6)
O6—V1—O2102.76 (8)C7—O2—V1122.32 (15)
O5—V1—O299.31 (8)C1—O3—K1vii109.16 (14)
O6—V1—O197.34 (8)C7—O4—K1131.29 (15)
O5—V1—O196.06 (8)C7—O4—K1viii131.23 (15)
O2—V1—O1149.45 (7)K1—O4—K1viii97.47 (5)
O6—V1—N1124.72 (8)V1—O5—K1vi115.03 (8)
O5—V1—N1127.20 (8)V1—O5—K1ix100.65 (8)
O2—V1—N174.81 (7)K1vi—O5—K1ix100.33 (6)
O1—V1—N174.85 (7)V1—O6—K1ix95.89 (7)
O8i—K1—O5ii141.84 (6)C8—O7—H7109.5
O8i—K1—O489.24 (6)C8—O8—K1x132.11 (15)
O5ii—K1—O482.37 (5)H9A—O9—H9B114 (4)
O8i—K1—O5iii106.51 (6)C6—N1—C2121.7 (2)
O5ii—K1—O5iii90.61 (5)C6—N1—V1119.25 (16)
O4—K1—O5iii161.50 (5)C2—N1—V1119.01 (15)
O8i—K1—O4iv86.43 (5)O3—C1—O1126.2 (2)
O5ii—K1—O4iv131.19 (5)O3—C1—C2121.1 (2)
O4—K1—O4iv94.67 (5)O1—C1—C2112.74 (19)
O5iii—K1—O4iv77.10 (5)N1—C2—C3121.3 (2)
O8i—K1—O6iii74.94 (5)N1—C2—C1111.1 (2)
O5ii—K1—O6iii89.49 (5)C3—C2—C1127.7 (2)
O4—K1—O6iii142.54 (5)C2—C3—C4117.4 (2)
O5iii—K1—O6iii53.85 (5)C2—C3—H3121.3
O4iv—K1—O6iii117.40 (5)C4—C3—H3121.3
O8i—K1—O1ii162.14 (5)C3—C4—C5121.1 (2)
O5ii—K1—O1ii55.83 (5)C3—C4—C8120.5 (2)
O4—K1—O1ii97.63 (5)C5—C4—C8118.4 (2)
O5iii—K1—O1ii64.52 (5)C6—C5—C4117.3 (2)
O4iv—K1—O1ii76.63 (5)C6—C5—H5121.4
O6iii—K1—O1ii107.78 (5)C4—C5—H5121.4
O8i—K1—O3v74.10 (5)N1—C6—C5121.2 (2)
O5ii—K1—O3v68.11 (5)N1—C6—C7110.3 (2)
O4—K1—O3v69.04 (5)C5—C6—C7128.5 (2)
O5iii—K1—O3v123.99 (5)O4—C7—O2125.0 (2)
O4iv—K1—O3v154.36 (5)O4—C7—C6122.2 (2)
O6iii—K1—O3v73.98 (5)O2—C7—C6112.8 (2)
O1ii—K1—O3v123.75 (5)O8—C8—O7125.2 (2)
C1—O1—V1122.11 (14)O8—C8—C4121.4 (2)
C1—O1—K1vi111.89 (13)O7—C8—C4113.4 (2)
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+1/2; (iii) x1/2, y1/2, z; (iv) x1/2, y, z+1/2; (v) x+1/2, y1/2, z; (vi) x, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y, z+1/2; (ix) x1/2, y+1/2, z; (x) x+1, y, z.

Experimental details

Crystal data
Chemical formulaK[V(C8H3NO6)O2]·H2O
Mr349.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)153
a, b, c (Å)7.8086 (16), 16.342 (3), 18.316 (4)
V3)2337.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.25
Crystal size (mm)0.50 × 0.50 × 0.12
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(REQAB; Rigaku/MSC, 1999)
Tmin, Tmax0.573, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
17213, 2099, 1951
Rint0.034
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.15
No. of reflections2099
No. of parameters190
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.42

Computer programs: CrystalClear (Rigaku/MSC, 2006), CrystalClear, SHELXTL (Bruker, 2000), SHELXTL.

Selected bond lengths (Å) top
V1—O61.6187 (17)V1—O12.0091 (17)
V1—O51.6287 (17)V1—N12.086 (2)
V1—O21.9949 (17)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds