Download citation
Download citation
link to html
The title coordination polymer, [Cu2(C8H4O4)2(C10H8N2)(C3H7NO)2(H2O)2]n, adopts a ladder structure in which terephthalate functions as the rails and bipyridine, lying on inversion centres, as the rungs. The Cu atom is also coordinated by water and dimethyl­formamide mol­ecules in a square-pyramidal environment. Hydrogen bonds link the ladders into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807035040/cf2124sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807035040/cf2124Isup2.hkl
Contains datablock I

CCDC reference: 657620

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.033
  • wR factor = 0.086
  • Data-to-parameter ratio = 18.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.04 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.13 Ratio PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.11 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The hydrothermal reaction of copper(II) nitrate, terephthalic acid and 4,4'-bipyridine furnishes the expected copper terephthalate adduct with 4,4'-bipyridine as a 1/1 cocrystal with terephthalic acid. The compound adopts a layer structure and the terephthalic acid behaves as a guest molecule in the porous host (Baeg & Lee, 2003). With the addition of DMF in the hydrothermal synthesis, the dimensionality of the product is lowered to a ladder structure in the present study. The compound is formally (C10H8N2)(C8H4O4)2(C3H7NO)2(H2O)2Cu2; the terephthalate represents the rails of the ladder and the N-heterocycle the rungs. The copper atom is also coordinated by water and DMF in a square-pyramidal geometry. Although the ladder appears to have voids (Fig. 2), these are actually occupied by the DMF ligands of adjacent ladders, and there are no empty spaces in the crystal structure.

Related literature top

For the crystal structure of a copper terephthalate-4,4'-bipyridine cocrystal with terephthalic acid, see Baeg & Lee (2003).

Experimental top

Copper(II) nitrate 2.5-hydrate (0.025 g, 0.11 mmol), terephthalic acid (0.018 g, 0.11 mmol) and 4,4'-bipyridine (0.009 g, 0.06 mmol) in DMF/ethanol/water (3 ml/3 ml/2 ml) were heated at 348 K for several days. Small, dark blue crystals were collected from the cooled solution in 70% yield.

Refinement top

Carbon-bound hydrogen atoms were placed at calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5 times Ueq(C). The water H atoms were located in a difference Fourier map and were refined with a distance restraint of O—H = 0.84 (1) Å; the displacement parameters were freely refined.

Structure description top

The hydrothermal reaction of copper(II) nitrate, terephthalic acid and 4,4'-bipyridine furnishes the expected copper terephthalate adduct with 4,4'-bipyridine as a 1/1 cocrystal with terephthalic acid. The compound adopts a layer structure and the terephthalic acid behaves as a guest molecule in the porous host (Baeg & Lee, 2003). With the addition of DMF in the hydrothermal synthesis, the dimensionality of the product is lowered to a ladder structure in the present study. The compound is formally (C10H8N2)(C8H4O4)2(C3H7NO)2(H2O)2Cu2; the terephthalate represents the rails of the ladder and the N-heterocycle the rungs. The copper atom is also coordinated by water and DMF in a square-pyramidal geometry. Although the ladder appears to have voids (Fig. 2), these are actually occupied by the DMF ligands of adjacent ladders, and there are no empty spaces in the crystal structure.

For the crystal structure of a copper terephthalate-4,4'-bipyridine cocrystal with terephthalic acid, see Baeg & Lee (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. A portion of the ladder structure; displacement ellipsoids are drawn at the 70% probability level, and H atoms as spheres of arbitrary radius. [Translational code (i): x, 1 + y, z.]
[Figure 2] Fig. 2. Space-filling plot depicting the square grid formed from the bipyridine and terephthalate linkages that make up the ladder structure.
catena-Poly[[(µ-4,4'-bipyridine-κ2N:N')bis[aqua(dimethylformamide-\kO)copper(II)]]-di-µ-terephthalato-κ4O1:O4] top
Crystal data top
[Cu2(C8H4O4)2(C10H8N2)(C3H7NO)2(H2O)2]F(000) = 816
Mr = 793.71Dx = 1.599 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4717 reflections
a = 10.8424 (2) Åθ = 2.4–27.3°
b = 14.3465 (3) ŵ = 1.36 mm1
c = 11.1929 (2) ÅT = 173 K
β = 108.741 (1)°Prism, blue
V = 1648.75 (5) Å30.15 × 0.03 × 0.02 mm
Z = 2
Data collection top
Bruker X8 APEXII
diffractometer
4415 independent reflections
Radiation source: fine-focus sealed tube3131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 29.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1214
Tmin = 0.813, Tmax = 0.973k = 1919
21007 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.0236P]
where P = (Fo2 + 2Fc2)/3
4415 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.47 e Å3
2 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu2(C8H4O4)2(C10H8N2)(C3H7NO)2(H2O)2]V = 1648.75 (5) Å3
Mr = 793.71Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.8424 (2) ŵ = 1.36 mm1
b = 14.3465 (3) ÅT = 173 K
c = 11.1929 (2) Å0.15 × 0.03 × 0.02 mm
β = 108.741 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
4415 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3131 reflections with I > 2σ(I)
Tmin = 0.813, Tmax = 0.973Rint = 0.043
21007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
4415 reflectionsΔρmin = 0.45 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.53837 (2)0.371184 (17)0.64815 (2)0.01513 (8)
O10.35686 (13)0.37764 (9)0.64009 (13)0.0196 (3)
O20.27817 (13)0.40992 (10)0.43389 (12)0.0198 (3)
O30.35170 (13)0.37559 (10)0.45053 (13)0.0222 (3)
O40.27850 (13)0.36803 (9)0.66048 (13)0.0192 (3)
O50.59539 (14)0.34997 (10)0.86385 (13)0.0250 (3)
O1w0.55072 (14)0.50852 (10)0.65718 (13)0.0183 (3)
H1w10.6064 (19)0.5313 (18)0.629 (2)0.050 (9)*
H1w20.4812 (15)0.5389 (15)0.625 (2)0.037 (7)*
N10.52007 (16)0.23600 (12)0.59914 (15)0.0169 (4)
N20.5139 (2)0.37178 (13)1.02550 (16)0.0292 (4)
C10.6080 (2)0.17317 (15)0.66171 (18)0.0218 (5)
H10.67700.19310.73360.026*
C20.6031 (2)0.08068 (15)0.62679 (18)0.0227 (5)
H20.66760.03840.67470.027*
C30.50411 (19)0.04921 (14)0.52162 (17)0.0165 (4)
C40.4123 (2)0.11503 (14)0.45831 (19)0.0232 (5)
H40.34160.09720.38660.028*
C50.4237 (2)0.20588 (15)0.49936 (19)0.0239 (5)
H50.35960.24940.45430.029*
C60.26399 (19)0.39180 (13)0.53743 (18)0.0164 (4)
C70.12944 (18)0.38330 (13)0.54406 (18)0.0158 (4)
C80.02418 (19)0.39287 (14)0.43468 (18)0.0188 (4)
H80.03870.40340.35650.023*
C90.10098 (19)0.38726 (14)0.43854 (18)0.0196 (4)
H90.17220.39320.36280.024*
C100.12433 (19)0.37297 (13)0.55176 (18)0.0164 (4)
C110.0189 (2)0.36227 (15)0.66153 (19)0.0238 (5)
H110.03350.35170.73970.029*
C120.1059 (2)0.36693 (15)0.65759 (19)0.0231 (5)
H120.17710.35890.73300.028*
C130.26200 (19)0.37214 (13)0.55229 (19)0.0173 (4)
C140.5048 (2)0.35112 (15)0.90772 (19)0.0236 (5)
H140.42080.33580.85200.028*
C150.4001 (3)0.37555 (17)1.0660 (2)0.0390 (6)
H15A0.32440.35220.99840.058*
H15B0.38440.44011.08560.058*
H15C0.41450.33681.14140.058*
C160.6383 (3)0.3923 (2)1.1183 (2)0.0481 (7)
H16A0.70720.38671.07960.072*
H16B0.65480.34831.18870.072*
H16C0.63730.45601.14970.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00697 (13)0.02238 (14)0.01633 (13)0.00036 (10)0.00415 (9)0.00054 (10)
O10.0070 (7)0.0310 (8)0.0204 (7)0.0001 (6)0.0038 (6)0.0001 (6)
O20.0123 (7)0.0279 (8)0.0207 (7)0.0020 (6)0.0076 (6)0.0006 (6)
O30.0092 (7)0.0330 (9)0.0233 (7)0.0020 (6)0.0037 (6)0.0009 (6)
O40.0108 (7)0.0275 (8)0.0207 (7)0.0001 (6)0.0070 (6)0.0002 (6)
O50.0178 (8)0.0371 (9)0.0197 (7)0.0011 (7)0.0054 (6)0.0013 (6)
O1w0.0109 (8)0.0234 (8)0.0219 (7)0.0002 (6)0.0069 (6)0.0013 (6)
N10.0108 (8)0.0241 (9)0.0161 (8)0.0004 (7)0.0046 (6)0.0004 (7)
N20.0340 (12)0.0355 (11)0.0175 (9)0.0008 (9)0.0075 (8)0.0031 (8)
C10.0176 (11)0.0270 (12)0.0175 (10)0.0003 (9)0.0008 (8)0.0003 (9)
C20.0187 (11)0.0243 (12)0.0200 (10)0.0020 (9)0.0008 (9)0.0021 (9)
C30.0125 (10)0.0247 (11)0.0140 (9)0.0000 (8)0.0063 (8)0.0028 (8)
C40.0154 (10)0.0266 (12)0.0217 (10)0.0023 (9)0.0024 (9)0.0030 (9)
C50.0158 (11)0.0256 (12)0.0249 (11)0.0040 (9)0.0010 (9)0.0013 (9)
C60.0122 (10)0.0158 (10)0.0224 (10)0.0008 (8)0.0073 (8)0.0017 (8)
C70.0097 (9)0.0183 (10)0.0206 (10)0.0008 (8)0.0066 (8)0.0010 (8)
C80.0147 (10)0.0259 (11)0.0174 (9)0.0005 (9)0.0075 (8)0.0012 (8)
C90.0096 (9)0.0283 (12)0.0192 (10)0.0012 (8)0.0023 (8)0.0022 (8)
C100.0089 (9)0.0180 (10)0.0238 (10)0.0001 (8)0.0075 (8)0.0007 (8)
C110.0140 (11)0.0383 (13)0.0212 (10)0.0021 (9)0.0088 (8)0.0067 (9)
C120.0109 (10)0.0372 (13)0.0199 (10)0.0016 (9)0.0031 (8)0.0043 (9)
C130.0105 (9)0.0169 (10)0.0259 (10)0.0001 (8)0.0077 (8)0.0005 (8)
C140.0251 (12)0.0275 (12)0.0159 (10)0.0003 (9)0.0036 (9)0.0012 (8)
C150.0495 (17)0.0443 (16)0.0333 (13)0.0032 (13)0.0275 (12)0.0036 (11)
C160.0508 (18)0.0621 (19)0.0228 (12)0.0050 (14)0.0001 (12)0.0094 (12)
Geometric parameters (Å, º) top
Cu1—O11.943 (1)C3—C3iii1.486 (4)
Cu1—O4i1.946 (1)C4—C51.374 (3)
Cu1—O52.312 (1)C4—H40.950
Cu1—O1w1.975 (2)C5—H50.950
Cu1—N12.008 (2)C6—C71.489 (3)
O1—C61.277 (2)C7—C81.387 (3)
O2—C61.245 (2)C7—C121.394 (3)
O3—C131.238 (2)C8—C91.374 (3)
O4—C131.281 (2)C8—H80.950
O4—Cu1ii1.9462 (14)C9—C101.385 (3)
O5—C141.231 (3)C9—H90.950
O1w—H1w10.83 (1)C10—C111.392 (3)
O1w—H1w20.84 (1)C10—C131.495 (3)
N1—C51.333 (3)C11—C121.369 (3)
N1—C11.335 (3)C11—H110.950
N2—C141.324 (3)C12—H120.950
N2—C161.444 (3)C14—H140.950
N2—C151.445 (3)C15—H15A0.980
C1—C21.379 (3)C15—H15B0.980
C1—H10.950C15—H15C0.980
C2—C31.389 (3)C16—H16A0.980
C2—H20.950C16—H16B0.980
C3—C41.390 (3)C16—H16C0.980
O1—Cu1—O4i178.07 (6)O2—C6—C7118.66 (17)
O1—Cu1—O1w90.33 (6)O1—C6—C7116.35 (17)
O4i—Cu1—O1w88.21 (6)C8—C7—C12118.79 (18)
O1—Cu1—N191.36 (6)C8—C7—C6119.31 (17)
O4i—Cu1—N190.34 (6)C12—C7—C6121.90 (17)
O1w—Cu1—N1167.58 (6)C9—C8—C7120.50 (18)
O1—Cu1—O588.96 (6)C9—C8—H8119.8
O4i—Cu1—O589.91 (5)C7—C8—H8119.8
O1w—Cu1—O594.98 (5)C8—C9—C10120.69 (18)
N1—Cu1—O597.35 (6)C8—C9—H9119.7
C6—O1—Cu1122.90 (13)C10—C9—H9119.7
C13—O4—Cu1ii112.40 (12)C9—C10—C11118.94 (18)
C14—O5—Cu1115.77 (13)C9—C10—C13118.77 (17)
Cu1—O1w—H1w1114.6 (19)C11—C10—C13122.27 (18)
Cu1—O1w—H1w2117.2 (17)C12—C11—C10120.41 (19)
H1w1—O1w—H1w2107 (3)C12—C11—H11119.8
C5—N1—C1117.13 (18)C10—C11—H11119.8
C5—N1—Cu1121.62 (14)C11—C12—C7120.65 (19)
C1—N1—Cu1121.18 (14)C11—C12—H12119.7
C14—N2—C16121.0 (2)C7—C12—H12119.7
C14—N2—C15121.5 (2)O3—C13—O4124.35 (18)
C16—N2—C15117.4 (2)O3—C13—C10119.09 (18)
N1—C1—C2123.03 (18)O4—C13—C10116.56 (17)
N1—C1—H1118.5O5—C14—N2125.9 (2)
C2—C1—H1118.5O5—C14—H14117.0
C1—C2—C3120.10 (19)N2—C14—H14117.0
C1—C2—H2120.0N2—C15—H15A109.5
C3—C2—H2120.0N2—C15—H15B109.5
C2—C3—C4116.30 (19)H15A—C15—H15B109.5
C2—C3—C3iii122.3 (2)N2—C15—H15C109.5
C4—C3—C3iii121.4 (2)H15A—C15—H15C109.5
C5—C4—C3120.08 (18)H15B—C15—H15C109.5
C5—C4—H4120.0N2—C16—H16A109.5
C3—C4—H4120.0N2—C16—H16B109.5
N1—C5—C4123.35 (19)H16A—C16—H16B109.5
N1—C5—H5118.3N2—C16—H16C109.5
C4—C5—H5118.3H16A—C16—H16C109.5
O2—C6—O1124.98 (18)H16B—C16—H16C109.5
O1w—Cu1—O1—C683.52 (14)Cu1—O1—C6—O25.7 (3)
N1—Cu1—O1—C684.17 (15)Cu1—O1—C6—C7172.75 (12)
O5—Cu1—O1—C6178.50 (14)O2—C6—C7—C82.0 (3)
O1—Cu1—O5—C141.64 (15)O1—C6—C7—C8176.58 (17)
O4i—Cu1—O5—C14176.79 (15)O2—C6—C7—C12177.32 (19)
O1w—Cu1—O5—C1488.60 (15)O1—C6—C7—C124.1 (3)
N1—Cu1—O5—C1492.88 (15)C12—C7—C8—C90.7 (3)
O1—Cu1—N1—C550.14 (17)C6—C7—C8—C9178.65 (18)
O4i—Cu1—N1—C5130.78 (17)C7—C8—C9—C100.7 (3)
O1w—Cu1—N1—C547.6 (4)C8—C9—C10—C111.4 (3)
O5—Cu1—N1—C5139.27 (16)C8—C9—C10—C13176.95 (18)
O1—Cu1—N1—C1133.23 (16)C9—C10—C11—C120.8 (3)
O4i—Cu1—N1—C145.85 (16)C13—C10—C11—C12177.54 (19)
O1w—Cu1—N1—C1129.0 (3)C10—C11—C12—C70.6 (3)
O5—Cu1—N1—C144.10 (16)C8—C7—C12—C111.3 (3)
C5—N1—C1—C20.6 (3)C6—C7—C12—C11177.98 (19)
Cu1—N1—C1—C2176.20 (16)Cu1ii—O4—C13—O31.6 (2)
N1—C1—C2—C30.5 (3)Cu1ii—O4—C13—C10178.28 (12)
C1—C2—C3—C41.3 (3)C9—C10—C13—O36.6 (3)
C1—C2—C3—C3iii178.7 (2)C11—C10—C13—O3175.09 (19)
C2—C3—C4—C51.1 (3)C9—C10—C13—O4173.25 (17)
C3iii—C3—C4—C5178.9 (2)C11—C10—C13—O45.1 (3)
C1—N1—C5—C40.8 (3)Cu1—O5—C14—N2155.75 (18)
Cu1—N1—C5—C4175.95 (16)C16—N2—C14—O52.5 (3)
C3—C4—C5—N10.0 (3)C15—N2—C14—O5176.9 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O2iv0.83 (1)1.83 (1)2.658 (2)175 (3)
O1w—H1w2···O3v0.84 (1)1.85 (1)2.684 (2)168 (3)
Symmetry codes: (iv) x+1, y+1, z+1; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C8H4O4)2(C10H8N2)(C3H7NO)2(H2O)2]
Mr793.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.8424 (2), 14.3465 (3), 11.1929 (2)
β (°) 108.741 (1)
V3)1648.75 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.15 × 0.03 × 0.02
Data collection
DiffractometerBruker X8 APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.813, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
21007, 4415, 3131
Rint0.043
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.04
No. of reflections4415
No. of parameters236
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.45

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Cu1—O11.943 (1)Cu1—O1w1.975 (2)
Cu1—O4i1.946 (1)Cu1—N12.008 (2)
Cu1—O52.312 (1)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O2ii0.83 (1)1.83 (1)2.658 (2)175 (3)
O1w—H1w2···O3iii0.84 (1)1.85 (1)2.684 (2)168 (3)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds