Download citation
Download citation
link to html
In the title compound, C25H26ClN6O4PS, the fused pyrazolotriazolopyrimidine ring system is almost planar. It makes dihedral angles of 78.1 (1) and 17.1 (1)°, respectively, with the attached phenyl ring and 4-chloro­phenoxy­methyl fragment. The P atom has a distorted tetra­hedral configuration. Intra- and inter­molecular C—H...O and C—H...N hydrogen bonds, together with strong π–π stacking inter­actions (inter­planar distances 3.312–3.567 Å), stabilize the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807035532/cf2126sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807035532/cf2126Isup2.hkl
Contains datablock I

CCDC reference: 657849

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.059
  • wR factor = 0.150
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.53 Ratio
Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.108 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.11 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.84 Ratio PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C15 = ... R
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrazolotriazolopyrimidine derivatives have been reported to retain high affinity for adenosine receptors (Gatta et al., 1993). A series of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]-pyrimidines has been synthesized with the aim of finding potent and selective adenosine A2A antagonists (Baraldi et al., 1996, 1998). Organic phosphorus compounds play an important role in pesticidal science because of their significant biological properties. The title compound, (I), has been prepared as part of our work in the search for novel biologically active heterocyclic compounds. We report here the crystal structure of (I). In the molecule of (I) (Fig. 1), the pyrazolotriazolopyrimidine ring system is almost planar, with a maximum deviation of 0.023 (2) Å, for N2, forming a fully delocalized system. The dihedral angles between the pyrimidine and the triazole and pyrazole rings are 1.31 (1) and 1.1 (1)°, respectively. In the pyrazolotriazolopyrimidine ring system, the the C—N bonds are significantly shorter than a normal single C—N bond (1.47 Å; Sasada, 1984) and close to the value for a C=N bond (1.28 Å; Wang et al., 1998). This indicates significant electron delocalization in the pyrazolotriazolopyrimidine system. The O2—P1—O4, O2—P1—O3 and O2—P1—C15 bond angles are larger than the O4—P1—O3, O4—P1—C15 and O3—P1—C15 bond angles, indicating a distorted tetrahedral configuration for the phosphorus atom.

Intra- and intermolecular C—H···O and C—H···N hydrogen bonds contribute strongly to the stability of the crystal structure (Fig. 2 and Table 1). Strong ππ stacking interactions also occur between C1—C6 and N1—N3/C8/C9, N5/N6/C10/C11/C13, N3/N4/C9—C12 rings of neighboring molecules. Centroid-centroid distances are 3.990 (2), 3.909 (2) and 3.509 (2) Å, dihedral angles are 7.76, 7.35 and 8.26°, and shortest interplanar distances are 3.312, 3.567 and 3.439 Å, respectively.

Related literature top

Many derivatives of pyrazolotriazolopyrimidines have been prepared, and their biological and pharmaceutical activities have been studied by Gatta et al. (1993) and Baraldi et al. (1996, 1998). For bond-length comparisons, see Sasada (1984) and Wang et al. (1998).

Experimental top

A solution of ethyl N-4-cyano-1-((diethoxyphosphoryl)(phenyl)methyl)- 3-(methylthio)-1H-pyrazol-5-ylformimidate (0.87 g, 2 mmol) and 2-(4-chlorophenoxy)acetohydrazide (0.41 g, 2 mmol) in ethylene glycol monomethyl ether (20 ml) was refluxed for 4 h, cooled briefly and evaporated. The residue was purified by chromatography on a silica gel column by eluting with petroleum ether/acetone (6:1, v/v) to give the title compound (yield 61%). Colorless crystals of (I) suitable for X-ray structure analysis were grown from petroleum ether and acetone (6:1, v/v).

Refinement top

H atoms bonded to C were placed at calculated positions, with C—H distances of 0.97 and 0.93Å for H atoms bonded to sp3 and sp2 C atoms, respectively. They were refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

Pyrazolotriazolopyrimidine derivatives have been reported to retain high affinity for adenosine receptors (Gatta et al., 1993). A series of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]-pyrimidines has been synthesized with the aim of finding potent and selective adenosine A2A antagonists (Baraldi et al., 1996, 1998). Organic phosphorus compounds play an important role in pesticidal science because of their significant biological properties. The title compound, (I), has been prepared as part of our work in the search for novel biologically active heterocyclic compounds. We report here the crystal structure of (I). In the molecule of (I) (Fig. 1), the pyrazolotriazolopyrimidine ring system is almost planar, with a maximum deviation of 0.023 (2) Å, for N2, forming a fully delocalized system. The dihedral angles between the pyrimidine and the triazole and pyrazole rings are 1.31 (1) and 1.1 (1)°, respectively. In the pyrazolotriazolopyrimidine ring system, the the C—N bonds are significantly shorter than a normal single C—N bond (1.47 Å; Sasada, 1984) and close to the value for a C=N bond (1.28 Å; Wang et al., 1998). This indicates significant electron delocalization in the pyrazolotriazolopyrimidine system. The O2—P1—O4, O2—P1—O3 and O2—P1—C15 bond angles are larger than the O4—P1—O3, O4—P1—C15 and O3—P1—C15 bond angles, indicating a distorted tetrahedral configuration for the phosphorus atom.

Intra- and intermolecular C—H···O and C—H···N hydrogen bonds contribute strongly to the stability of the crystal structure (Fig. 2 and Table 1). Strong ππ stacking interactions also occur between C1—C6 and N1—N3/C8/C9, N5/N6/C10/C11/C13, N3/N4/C9—C12 rings of neighboring molecules. Centroid-centroid distances are 3.990 (2), 3.909 (2) and 3.509 (2) Å, dihedral angles are 7.76, 7.35 and 8.26°, and shortest interplanar distances are 3.312, 3.567 and 3.439 Å, respectively.

Many derivatives of pyrazolotriazolopyrimidines have been prepared, and their biological and pharmaceutical activities have been studied by Gatta et al. (1993) and Baraldi et al. (1996, 1998). For bond-length comparisons, see Sasada (1984) and Wang et al. (1998).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of (I), showing the formation of C—H···O and C—H···N hydrogen bonds and ππ stacking interactions, as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
Diethyl {2-[(4-chlorophenoxy)methyl]-9-(methylsulfanyl)-7H-pyrazolo[4,3-d][1,2,4]triazolo[1,5-d]pyrimidin-7-yl}(phenyl)methylphosphonate top
Crystal data top
C25H26ClN6O4PSF(000) = 1192
Mr = 573.00Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.8732 (12) ÅCell parameters from 4496 reflections
b = 13.5760 (11) Åθ = 2.2–21.0°
c = 16.2034 (14) ŵ = 0.31 mm1
β = 113.515 (2)°T = 294 K
V = 2798.4 (4) Å3Plate, colorless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
5485 independent reflections
Radiation source: fine-focus sealed tube3386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.108
φ and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1717
Tmin = 0.941, Tmax = 0.970k = 1516
26250 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0775P)2]
where P = (Fo2 + 2Fc2)/3
5485 reflections(Δ/σ)max < 0.001
346 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C25H26ClN6O4PSV = 2798.4 (4) Å3
Mr = 573.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8732 (12) ŵ = 0.31 mm1
b = 13.5760 (11) ÅT = 294 K
c = 16.2034 (14) Å0.20 × 0.20 × 0.10 mm
β = 113.515 (2)°
Data collection top
Bruker SMART CCD
diffractometer
5485 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3386 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.970Rint = 0.108
26250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 0.94Δρmax = 0.51 e Å3
5485 reflectionsΔρmin = 0.27 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1149 (2)0.5777 (2)0.75100 (19)0.0508 (7)
C20.0868 (2)0.5265 (2)0.6910 (2)0.0557 (8)
H20.09800.45890.68430.067*
C30.0417 (2)0.57556 (19)0.64043 (19)0.0508 (7)
H30.02100.54120.60060.061*
C40.0279 (2)0.6763 (2)0.64991 (18)0.0451 (7)
C50.0550 (2)0.72648 (19)0.71144 (19)0.0518 (7)
H50.04330.79400.71890.062*
C60.0990 (2)0.6773 (2)0.7617 (2)0.0522 (7)
H60.11800.71130.80280.063*
C70.0502 (2)0.68771 (19)0.5432 (2)0.0487 (7)
H7A0.00410.64720.50000.058*
H7B0.10970.64600.57690.058*
C80.08293 (19)0.76692 (19)0.49599 (18)0.0408 (6)
C90.15006 (18)0.83186 (18)0.41392 (17)0.0383 (6)
C100.19804 (18)0.86846 (17)0.35807 (17)0.0372 (6)
C110.19344 (18)0.96985 (18)0.34508 (17)0.0379 (6)
C120.1020 (2)1.00255 (18)0.42829 (19)0.0456 (7)
H120.06751.04500.45260.055*
C130.2525 (2)0.83244 (19)0.30701 (18)0.0441 (7)
C140.3413 (3)0.7131 (3)0.2211 (3)0.0995 (14)
H14A0.29250.73690.16390.149*
H14B0.36430.64820.21400.149*
H14C0.40080.75650.24410.149*
C150.2671 (2)1.08765 (18)0.26658 (18)0.0421 (6)
H150.21411.13180.27220.051*
C160.3721 (2)1.1259 (2)0.33355 (19)0.0453 (7)
C170.4588 (3)1.0674 (2)0.3706 (2)0.0709 (10)
H170.45481.00140.35430.085*
C180.5531 (3)1.1053 (3)0.4323 (3)0.0866 (12)
H180.61151.06450.45730.104*
C190.5600 (3)1.2017 (3)0.4563 (2)0.0765 (10)
H190.62311.22730.49730.092*
C200.4743 (3)1.2605 (3)0.4199 (3)0.0808 (11)
H200.47881.32660.43620.097*
C210.3804 (2)1.2231 (2)0.3590 (2)0.0699 (10)
H210.32201.26400.33500.084*
C220.3442 (4)0.9654 (3)0.0871 (3)0.0991 (14)
H22A0.27880.93050.07420.119*
H22B0.40150.92180.12180.119*
C230.3527 (4)0.9898 (3)0.0029 (3)0.1031 (14)
H23A0.29441.03060.03280.155*
H23B0.35200.93030.02940.155*
H23C0.41721.02460.01540.155*
C240.2595 (3)1.2565 (3)0.0636 (2)0.0849 (11)
H24A0.19501.29350.03390.102*
H24B0.26431.20790.02140.102*
C250.3491 (4)1.3229 (4)0.0895 (3)0.1304 (18)
H25A0.35011.36460.13770.196*
H25B0.34341.36280.03880.196*
H25C0.41291.28530.10910.196*
Cl10.17098 (9)0.51602 (7)0.81553 (7)0.0888 (4)
N10.13835 (16)0.74467 (15)0.44512 (15)0.0419 (5)
N20.05817 (17)0.86038 (15)0.49857 (15)0.0461 (6)
N30.10306 (16)0.90381 (14)0.44590 (14)0.0401 (5)
N40.14721 (16)1.03871 (15)0.37903 (15)0.0430 (5)
N50.24196 (17)0.99000 (14)0.28979 (15)0.0423 (5)
N60.28024 (17)0.90563 (15)0.26614 (16)0.0482 (6)
O10.01191 (16)0.73385 (14)0.60181 (14)0.0632 (6)
O20.14870 (16)1.04858 (16)0.08870 (14)0.0684 (6)
O30.25682 (18)1.20711 (13)0.14157 (14)0.0650 (6)
O40.34735 (17)1.05220 (16)0.13979 (15)0.0686 (6)
P10.24715 (6)1.09311 (5)0.14878 (5)0.0484 (2)
S10.27892 (8)0.70881 (5)0.29756 (6)0.0705 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0521 (17)0.0527 (19)0.0503 (18)0.0048 (14)0.0232 (15)0.0076 (15)
C20.072 (2)0.0378 (16)0.061 (2)0.0079 (14)0.0303 (18)0.0005 (15)
C30.0659 (18)0.0376 (16)0.0561 (19)0.0010 (14)0.0318 (16)0.0004 (14)
C40.0496 (16)0.0401 (16)0.0487 (18)0.0053 (13)0.0228 (14)0.0107 (13)
C50.0699 (19)0.0324 (15)0.059 (2)0.0051 (14)0.0320 (17)0.0057 (14)
C60.0608 (18)0.0460 (18)0.0562 (19)0.0099 (14)0.0300 (16)0.0065 (14)
C70.0570 (17)0.0395 (16)0.0583 (19)0.0033 (13)0.0324 (16)0.0073 (14)
C80.0436 (15)0.0338 (15)0.0470 (17)0.0005 (12)0.0202 (14)0.0035 (12)
C90.0370 (14)0.0326 (14)0.0433 (16)0.0013 (11)0.0138 (13)0.0004 (12)
C100.0395 (14)0.0273 (14)0.0450 (16)0.0008 (11)0.0173 (13)0.0014 (12)
C110.0382 (14)0.0340 (14)0.0405 (16)0.0038 (11)0.0146 (13)0.0010 (12)
C120.0528 (16)0.0316 (15)0.0586 (19)0.0044 (12)0.0286 (15)0.0002 (13)
C130.0521 (16)0.0343 (15)0.0495 (17)0.0034 (13)0.0241 (14)0.0005 (13)
C140.145 (4)0.067 (2)0.135 (4)0.019 (2)0.108 (3)0.003 (2)
C150.0487 (15)0.0297 (14)0.0545 (18)0.0009 (12)0.0275 (14)0.0027 (13)
C160.0493 (16)0.0399 (16)0.0519 (18)0.0064 (13)0.0258 (15)0.0022 (14)
C170.065 (2)0.0445 (19)0.089 (3)0.0003 (16)0.015 (2)0.0056 (18)
C180.060 (2)0.069 (3)0.102 (3)0.0019 (19)0.003 (2)0.010 (2)
C190.062 (2)0.081 (3)0.074 (3)0.017 (2)0.013 (2)0.008 (2)
C200.065 (2)0.060 (2)0.108 (3)0.0165 (19)0.025 (2)0.030 (2)
C210.058 (2)0.050 (2)0.098 (3)0.0006 (16)0.026 (2)0.0136 (19)
C220.149 (4)0.060 (2)0.138 (4)0.013 (2)0.109 (3)0.000 (2)
C230.131 (4)0.100 (3)0.089 (3)0.027 (3)0.055 (3)0.007 (2)
C240.128 (3)0.061 (2)0.073 (3)0.011 (2)0.048 (2)0.0154 (19)
C250.153 (4)0.118 (4)0.149 (5)0.041 (3)0.090 (4)0.015 (3)
Cl10.1260 (8)0.0782 (7)0.0883 (7)0.0364 (6)0.0703 (7)0.0041 (5)
N10.0457 (12)0.0331 (12)0.0509 (14)0.0003 (10)0.0234 (11)0.0048 (10)
N20.0529 (13)0.0383 (14)0.0559 (15)0.0023 (11)0.0311 (12)0.0022 (11)
N30.0461 (12)0.0306 (12)0.0495 (14)0.0009 (10)0.0252 (11)0.0011 (10)
N40.0484 (13)0.0332 (12)0.0528 (15)0.0003 (10)0.0260 (12)0.0005 (11)
N50.0503 (13)0.0312 (12)0.0526 (15)0.0011 (10)0.0281 (12)0.0025 (10)
N60.0592 (14)0.0358 (13)0.0593 (16)0.0009 (11)0.0338 (13)0.0003 (11)
O10.0972 (16)0.0402 (12)0.0766 (15)0.0045 (11)0.0603 (14)0.0021 (10)
O20.0690 (14)0.0707 (15)0.0536 (13)0.0144 (12)0.0119 (12)0.0025 (11)
O30.1016 (16)0.0395 (12)0.0639 (14)0.0030 (11)0.0434 (13)0.0087 (10)
O40.0833 (15)0.0649 (14)0.0787 (16)0.0024 (11)0.0547 (13)0.0039 (12)
P10.0607 (5)0.0382 (4)0.0514 (5)0.0034 (4)0.0277 (4)0.0035 (4)
S10.1130 (7)0.0354 (4)0.0902 (7)0.0041 (4)0.0692 (6)0.0014 (4)
Geometric parameters (Å, º) top
C1—C61.370 (4)C15—N51.458 (3)
C1—C21.372 (4)C15—C161.519 (4)
C1—Cl11.745 (3)C15—P11.818 (3)
C2—C31.384 (4)C15—H150.980
C2—H20.930C16—C171.364 (4)
C3—C41.381 (4)C16—C211.373 (4)
C3—H30.930C17—C181.389 (4)
C4—O11.366 (3)C17—H170.930
C4—C51.377 (4)C18—C191.358 (5)
C5—C61.371 (4)C18—H180.930
C5—H50.930C19—C201.356 (5)
C6—H60.930C19—H190.930
C7—O11.407 (3)C20—C211.380 (4)
C7—C81.492 (3)C20—H200.930
C7—H7A0.970C21—H210.930
C7—H7B0.970C22—O41.446 (4)
C8—N21.320 (3)C22—C231.453 (5)
C8—N11.367 (3)C22—H22A0.970
C9—N11.322 (3)C22—H22B0.970
C9—N31.385 (3)C23—H23A0.960
C9—C101.411 (3)C23—H23B0.960
C10—C111.390 (3)C23—H23C0.960
C10—C131.412 (3)C24—O31.444 (4)
C11—N51.346 (3)C24—C251.456 (5)
C11—N41.367 (3)C24—H24A0.970
C12—N41.293 (3)C24—H24B0.970
C12—N31.369 (3)C25—H25A0.960
C12—H120.930C25—H25B0.960
C13—N61.333 (3)C25—H25C0.960
C13—S11.738 (3)N2—N31.374 (3)
C14—S11.772 (3)N5—N61.380 (3)
C14—H14A0.960O2—P11.455 (2)
C14—H14B0.960O3—P11.5619 (19)
C14—H14C0.960O4—P11.557 (2)
C6—C1—C2120.8 (3)C16—C17—H17119.6
C6—C1—Cl1119.0 (2)C18—C17—H17119.6
C2—C1—Cl1120.2 (2)C19—C18—C17120.1 (3)
C1—C2—C3120.0 (3)C19—C18—H18120.0
C1—C2—H2120.0C17—C18—H18120.0
C3—C2—H2120.0C20—C19—C18119.6 (3)
C4—C3—C2119.1 (3)C20—C19—H19120.2
C4—C3—H3120.5C18—C19—H19120.2
C2—C3—H3120.5C19—C20—C21120.5 (3)
O1—C4—C5114.8 (2)C19—C20—H20119.8
O1—C4—C3124.9 (2)C21—C20—H20119.8
C5—C4—C3120.3 (2)C16—C21—C20120.7 (3)
C6—C5—C4120.3 (3)C16—C21—H21119.6
C6—C5—H5119.9C20—C21—H21119.6
C4—C5—H5119.9O4—C22—C23111.9 (3)
C1—C6—C5119.5 (3)O4—C22—H22A109.2
C1—C6—H6120.2C23—C22—H22A109.2
C5—C6—H6120.2O4—C22—H22B109.2
O1—C7—C8107.4 (2)C23—C22—H22B109.2
O1—C7—H7A110.2H22A—C22—H22B107.9
C8—C7—H7A110.2C22—C23—H23A109.5
O1—C7—H7B110.2C22—C23—H23B109.5
C8—C7—H7B110.2H23A—C23—H23B109.5
H7A—C7—H7B108.5C22—C23—H23C109.5
N2—C8—N1116.6 (2)H23A—C23—H23C109.5
N2—C8—C7122.7 (2)H23B—C23—H23C109.5
N1—C8—C7120.6 (2)O3—C24—C25110.6 (3)
N1—C9—N3109.9 (2)O3—C24—H24A109.5
N1—C9—C10136.2 (2)C25—C24—H24A109.5
N3—C9—C10113.9 (2)O3—C24—H24B109.5
C11—C10—C9116.2 (2)C25—C24—H24B109.5
C11—C10—C13104.9 (2)H24A—C24—H24B108.1
C9—C10—C13138.9 (2)C24—C25—H25A109.5
N5—C11—N4124.6 (2)C24—C25—H25B109.5
N5—C11—C10107.3 (2)H25A—C25—H25B109.5
N4—C11—C10128.1 (2)C24—C25—H25C109.5
N4—C12—N3122.2 (2)H25A—C25—H25C109.5
N4—C12—H12118.9H25B—C25—H25C109.5
N3—C12—H12118.9C9—N1—C8102.5 (2)
N6—C13—C10111.2 (2)C8—N2—N3101.81 (19)
N6—C13—S1124.3 (2)C12—N3—N2125.4 (2)
C10—C13—S1124.5 (2)C12—N3—C9125.5 (2)
S1—C14—H14A109.5N2—N3—C9109.12 (19)
S1—C14—H14B109.5C12—N4—C11114.2 (2)
H14A—C14—H14B109.5C11—N5—N6111.5 (2)
S1—C14—H14C109.5C11—N5—C15126.2 (2)
H14A—C14—H14C109.5N6—N5—C15121.7 (2)
H14B—C14—H14C109.5C13—N6—N5105.2 (2)
N5—C15—C16112.8 (2)C4—O1—C7118.6 (2)
N5—C15—P1110.86 (17)C24—O3—P1123.9 (2)
C16—C15—P1115.91 (17)C22—O4—P1121.9 (2)
N5—C15—H15105.4O2—P1—O4115.10 (13)
C16—C15—H15105.4O2—P1—O3116.57 (13)
P1—C15—H15105.4O4—P1—O3103.89 (12)
C17—C16—C21118.3 (3)O2—P1—C15113.24 (12)
C17—C16—C15122.8 (3)O4—P1—C15108.43 (12)
C21—C16—C15119.0 (3)O3—P1—C1597.89 (11)
C16—C17—C18120.8 (3)C13—S1—C14102.04 (15)
C6—C1—C2—C30.0 (5)N4—C12—N3—N2179.0 (2)
Cl1—C1—C2—C3179.5 (2)N4—C12—N3—C90.6 (4)
C1—C2—C3—C41.5 (4)C8—N2—N3—C12178.5 (2)
C2—C3—C4—O1177.5 (3)C8—N2—N3—C91.2 (3)
C2—C3—C4—C52.5 (4)N1—C9—N3—C12178.7 (2)
O1—C4—C5—C6177.8 (3)C10—C9—N3—C120.9 (4)
C3—C4—C5—C62.1 (4)N1—C9—N3—N20.9 (3)
C2—C1—C6—C50.4 (4)C10—C9—N3—N2179.5 (2)
Cl1—C1—C6—C5179.9 (2)N3—C12—N4—C111.4 (4)
C4—C5—C6—C10.7 (4)N5—C11—N4—C12177.7 (3)
O1—C7—C8—N212.1 (4)C10—C11—N4—C120.7 (4)
O1—C7—C8—N1169.8 (2)N4—C11—N5—N6179.5 (2)
N1—C9—C10—C11178.0 (3)C10—C11—N5—N60.8 (3)
N3—C9—C10—C111.4 (3)N4—C11—N5—C159.3 (4)
N1—C9—C10—C132.6 (6)C10—C11—N5—C15172.0 (2)
N3—C9—C10—C13178.0 (3)C16—C15—N5—C1186.7 (3)
C9—C10—C11—N5179.4 (2)P1—C15—N5—C11141.5 (2)
C13—C10—C11—N50.2 (3)C16—C15—N5—N683.7 (3)
C9—C10—C11—N40.7 (4)P1—C15—N5—N648.2 (3)
C13—C10—C11—N4178.9 (2)C10—C13—N6—N50.9 (3)
C11—C10—C13—N60.4 (3)S1—C13—N6—N5178.5 (2)
C9—C10—C13—N6179.9 (3)C11—N5—N6—C131.1 (3)
C11—C10—C13—S1178.9 (2)C15—N5—N6—C13172.7 (2)
C9—C10—C13—S10.5 (5)C5—C4—O1—C7174.5 (3)
N5—C15—C16—C1740.2 (4)C3—C4—O1—C75.6 (4)
P1—C15—C16—C1789.0 (3)C8—C7—O1—C4176.9 (2)
N5—C15—C16—C21138.9 (3)C25—C24—O3—P1128.6 (3)
P1—C15—C16—C2191.8 (3)C23—C22—O4—P1106.1 (3)
C21—C16—C17—C180.1 (5)C22—O4—P1—O210.1 (3)
C15—C16—C17—C18179.3 (3)C22—O4—P1—O3138.8 (3)
C16—C17—C18—C190.4 (6)C22—O4—P1—C15117.8 (3)
C17—C18—C19—C200.4 (6)C24—O3—P1—O266.4 (3)
C18—C19—C20—C210.1 (6)C24—O3—P1—O461.3 (3)
C17—C16—C21—C200.6 (5)C24—O3—P1—C15172.6 (3)
C15—C16—C21—C20179.8 (3)N5—C15—P1—O245.4 (2)
C19—C20—C21—C160.5 (6)C16—C15—P1—O2175.57 (18)
N3—C9—N1—C80.2 (3)N5—C15—P1—O483.64 (19)
C10—C9—N1—C8179.7 (3)C16—C15—P1—O446.5 (2)
N2—C8—N1—C90.6 (3)N5—C15—P1—O3168.81 (17)
C7—C8—N1—C9178.8 (2)C16—C15—P1—O361.0 (2)
N1—C8—N2—N31.2 (3)N6—C13—S1—C142.3 (3)
C7—C8—N2—N3179.3 (2)C10—C13—S1—C14177.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···O20.972.492.948 (4)109
C17—H17···N60.932.613.238 (4)125
C15—H15···N40.982.602.991 (3)104
C7—H7A···O2i0.972.363.324 (4)171
C12—H12···N2ii0.932.533.450 (3)169
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC25H26ClN6O4PS
Mr573.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)13.8732 (12), 13.5760 (11), 16.2034 (14)
β (°) 113.515 (2)
V3)2798.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.941, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
26250, 5485, 3386
Rint0.108
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.150, 0.94
No. of reflections5485
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···O20.972.492.948 (4)109
C17—H17···N60.932.613.238 (4)125
C15—H15···N40.982.602.991 (3)104
C7—H7A···O2i0.972.363.324 (4)171
C12—H12···N2ii0.932.533.450 (3)169
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds