Download citation
Download citation
link to html
The title complex, [K2Ni(C4N2S2)2(C12H24O6)2]·C2H4Cl2, con­sists of two symmetry-equivalent [K(18C6)]+ complex cations (18C6 = 18-crown-6), one centrosymmetric [Ni(i-mnt)2]2− complex anion (i-mnt = 1,1-dicyano­ethyl­ene-2,2-dithiol­ate), and a ClCH2CH2Cl solvent mol­ecule that also lies on an inversion center. The [K(18C6)]+ cations and [Ni(i-mnt)2]2− complex anions form a two-dimensional network through K...N inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033284/cf2109sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033284/cf2109Isup2.hkl
Contains datablock I

CCDC reference: 209415

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.043
  • wR factor = 0.128
  • Data-to-parameter ratio = 18.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C34 H52 Cl2 K2 N4 Ni1 O12 S Atom count from _chemical_formula_moiety:C58 H100 Cl2 K2 N4 Ni1 O24 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.13 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In recent years, metal coordination complexes with one-dimensional polymeric structures have attracted interest owing to their important applications as materials with unusual properties (Chen &Suslick, 1993). The complexes formed by crown ethers, alkali metal cations, and transition metal bis(dithiolate) anions, in which the bis(dithiolate) ligands include i-mnt (Long et al., 1998) have attracted widespread interest due to their unusual crystal structures and nusual electrical, magnetic and optical properties (Nakamura et al., 1998). The title complex consists of two [K(18 C6)]+ complex cations, one centrosymmetric [Ni(i-mnt)2]2- complex anion, and a solvent molecule. The Ni atom is located on an inversion center and does not bond directly to the O atoms of the crown ether. It is coordinated by four S atoms from two i-mnt ligands. The NiS4 group is square planar. In the complex cation [K(18 C6)]+, the potassium ion lies within the crown ether cavity, 0.2038Å out of the plane formed by the six ether oxygen atoms. The K+ ion is also coordinated by two N atoms from i-mnt ligands of different [Ni(i-mnt)2]2- complex anions. Thus the [K(18 C6)]+ cations and [Ni(i-mnt)2]2- complex anions form a two-dimensional network bridged by K—N interactions. The solvent molecule also lies on an inversion center.

Related literature top

For related literature, see: Chen & Suslick (1993); Long et al. (1998); Nakamura et al. (1998).

Experimental top

To a solution of 18-crown-6 (2.0 mmol) in 1,2-dichloroethane (10.0 ml) was added 5 ml of 1,2-dichloroethane containing NiCl2 (0.5 mmol) and K2(i-mnt) (1 mmol). The reaction mixture was stirred for 2 h at room temperature and then filtered. The precipitate was dissolved in 4:1 diethyl ether/1,2-dichloroethane. Colorless single crystals were obtained by slowly evaporating the solution. Elemental analysis found: H 5.02, C 39.08, N 5.36%; calculated for C34H52Cl2K2N4O12S4Ni: H 5.23, C 38.93, N 5.12%.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with 0.97Å and the Uiso(H) values were set at 1.2Ueq(C) for C-bound H atoms..

Structure description top

In recent years, metal coordination complexes with one-dimensional polymeric structures have attracted interest owing to their important applications as materials with unusual properties (Chen &Suslick, 1993). The complexes formed by crown ethers, alkali metal cations, and transition metal bis(dithiolate) anions, in which the bis(dithiolate) ligands include i-mnt (Long et al., 1998) have attracted widespread interest due to their unusual crystal structures and nusual electrical, magnetic and optical properties (Nakamura et al., 1998). The title complex consists of two [K(18 C6)]+ complex cations, one centrosymmetric [Ni(i-mnt)2]2- complex anion, and a solvent molecule. The Ni atom is located on an inversion center and does not bond directly to the O atoms of the crown ether. It is coordinated by four S atoms from two i-mnt ligands. The NiS4 group is square planar. In the complex cation [K(18 C6)]+, the potassium ion lies within the crown ether cavity, 0.2038Å out of the plane formed by the six ether oxygen atoms. The K+ ion is also coordinated by two N atoms from i-mnt ligands of different [Ni(i-mnt)2]2- complex anions. Thus the [K(18 C6)]+ cations and [Ni(i-mnt)2]2- complex anions form a two-dimensional network bridged by K—N interactions. The solvent molecule also lies on an inversion center.

For related literature, see: Chen & Suslick (1993); Long et al. (1998); Nakamura et al. (1998).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A segment of the polymeric structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms and the solvent molecule have been omitted for clarity. [Symmetry code for unlabeled atoms: 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Crystal packing of the title complex. H atoms and solvent molecules have been omitted.
[Figure 3] Fig. 3. Two-dimensional sheet network of the title complex. H atoms and solvent molecules have been omitted.
Poly[[bis(18-crown-6)bis(µ3-1,1-dicyanoethylene-2,2-δithiolato)dipotassium(I)nickelate(II)] 1,2-dichloroethane solvate] top
Crystal data top
[K2Ni(C4N2S2)2(C12H24O6)2]·C2H4Cl2F(000) = 1088
Mr = 1044.85Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2404 reflections
a = 8.271 (1) Åθ = 2.4–20.9°
b = 13.067 (2) ŵ = 0.92 mm1
c = 22.207 (2) ÅT = 298 K
β = 90.140 (2)°Block, colourless
V = 2400.1 (5) Å30.40 × 0.32 × 0.31 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
4882 independent reflections
Radiation source: fine-focus sealed tube2717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.710, Tmax = 0.763k = 1116
13861 measured reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
4882 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.59 e Å3
3 restraintsΔρmin = 0.77 e Å3
Crystal data top
[K2Ni(C4N2S2)2(C12H24O6)2]·C2H4Cl2V = 2400.1 (5) Å3
Mr = 1044.85Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.271 (1) ŵ = 0.92 mm1
b = 13.067 (2) ÅT = 298 K
c = 22.207 (2) Å0.40 × 0.32 × 0.31 mm
β = 90.140 (2)°
Data collection top
Siemens SMART CCD
diffractometer
4882 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2717 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.763Rint = 0.041
13861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.01Δρmax = 0.59 e Å3
4882 reflectionsΔρmin = 0.77 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.0446 (2)
K10.04263 (11)0.51950 (6)0.17024 (4)0.0524 (2)
Cl10.11657 (19)0.41379 (12)0.56953 (7)0.1072 (5)
N10.1579 (4)0.6009 (2)0.27356 (14)0.0524 (2)
N20.2288 (5)0.8652 (3)0.39120 (16)0.0765 (12)
O10.2843 (4)0.4976 (2)0.25695 (13)0.0724 (9)
O20.3427 (4)0.6163 (2)0.15473 (14)0.0680 (8)
O30.0790 (4)0.6762 (2)0.08341 (13)0.0680 (8)
O40.1728 (4)0.5284 (2)0.07367 (12)0.0675 (8)
O50.2242 (3)0.3857 (2)0.16313 (12)0.0603 (8)
O60.0334 (4)0.3540 (2)0.24499 (12)0.0645 (8)
S10.38775 (13)0.48585 (7)0.40962 (4)0.0531 (3)
S20.43037 (13)0.66007 (7)0.48093 (4)0.0513 (3)
C10.4432 (6)0.5184 (4)0.2352 (2)0.0839 (15)
H1A0.51840.51910.26870.101*
H1B0.47630.46480.20760.101*
C20.4478 (6)0.6182 (4)0.2041 (2)0.0783 (14)
H2A0.55700.63240.19050.094*
H2B0.41550.67200.23180.094*
C30.3468 (6)0.7057 (4)0.1196 (2)0.0769 (14)
H3A0.30950.76360.14320.092*
H3B0.45680.71940.10660.092*
C40.2412 (6)0.6917 (4)0.0663 (2)0.0791 (14)
H4A0.27850.63320.04320.095*
H4B0.24840.75170.04080.095*
C50.0254 (6)0.6647 (4)0.0331 (2)0.0811 (15)
H5A0.03600.72980.01250.097*
H5B0.02120.61590.00500.097*
C60.1863 (6)0.6287 (4)0.0522 (2)0.0791 (14)
H6A0.26040.63080.01850.095*
H6B0.22820.67290.08370.095*
C70.3235 (5)0.4777 (4)0.08011 (19)0.0680 (13)
H7A0.39390.51610.10680.082*
H7B0.37610.47140.04130.082*
C80.2907 (6)0.3754 (4)0.10550 (19)0.0698 (13)
H8A0.21600.33880.07960.084*
H8B0.39040.33650.10780.084*
C90.1869 (6)0.2907 (3)0.1902 (2)0.0770 (14)
H9A0.28360.24900.19310.092*
H9B0.10820.25430.16580.092*
C100.1208 (6)0.3092 (4)0.2507 (2)0.0745 (14)
H10A0.11280.24510.27250.089*
H10B0.19200.35450.27300.089*
C110.1054 (6)0.3763 (4)0.3006 (2)0.0877 (16)
H11A0.04900.43260.31990.105*
H11B0.09950.31710.32680.105*
C120.2778 (6)0.4047 (4)0.2898 (2)0.0923 (17)
H12A0.33150.35080.26730.111*
H12B0.33310.41270.32800.111*
C130.3545 (4)0.6152 (3)0.41369 (15)0.0440 (9)
C140.2763 (4)0.6752 (2)0.37046 (14)0.0455 (9)
C150.2118 (5)0.6326 (3)0.31712 (16)0.0532 (10)
C160.2502 (5)0.7801 (3)0.38195 (16)0.0514 (10)
C170.0361 (7)0.5200 (4)0.5271 (2)0.1024 (19)
H17A0.04430.55600.55070.123*
H17B0.12200.56760.51710.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0458 (4)0.0411 (4)0.0470 (4)0.0044 (3)0.0006 (3)0.0004 (3)
K10.0550 (6)0.0498 (5)0.0525 (5)0.0015 (4)0.0030 (4)0.0027 (4)
Cl10.0982 (12)0.1102 (12)0.1131 (11)0.0054 (9)0.0116 (9)0.0209 (9)
N10.0550 (6)0.0498 (5)0.0525 (5)0.0015 (4)0.0030 (4)0.0027 (4)
N20.109 (3)0.051 (2)0.070 (2)0.015 (2)0.027 (2)0.001 (2)
O10.060 (2)0.098 (3)0.0594 (18)0.0012 (18)0.0029 (15)0.0034 (17)
O20.067 (2)0.063 (2)0.074 (2)0.0108 (16)0.0034 (17)0.0042 (17)
O30.076 (2)0.066 (2)0.0623 (19)0.0012 (16)0.0194 (17)0.0096 (15)
O40.063 (2)0.073 (2)0.0662 (19)0.0087 (16)0.0000 (15)0.0185 (16)
O50.064 (2)0.0621 (19)0.0545 (17)0.0056 (15)0.0014 (15)0.0014 (15)
O60.068 (2)0.071 (2)0.0554 (18)0.0044 (16)0.0046 (16)0.0133 (15)
S10.0644 (7)0.0423 (6)0.0527 (6)0.0048 (5)0.0033 (5)0.0047 (5)
S20.0583 (7)0.0412 (6)0.0543 (6)0.0033 (5)0.0100 (5)0.0044 (5)
C10.055 (3)0.124 (5)0.072 (3)0.002 (3)0.006 (3)0.003 (3)
C20.058 (3)0.100 (4)0.077 (3)0.013 (3)0.011 (3)0.022 (3)
C30.079 (4)0.066 (3)0.086 (3)0.015 (3)0.033 (3)0.006 (3)
C40.089 (4)0.070 (3)0.079 (3)0.000 (3)0.028 (3)0.013 (3)
C50.111 (5)0.066 (3)0.067 (3)0.004 (3)0.011 (3)0.023 (3)
C60.083 (4)0.083 (4)0.071 (3)0.020 (3)0.003 (3)0.020 (3)
C70.051 (3)0.094 (4)0.059 (3)0.006 (3)0.000 (2)0.006 (3)
C80.062 (3)0.080 (4)0.067 (3)0.008 (3)0.003 (2)0.010 (3)
C90.077 (4)0.061 (3)0.093 (4)0.021 (3)0.012 (3)0.012 (3)
C100.080 (4)0.073 (3)0.071 (3)0.008 (3)0.017 (3)0.026 (3)
C110.099 (4)0.111 (4)0.054 (3)0.004 (3)0.003 (3)0.026 (3)
C120.080 (4)0.125 (5)0.072 (3)0.004 (4)0.023 (3)0.025 (3)
C130.040 (2)0.042 (2)0.050 (2)0.0022 (17)0.0091 (18)0.0034 (18)
C140.045 (2)0.044 (2)0.048 (2)0.0009 (18)0.0013 (19)0.0036 (18)
C150.052 (3)0.054 (3)0.053 (2)0.005 (2)0.006 (2)0.005 (2)
C160.056 (3)0.054 (3)0.044 (2)0.002 (2)0.009 (2)0.007 (2)
C170.070 (4)0.113 (5)0.125 (5)0.026 (3)0.035 (4)0.025 (4)
Geometric parameters (Å, º) top
Ni1—S2i2.2101 (10)C2—H2A0.970
Ni1—S22.2101 (10)C2—H2B0.970
Ni1—S12.2170 (10)C3—C41.483 (6)
Ni1—S1i2.2170 (10)C3—H3A0.970
K1—O62.727 (3)C3—H3B0.970
K1—O12.793 (3)C4—H4A0.970
K1—O42.794 (3)C4—H4B0.970
K1—O22.806 (3)C5—C61.473 (6)
K1—O52.820 (3)C5—H5A0.970
K1—O32.828 (3)C5—H5B0.970
K1—N2ii2.879 (4)C6—H6A0.970
K1—N13.021 (3)C6—H6B0.970
Cl1—C171.803 (7)C7—C81.476 (6)
N1—C151.142 (4)C7—H7A0.970
N2—C161.145 (5)C7—H7B0.970
N2—K1iii2.879 (4)C8—H8A0.970
O1—C121.417 (5)C8—H8B0.970
O1—C11.426 (5)C9—C101.471 (6)
O2—C21.402 (5)C9—H9A0.970
O2—C31.406 (5)C9—H9B0.970
O3—C41.408 (5)C10—H10A0.970
O3—C51.422 (5)C10—H10B0.970
O4—C61.399 (5)C11—C121.492 (6)
O4—C71.418 (5)C11—H11A0.970
O5—C81.401 (4)C11—H11B0.970
O5—C91.413 (5)C12—H12A0.970
O6—C111.403 (5)C12—H12B0.970
O6—C101.409 (5)C13—C141.397 (3)
S1—C131.715 (4)C14—C161.411 (4)
S2—C131.721 (4)C14—C151.412 (3)
C1—C21.475 (6)C17—C17iv1.440 (10)
C1—H1A0.970C17—H17A0.970
C1—H1B0.970C17—H17B0.970
S2i—Ni1—S2180O2—C3—H3B109.9
S2i—Ni1—S1101.71 (4)C4—C3—H3B109.9
S2—Ni1—S178.29 (4)H3A—C3—H3B108.3
S2i—Ni1—S1i78.29 (4)O3—C4—C3111.4 (4)
S2—Ni1—S1i101.71 (4)O3—C4—H4A109.3
S1—Ni1—S1i180C3—C4—H4A109.3
O6—K1—O161.19 (9)O3—C4—H4B109.3
O6—K1—O4118.91 (9)C3—C4—H4B109.3
O1—K1—O4172.78 (9)H4A—C4—H4B108.0
O6—K1—O2117.09 (10)O3—C5—C6110.9 (4)
O1—K1—O259.78 (9)O3—C5—H5A109.5
O4—K1—O2116.91 (9)C6—C5—H5A109.5
O6—K1—O561.43 (9)O3—C5—H5B109.5
O1—K1—O5122.43 (9)C6—C5—H5B109.5
O4—K1—O558.82 (8)H5A—C5—H5B108.1
O2—K1—O5164.70 (9)O4—C6—C5108.9 (4)
O6—K1—O3172.71 (9)O4—C6—H6A109.9
O1—K1—O3117.98 (10)C5—C6—H6A109.9
O4—K1—O360.89 (9)O4—C6—H6B109.9
O2—K1—O359.83 (9)C5—C6—H6B109.9
O5—K1—O3119.51 (9)H6A—C6—H6B108.3
O6—K1—N2ii75.36 (10)O4—C7—C8107.4 (4)
O1—K1—N2ii82.66 (10)O4—C7—H7A110.2
O4—K1—N2ii90.38 (10)C8—C7—H7A110.2
O2—K1—N2ii77.62 (11)O4—C7—H7B110.2
O5—K1—N2ii87.53 (10)C8—C7—H7B110.2
O3—K1—N2ii97.37 (10)H7A—C7—H7B108.5
O6—K1—N178.60 (9)O5—C8—C7109.6 (4)
O1—K1—N184.54 (9)O5—C8—H8A109.8
O4—K1—N1102.62 (9)C7—C8—H8A109.8
O2—K1—N1114.72 (9)O5—C8—H8B109.8
O5—K1—N180.37 (8)C7—C8—H8B109.8
O3—K1—N1108.67 (9)H8A—C8—H8B108.2
N2ii—K1—N1153.96 (10)O5—C9—C10109.0 (4)
C15—N1—K1169.6 (3)O5—C9—H9A109.9
C16—N2—K1iii132.7 (3)C10—C9—H9A109.9
C12—O1—C1111.8 (4)O5—C9—H9B109.9
C12—O1—K1114.6 (3)C10—C9—H9B109.9
C1—O1—K1114.1 (2)H9A—C9—H9B108.3
C2—O2—C3114.0 (4)O6—C10—C9108.9 (4)
C2—O2—K1117.5 (3)O6—C10—H10A109.9
C3—O2—K1117.6 (3)C9—C10—H10A109.9
C4—O3—C5112.5 (3)O6—C10—H10B109.9
C4—O3—K1112.8 (3)C9—C10—H10B109.9
C5—O3—K1113.3 (2)H10A—C10—H10B108.3
C6—O4—C7113.7 (3)O6—C11—C12108.5 (4)
C6—O4—K1110.6 (3)O6—C11—H11A110.0
C7—O4—K1117.7 (2)C12—C11—H11A110.0
C8—O5—C9113.0 (3)O6—C11—H11B110.0
C8—O5—K1114.8 (2)C12—C11—H11B110.0
C9—O5—K1110.4 (2)H11A—C11—H11B108.4
C11—O6—C10113.2 (3)O1—C12—C11109.3 (4)
C11—O6—K1111.1 (3)O1—C12—H12A109.8
C10—O6—K1114.1 (2)C11—C12—H12A109.8
C13—S1—Ni186.39 (12)O1—C12—H12B109.8
C13—S2—Ni186.45 (12)C11—C12—H12B109.8
O1—C1—C2110.4 (4)H12A—C12—H12B108.3
O1—C1—H1A109.6C14—C13—S1126.2 (3)
C2—C1—H1A109.6C14—C13—S2124.9 (3)
O1—C1—H1B109.6S1—C13—S2108.9 (2)
C2—C1—H1B109.6C13—C14—C16119.4 (3)
H1A—C1—H1B108.1C13—C14—C15121.9 (3)
O2—C2—C1109.6 (4)C16—C14—C15118.5 (3)
O2—C2—H2A109.7N1—C15—C14178.0 (4)
C1—C2—H2A109.7N2—C16—C14179.9 (5)
O2—C2—H2B109.7C17iv—C17—Cl1108.1 (6)
C1—C2—H2B109.7C17iv—C17—H17A110.1
H2A—C2—H2B108.2Cl1—C17—H17A110.1
O2—C3—C4109.1 (4)C17iv—C17—H17B110.1
O2—C3—H3A109.9Cl1—C17—H17B110.1
C4—C3—H3A109.9H17A—C17—H17B108.4
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[K2Ni(C4N2S2)2(C12H24O6)2]·C2H4Cl2
Mr1044.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.271 (1), 13.067 (2), 22.207 (2)
β (°) 90.140 (2)
V3)2400.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.40 × 0.32 × 0.31
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.710, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
13861, 4882, 2717
Rint0.041
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.01
No. of reflections4882
No. of parameters262
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.77

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—S22.2101 (10)K1—O22.806 (3)
Ni1—S12.2170 (10)K1—O32.828 (3)
K1—O62.727 (3)K1—N2i2.879 (4)
K1—O12.793 (3)K1—N13.021 (3)
K1—O42.794 (3)
S2—Ni1—S178.29 (4)
Symmetry code: (i) x, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds