Download citation
Download citation
link to html
In the title compound, C17H13Cl4NO3, the isoindole unit is essentially planar. The seven-membered ring adopts a boat conformation. The O atom of the hydroxy­ethyl group is disordered over two positions with essentially equal occupancies. In the crystal structure, the mol­ecules are linked by O—H...O and O—H...Cl hydrogen bonds into a two-dimensional network parallel to the (010) plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031509/ci2402sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031509/ci2402Isup2.hkl
Contains datablock I

CCDC reference: 657672

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.047
  • wR factor = 0.130
  • Data-to-parameter ratio = 18.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT301_ALERT_3_C Main Residue Disorder ......................... 4.00 Perc. PLAT431_ALERT_2_C Short Inter HL..A Contact Cl1 .. O1 .. 2.98 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O2 .. C1 .. 2.98 Ang.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C8 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The construction of medium and large heterocyclic ring systems has constantly been an important task in organic synthesis (Evans & Holmes, 1991; Griesbeck et al., 1996; Illuminati & Mandolini, 1981). In continuation of our recent work on a new strategy for the synthesis of medium to large ring compounds based on photoinduced electron transfer (PET) reactions of N-(ω-hydroxyalkyl)-4,5,6,7- tetrachlorophthalimide (TCP) with electron rich alkenes, we studied the photoinduced reaction of N-(2-hydroxyethyl)-4,5,6,7- tetrachlorophthalimide (TCP) with cycloheptatriene and obtained the title compound. We report here the crystal structure of the title compound which is determined to show its steric structure (Xue et al., 2000).

Bond lengths and angles are in normal ranges (Allen et al., 1987) and are comparable to those in a related structure (Fun et al., 2007). The isoindole unit (C1—C8/N1) is essentially planar, with a maximum deviation of 0.066 (2) Å for atom C1. The seven-membered ring adopts a boat conformation.

Intramolecular C15—H15A···O2 interaction generates an S(5) ring motif (Fig. 1) (Bernstein et al., 1995). The crystal structure is stabilized by O—H···O and O—H···Cl (Fig. 2 and Table 1) interactions. These interactions link the molecules into a two-dimensional network parallel to the (0 1 0) plane. The relatively short distance [2.980 (2) Å] between atoms Cl1 and O1(-1 - x, -y, 2 - z) indicates the presence of intermolecular Cl···O interactions, which contribute to further stabilization of the crystal structure.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related literature, see: Evans & Holmes (1991); Griesbeck et al. (1996); Illuminati & Mandolini (1981); Xue et al. (2000); Fun et al. (2007).

Experimental top

The title compound was synthesized by a photo-induced reaction between N-(2-hydroxyethyl)-4,5,6,7-tetrachlorophthalimide (0.025 M) and excess cycloheptariene in benzene (120 ml). The title compound was isolated using silica gel column chromatography with petroleum ether-ethyl acetate as eluent. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

The ratio of the refined occupancies for the major and minor components of the disordered hydroxyl O atoms, O3A and O3B, are 0.509 (5):0.491 (5). H atoms were positioned geometrically and refined using a riding model with O—H = 0.82 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Structure description top

The construction of medium and large heterocyclic ring systems has constantly been an important task in organic synthesis (Evans & Holmes, 1991; Griesbeck et al., 1996; Illuminati & Mandolini, 1981). In continuation of our recent work on a new strategy for the synthesis of medium to large ring compounds based on photoinduced electron transfer (PET) reactions of N-(ω-hydroxyalkyl)-4,5,6,7- tetrachlorophthalimide (TCP) with electron rich alkenes, we studied the photoinduced reaction of N-(2-hydroxyethyl)-4,5,6,7- tetrachlorophthalimide (TCP) with cycloheptatriene and obtained the title compound. We report here the crystal structure of the title compound which is determined to show its steric structure (Xue et al., 2000).

Bond lengths and angles are in normal ranges (Allen et al., 1987) and are comparable to those in a related structure (Fun et al., 2007). The isoindole unit (C1—C8/N1) is essentially planar, with a maximum deviation of 0.066 (2) Å for atom C1. The seven-membered ring adopts a boat conformation.

Intramolecular C15—H15A···O2 interaction generates an S(5) ring motif (Fig. 1) (Bernstein et al., 1995). The crystal structure is stabilized by O—H···O and O—H···Cl (Fig. 2 and Table 1) interactions. These interactions link the molecules into a two-dimensional network parallel to the (0 1 0) plane. The relatively short distance [2.980 (2) Å] between atoms Cl1 and O1(-1 - x, -y, 2 - z) indicates the presence of intermolecular Cl···O interactions, which contribute to further stabilization of the crystal structure.

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related literature, see: Evans & Holmes (1991); Griesbeck et al. (1996); Illuminati & Mandolini (1981); Xue et al. (2000); Fun et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Both disorder components are shown. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the major component, viewed down the b axis. For the minor component, the O—H···Cl hydrogen bonds are absent. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
4,5,6,7-Tetrachloro-3-(cyclohepta-1,3,6-trien-1-yl)-3-hydroxy-2- (2-hydroxyethyl)-2,3-dihydro-1H-isoindol-1-one top
Crystal data top
C17H13Cl4NO3F(000) = 856
Mr = 421.08Dx = 1.690 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9862 reflections
a = 5.7285 (3) Åθ = 1.5–28.8°
b = 27.9820 (12) ŵ = 0.73 mm1
c = 10.7301 (5) ÅT = 100 K
β = 105.816 (3)°Needle, colourless
V = 1654.86 (14) Å30.45 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4319 independent reflections
Radiation source: fine-focus sealed tube3643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 8.33 pixels mm-1θmax = 28.8°, θmin = 1.5°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 3737
Tmin = 0.734, Tmax = 0.930l = 1414
32385 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.7172P]
where P = (Fo2 + 2Fc2)/3
4319 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C17H13Cl4NO3V = 1654.86 (14) Å3
Mr = 421.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7285 (3) ŵ = 0.73 mm1
b = 27.9820 (12) ÅT = 100 K
c = 10.7301 (5) Å0.45 × 0.12 × 0.10 mm
β = 105.816 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4319 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3643 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.930Rint = 0.051
32385 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.12Δρmax = 0.51 e Å3
4319 reflectionsΔρmin = 0.60 e Å3
236 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.29215 (10)0.03836 (2)1.11550 (5)0.02248 (15)
Cl20.04401 (11)0.10146 (2)1.33363 (5)0.02604 (16)
Cl30.44031 (11)0.16567 (2)1.27276 (5)0.02525 (15)
Cl40.48531 (11)0.17301 (2)0.98860 (6)0.02581 (16)
O10.2907 (3)0.01311 (7)0.83031 (16)0.0304 (4)
O20.3526 (3)0.08766 (6)0.77716 (18)0.0269 (4)
H2A0.38090.06030.80450.040*
O3A0.4124 (7)0.04349 (13)0.4118 (3)0.0292 (10)0.509 (5)
H3A0.35130.05770.36170.044*0.509 (5)
O3B0.5578 (6)0.05223 (13)0.5737 (3)0.0245 (10)0.491 (5)
H3B0.55160.02370.59190.037*0.491 (5)
N10.0585 (3)0.06401 (6)0.74676 (17)0.0174 (4)
C10.1487 (4)0.04629 (8)0.8422 (2)0.0183 (4)
C20.0356 (4)0.07528 (8)0.9597 (2)0.0175 (4)
C30.0708 (4)0.07389 (8)1.0830 (2)0.0183 (4)
C40.0766 (4)0.10265 (8)1.1789 (2)0.0191 (4)
C50.2515 (4)0.13256 (8)1.1510 (2)0.0188 (4)
C60.2753 (4)0.13497 (8)1.0250 (2)0.0190 (4)
C70.1311 (4)0.10621 (7)0.9313 (2)0.0166 (4)
C80.1250 (4)0.10192 (8)0.7885 (2)0.0172 (4)
C90.0402 (4)0.14778 (8)0.7125 (2)0.0173 (4)
C100.1781 (4)0.16913 (8)0.7316 (2)0.0210 (5)
H10A0.28930.14880.75340.025*
C110.2327 (5)0.21585 (9)0.7204 (2)0.0250 (5)
H11A0.38340.22570.72800.030*
C120.0631 (5)0.25245 (8)0.6965 (2)0.0270 (5)
H12A0.13510.28390.69600.032*
H12B0.08570.25160.76640.032*
C130.0071 (6)0.24467 (9)0.5749 (3)0.0376 (7)
H13A0.03030.27020.51740.045*
C140.0752 (5)0.20388 (9)0.5379 (2)0.0312 (6)
H14A0.08250.20110.45260.037*
C150.1538 (4)0.16358 (8)0.6247 (2)0.0209 (5)
H15A0.29270.14740.61960.025*
C160.1193 (4)0.04355 (8)0.6172 (2)0.0206 (5)
H16A0.14140.00930.62320.025*
H16B0.01490.04870.57980.025*
C170.3483 (5)0.06508 (10)0.5283 (2)0.0273 (5)
H17A0.47990.06220.56870.033*0.509 (5)
H17B0.32190.09880.51660.033*0.509 (5)
H17C0.37030.05350.44170.033*0.491 (5)
H17D0.33300.09920.52710.033*0.491 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0218 (3)0.0280 (3)0.0205 (3)0.0060 (2)0.0105 (2)0.00298 (19)
Cl20.0296 (3)0.0344 (3)0.0164 (3)0.0046 (3)0.0102 (2)0.0011 (2)
Cl30.0235 (3)0.0305 (3)0.0224 (3)0.0057 (2)0.0072 (2)0.0047 (2)
Cl40.0251 (3)0.0285 (3)0.0286 (3)0.0099 (2)0.0152 (3)0.0029 (2)
O10.0278 (10)0.0425 (10)0.0237 (8)0.0179 (8)0.0115 (8)0.0051 (7)
O20.0189 (8)0.0211 (8)0.0478 (10)0.0030 (7)0.0215 (8)0.0033 (7)
O3A0.032 (2)0.038 (2)0.0192 (16)0.0147 (16)0.0093 (15)0.0078 (13)
O3B0.0146 (17)0.039 (2)0.0222 (17)0.0011 (15)0.0082 (14)0.0021 (14)
N10.0166 (9)0.0211 (9)0.0170 (8)0.0003 (7)0.0090 (8)0.0002 (6)
C10.0141 (10)0.0233 (10)0.0189 (10)0.0016 (9)0.0071 (9)0.0017 (8)
C20.0141 (10)0.0218 (10)0.0179 (9)0.0020 (9)0.0065 (9)0.0038 (8)
C30.0157 (11)0.0223 (10)0.0186 (10)0.0000 (9)0.0077 (9)0.0035 (8)
C40.0181 (11)0.0233 (10)0.0183 (10)0.0029 (9)0.0087 (9)0.0032 (8)
C50.0180 (11)0.0208 (10)0.0189 (10)0.0009 (9)0.0072 (9)0.0011 (8)
C60.0167 (11)0.0196 (10)0.0233 (10)0.0004 (9)0.0099 (9)0.0022 (8)
C70.0132 (10)0.0191 (10)0.0188 (10)0.0029 (8)0.0065 (9)0.0037 (7)
C80.0162 (11)0.0207 (10)0.0185 (9)0.0024 (9)0.0111 (9)0.0009 (8)
C90.0171 (11)0.0201 (10)0.0163 (9)0.0003 (9)0.0070 (9)0.0012 (8)
C100.0194 (12)0.0252 (11)0.0196 (10)0.0022 (9)0.0074 (9)0.0024 (8)
C110.0237 (12)0.0257 (11)0.0281 (12)0.0049 (10)0.0112 (10)0.0008 (9)
C120.0316 (14)0.0210 (11)0.0314 (12)0.0031 (10)0.0139 (11)0.0019 (9)
C130.056 (2)0.0247 (12)0.0430 (15)0.0027 (13)0.0313 (15)0.0060 (11)
C140.0457 (17)0.0321 (13)0.0223 (11)0.0055 (12)0.0201 (12)0.0068 (10)
C150.0226 (12)0.0233 (11)0.0206 (10)0.0023 (9)0.0125 (10)0.0010 (8)
C160.0188 (11)0.0268 (11)0.0186 (10)0.0010 (9)0.0093 (9)0.0033 (8)
C170.0204 (12)0.0454 (15)0.0192 (10)0.0022 (11)0.0106 (10)0.0003 (10)
Geometric parameters (Å, º) top
Cl1—C31.720 (2)C8—C91.527 (3)
Cl2—C41.721 (2)C9—C151.357 (3)
Cl3—C51.722 (2)C9—C101.450 (3)
Cl4—C61.728 (2)C10—C111.342 (3)
O1—C11.218 (3)C10—H10A0.93
O2—C81.400 (3)C11—C121.481 (4)
O2—H2A0.82C11—H11A0.93
O3A—C171.346 (4)C12—C131.443 (4)
O3A—H3A0.82C12—H12A0.97
O3A—H17C0.4437C12—H12B0.97
O3B—C171.458 (4)C13—C141.336 (4)
O3B—H3B0.82C13—H13A0.93
N1—C11.360 (3)C14—C151.453 (3)
N1—C161.455 (3)C14—H14A0.93
N1—C81.475 (3)C15—H15A0.93
C1—C21.491 (3)C16—C171.520 (3)
C2—C71.383 (3)C16—H16A0.97
C2—C31.392 (3)C16—H16B0.97
C3—C41.395 (3)C17—H17A0.97
C4—C51.399 (3)C17—H17B0.97
C5—C61.398 (3)C17—H17C0.96
C6—C71.374 (3)C17—H17D0.96
C7—C81.527 (3)
C8—O2—H2A109.5C10—C11—H11A118.6
C17—O3A—H3A109.5C12—C11—H11A118.6
H3A—O3A—H17C85.6C13—C12—C11111.7 (2)
C17—O3B—H3B109.5C13—C12—H12A109.3
C1—N1—C16122.32 (19)C11—C12—H12A109.3
C1—N1—C8114.78 (18)C13—C12—H12B109.3
C16—N1—C8122.59 (18)C11—C12—H12B109.3
O1—C1—N1125.4 (2)H12A—C12—H12B107.9
O1—C1—C2128.9 (2)C14—C13—C12125.5 (2)
N1—C1—C2105.76 (19)C14—C13—H13A117.2
C7—C2—C3121.0 (2)C12—C13—H13A117.2
C7—C2—C1108.73 (18)C13—C14—C15123.0 (2)
C3—C2—C1130.3 (2)C13—C14—H14A118.5
C2—C3—C4118.0 (2)C15—C14—H14A118.5
C2—C3—Cl1120.99 (17)C9—C15—C14125.0 (2)
C4—C3—Cl1121.00 (16)C9—C15—H15A117.5
C3—C4—C5120.8 (2)C14—C15—H15A117.5
C3—C4—Cl2119.84 (17)N1—C16—C17112.61 (19)
C5—C4—Cl2119.36 (17)N1—C16—H16A109.1
C6—C5—C4120.0 (2)C17—C16—H16A109.1
C6—C5—Cl3120.09 (17)N1—C16—H16B109.1
C4—C5—Cl3119.88 (16)C17—C16—H16B109.1
C7—C6—C5118.8 (2)H16A—C16—H16B107.8
C7—C6—Cl4120.79 (17)O3A—C17—O3B99.1 (3)
C5—C6—Cl4120.39 (17)O3A—C17—C16112.0 (3)
C6—C7—C2121.2 (2)O3B—C17—C16109.9 (2)
C6—C7—C8128.67 (19)O3A—C17—H17A109.2
C2—C7—C8110.09 (19)C16—C17—H17A109.2
O2—C8—N1111.84 (17)O3A—C17—H17B109.2
O2—C8—C7110.02 (18)O3B—C17—H17B117.1
N1—C8—C7100.43 (16)C16—C17—H17B109.2
O2—C8—C9111.15 (18)H17A—C17—H17B107.9
N1—C8—C9110.21 (18)O3B—C17—H17C109.7
C7—C8—C9112.76 (17)C16—C17—H17C109.7
C15—C9—C10124.0 (2)H17A—C17—H17C119.4
C15—C9—C8120.1 (2)H17B—C17—H17C100.8
C10—C9—C8115.55 (18)O3A—C17—H17D115.9
C11—C10—C9125.3 (2)O3B—C17—H17D109.7
C11—C10—H10A117.4C16—C17—H17D109.7
C9—C10—H10A117.4H17A—C17—H17D100.1
C10—C11—C12122.8 (2)H17C—C17—H17D108.2
C16—N1—C1—O11.8 (4)C1—N1—C8—O2115.3 (2)
C8—N1—C1—O1175.5 (2)C16—N1—C8—O258.4 (3)
C16—N1—C1—C2177.46 (19)C1—N1—C8—C71.4 (2)
C8—N1—C1—C23.8 (2)C16—N1—C8—C7175.08 (18)
O1—C1—C2—C7174.5 (2)C1—N1—C8—C9120.6 (2)
N1—C1—C2—C74.8 (2)C16—N1—C8—C965.8 (2)
O1—C1—C2—C33.8 (4)C6—C7—C8—O259.6 (3)
N1—C1—C2—C3177.0 (2)C2—C7—C8—O2119.8 (2)
C7—C2—C3—C43.6 (3)C6—C7—C8—N1177.6 (2)
C1—C2—C3—C4174.5 (2)C2—C7—C8—N11.8 (2)
C7—C2—C3—Cl1175.60 (17)C6—C7—C8—C965.1 (3)
C1—C2—C3—Cl16.3 (3)C2—C7—C8—C9115.5 (2)
C2—C3—C4—C51.1 (3)O2—C8—C9—C1513.9 (3)
Cl1—C3—C4—C5178.07 (17)N1—C8—C9—C15110.7 (2)
C2—C3—C4—Cl2178.86 (17)C7—C8—C9—C15138.0 (2)
Cl1—C3—C4—Cl22.0 (3)O2—C8—C9—C10172.13 (19)
C3—C4—C5—C61.9 (3)N1—C8—C9—C1063.3 (2)
Cl2—C4—C5—C6178.11 (17)C7—C8—C9—C1048.0 (3)
C3—C4—C5—Cl3177.09 (17)C15—C9—C10—C1134.4 (4)
Cl2—C4—C5—Cl32.9 (3)C8—C9—C10—C11151.9 (2)
C4—C5—C6—C72.5 (3)C9—C10—C11—C125.0 (4)
Cl3—C5—C6—C7176.50 (17)C10—C11—C12—C1361.7 (3)
C4—C5—C6—Cl4178.26 (17)C11—C12—C13—C1453.2 (4)
Cl3—C5—C6—Cl42.7 (3)C12—C13—C14—C159.5 (5)
C5—C6—C7—C20.1 (3)C10—C9—C15—C140.2 (4)
Cl4—C6—C7—C2179.29 (17)C8—C9—C15—C14173.6 (2)
C5—C6—C7—C8179.2 (2)C13—C14—C15—C941.3 (4)
Cl4—C6—C7—C80.0 (3)C1—N1—C16—C1787.9 (3)
C3—C2—C7—C63.1 (3)C8—N1—C16—C1798.9 (2)
C1—C2—C7—C6175.4 (2)N1—C16—C17—O3A175.5 (2)
C3—C2—C7—C8177.52 (19)N1—C16—C17—O3B66.3 (3)
C1—C2—C7—C84.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.822.252.867 (3)132
O3A—H3A···Cl1ii0.822.813.435 (3)135
O3A—H3A···Cl2ii0.822.663.371 (4)146
C15—H15A···O20.932.342.733 (3)105
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC17H13Cl4NO3
Mr421.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.7285 (3), 27.9820 (12), 10.7301 (5)
β (°) 105.816 (3)
V3)1654.86 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.45 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.734, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
32385, 4319, 3643
Rint0.051
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.130, 1.12
No. of reflections4319
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.60

Computer programs: APEX2 (Bruker, 2005), APEX2, SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.822.252.867 (3)132
O3A—H3A···Cl1ii0.822.813.435 (3)135
O3A—H3A···Cl2ii0.822.663.371 (4)146
C15—H15A···O20.932.342.733 (3)105
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds