Download citation
Download citation
link to html
In the title compound, C13H19N3O5S·H2O, the amino group is coplanar with the thia­zole ring. The dihedral angle between the thia­zole ring and the adjacent carboxyl­ate group is 86.9 (1)°. The tert-butyl group is disordered over two positions, with occupancies of 0.63 (4) and 0.37 (4). O—H...O and N—H...O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to the (001) plane. The thia­zole rings of inversion-related mol­ecules are stacked with their centroids separated by a distance of 3.5387 (10) Å, indicating π–π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034939/ci2412sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034939/ci2412Isup2.hkl
Contains datablock I

CCDC reference: 657823

Key indicators

  • Single-crystal X-ray study
  • T = 223 K
  • Mean [sigma](C-C) = 0.002 Å
  • Disorder in main residue
  • R factor = 0.041
  • wR factor = 0.091
  • Data-to-parameter ratio = 12.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.80 mm PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.35 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.07 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C4' PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C4 PLAT301_ALERT_3_C Main Residue Disorder ......................... 15.00 Perc. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C1 - C5 ... 1.53 Ang. PLAT417_ALERT_2_C Short Inter D-H..H-D H3A .. H6A .. 2.11 Ang.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 22
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

2-Aminothiazole compounds have been extensively studied because of their biological and industrial applications (Lynch et al., 1999; Toplak et al., 2003). A search of the Cambridge Structural Database (CSD, Version 5.28 of May 2007) reveals that there are 127 crystal structures containing the 2-aminothiazole moiety. The title compound is a very important intermediate of ceftazidime, which is among the most important cephalosporin antibiotics (Powers et al., 2001). Crystal structures of some cephalosporin intermediates which contain a 2-aminothiazole group have been reported (Yoshida et al., 1989; Laurent et al., 1981). The title compound can give a reactive intermediate by reaction with diethylenetriamine-N,N,N',N'',N''- pentaacetic acid (DTPA), further, which can be used to prepare a protein-chelator conjugate (Johnson, 1999). We report here the crystal structure of the title compound.

The thiazole ring is planar to within ±0.006 (1) Å. The amino group is coplanar with the thiazole ring, with atom N3 deviating from the thiazole plane by -0.021 (2) Å. The O1/N1/C1/C2/C5/C6/C10 plane is twisted away from the thiazole plane by 21.92 (8)°. The tert-butyl group is disordered over two positions, with occupancies of 0.63 (4) and 0.37 (4). The carboxylate plane (C1/C5/O4/O5) is nearly perpendicular to the thiazole ring (dihedral angle 86.9 (1)°).

The crystal structure is stabilized by intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) involving the O atoms of the water molecules and carboxylate groups. These hydrogen bonds link the molecules into a two-dimensional network parallel to the (001) plane (Fig. 2). The thiazole rings of the inversion-related molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are stacked with their centroids separated by a distance of 3.5387 (10) Å, indicating π-π interactions.

Related literature top

For synthesis, see: Furlenmeier et al. (1987); For general background, see: David (1999); Lynch et al. (1999); Rachel et al. (2001); Toplak et al. (2003). For related structures, see: Laurent et al. (1981); Yoshida et al. (1989).

Experimental top

The title compound was prepared according to the literature method (Furlenmeier et al., 1987). Crystals suitable for X-ray analysis were obtained by slow evaporation of a ethanol solution at room temperature (m.p. 471–473 K).

Refinement top

The tert-butyl group is disordered over two positions, with refined occupations 0.63 (4) and 0.37 (4). The C—C distances of the tert-butyl groups were restrained to 1.53 (1) Å, and the C—O and C···C distances involving disordered C-atoms were restrained to be equal. O– and N-bound H atoms were located from a difference Fourier map, and refined freely. C-bound H atoms were positioned geometrically (C—H = 0.94 or 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

2-Aminothiazole compounds have been extensively studied because of their biological and industrial applications (Lynch et al., 1999; Toplak et al., 2003). A search of the Cambridge Structural Database (CSD, Version 5.28 of May 2007) reveals that there are 127 crystal structures containing the 2-aminothiazole moiety. The title compound is a very important intermediate of ceftazidime, which is among the most important cephalosporin antibiotics (Powers et al., 2001). Crystal structures of some cephalosporin intermediates which contain a 2-aminothiazole group have been reported (Yoshida et al., 1989; Laurent et al., 1981). The title compound can give a reactive intermediate by reaction with diethylenetriamine-N,N,N',N'',N''- pentaacetic acid (DTPA), further, which can be used to prepare a protein-chelator conjugate (Johnson, 1999). We report here the crystal structure of the title compound.

The thiazole ring is planar to within ±0.006 (1) Å. The amino group is coplanar with the thiazole ring, with atom N3 deviating from the thiazole plane by -0.021 (2) Å. The O1/N1/C1/C2/C5/C6/C10 plane is twisted away from the thiazole plane by 21.92 (8)°. The tert-butyl group is disordered over two positions, with occupancies of 0.63 (4) and 0.37 (4). The carboxylate plane (C1/C5/O4/O5) is nearly perpendicular to the thiazole ring (dihedral angle 86.9 (1)°).

The crystal structure is stabilized by intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) involving the O atoms of the water molecules and carboxylate groups. These hydrogen bonds link the molecules into a two-dimensional network parallel to the (001) plane (Fig. 2). The thiazole rings of the inversion-related molecules at (x, y, z) and (1 - x, 1 - y, 1 - z) are stacked with their centroids separated by a distance of 3.5387 (10) Å, indicating π-π interactions.

For synthesis, see: Furlenmeier et al. (1987); For general background, see: David (1999); Lynch et al. (1999); Rachel et al. (2001); Toplak et al. (2003). For related structures, see: Laurent et al. (1981); Yoshida et al. (1989).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing 20% probability displacement ellipsoids and the atomic numbering. Only one disorder component is shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate intermolecular hydrogen bonds. Only one disorder component is shown.
(Z)-2-(2-Aminothiazol-3-ium-4-yl)-2-[2-(tert-butoxycarbonyl)- isopropoxyimino]acetate monohydrate top
Crystal data top
C13H19N3O5S·H2OF(000) = 1472
Mr = 347.39Dx = 1.304 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2abCell parameters from 31871 reflections
a = 12.7918 (17) Åθ = 3.2–25.4°
b = 12.2489 (15) ŵ = 0.21 mm1
c = 22.595 (3) ÅT = 223 K
V = 3540.2 (8) Å3Block, colourless
Z = 80.80 × 0.80 × 0.57 mm
Data collection top
Rigaku Mercury
diffractometer
3232 independent reflections
Radiation source: fine-focus sealed tube3096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.2°
ω scansh = 1515
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1414
Tmin = 0.847, Tmax = 0.888l = 2726
31871 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0297P)2 + 2.4239P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3232 reflectionsΔρmax = 0.20 e Å3
268 parametersΔρmin = 0.28 e Å3
22 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0151 (7)
Crystal data top
C13H19N3O5S·H2OV = 3540.2 (8) Å3
Mr = 347.39Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7918 (17) ŵ = 0.21 mm1
b = 12.2489 (15) ÅT = 223 K
c = 22.595 (3) Å0.80 × 0.80 × 0.57 mm
Data collection top
Rigaku Mercury
diffractometer
3232 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
3096 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.888Rint = 0.031
31871 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04222 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.20 e Å3
3232 reflectionsΔρmin = 0.28 e Å3
268 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.46180 (4)0.52078 (4)0.40564 (2)0.03825 (17)
O10.41053 (8)0.12570 (9)0.56784 (5)0.0286 (3)
O20.47558 (11)0.23610 (12)0.66636 (6)0.0455 (4)
O30.61809 (11)0.13114 (11)0.67241 (6)0.0466 (4)
O40.24960 (11)0.16967 (14)0.45102 (7)0.0585 (4)
O50.21461 (9)0.25993 (12)0.53369 (6)0.0448 (4)
O60.29085 (12)0.33757 (12)0.63821 (7)0.0406 (3)
N10.45637 (10)0.20940 (11)0.53363 (6)0.0268 (3)
N20.53804 (11)0.35198 (12)0.45411 (6)0.0276 (3)
N30.66501 (12)0.46234 (15)0.40943 (8)0.0377 (4)
C10.38961 (12)0.25548 (14)0.49967 (7)0.0263 (4)
C20.49082 (13)0.07540 (14)0.60427 (8)0.0290 (4)
C30.52641 (13)0.15890 (14)0.65053 (8)0.0297 (4)
C50.27385 (13)0.22507 (14)0.49359 (8)0.0314 (4)
C60.43082 (12)0.34460 (14)0.46353 (7)0.0271 (4)
C70.56742 (13)0.43966 (14)0.42388 (7)0.0291 (4)
C80.37851 (14)0.42879 (15)0.43978 (8)0.0360 (4)
H80.30550.43690.44150.043*
C90.58029 (15)0.03195 (17)0.56715 (9)0.0412 (5)
H9A0.55340.01930.53820.062*
H9B0.63030.00480.59260.062*
H9C0.61440.09210.54700.062*
C100.43324 (17)0.01592 (17)0.63619 (10)0.0488 (6)
H10A0.37490.01440.65810.073*
H10B0.48060.05210.66330.073*
H10C0.40750.06830.60750.073*
C40.6558 (15)0.1863 (12)0.7277 (6)0.043 (4)0.37 (4)
C110.5784 (18)0.1947 (19)0.7785 (11)0.065 (4)0.37 (4)
H11A0.56070.12210.79240.098*0.37 (4)
H11B0.51560.23140.76500.098*0.37 (4)
H11C0.60950.23610.81060.098*0.37 (4)
C120.695 (2)0.2988 (16)0.7095 (11)0.067 (5)0.37 (4)
H12A0.74270.29160.67640.100*0.37 (4)
H12B0.73070.33270.74250.100*0.37 (4)
H12C0.63600.34380.69780.100*0.37 (4)
C130.7481 (17)0.1146 (17)0.7456 (11)0.070 (4)0.37 (4)
H13A0.72300.04250.75610.106*0.37 (4)
H13B0.78340.14690.77930.106*0.37 (4)
H13C0.79660.10890.71270.106*0.37 (4)
C4'0.6727 (10)0.1936 (8)0.7204 (4)0.043 (2)0.63 (4)
C11'0.6069 (13)0.1748 (14)0.7744 (6)0.072 (3)0.63 (4)
H11D0.58920.09790.77720.108*0.63 (4)
H11E0.54330.21760.77150.108*0.63 (4)
H11F0.64560.19660.80930.108*0.63 (4)
C12'0.6832 (13)0.3121 (8)0.7044 (6)0.063 (3)0.63 (4)
H12D0.71900.31860.66670.095*0.63 (4)
H12E0.72310.34950.73470.095*0.63 (4)
H12F0.61430.34470.70130.095*0.63 (4)
C13'0.7772 (12)0.1372 (13)0.7235 (9)0.088 (4)0.63 (4)
H13D0.76670.05940.72890.132*0.63 (4)
H13E0.81680.16600.75660.132*0.63 (4)
H13F0.81540.14990.68710.132*0.63 (4)
H6A0.267 (2)0.312 (2)0.6048 (12)0.069 (9)*
H6B0.346 (2)0.306 (2)0.6449 (12)0.069 (9)*
H2A0.5873 (19)0.3049 (19)0.4660 (10)0.054 (7)*
H3A0.6783 (17)0.5257 (19)0.3913 (10)0.046 (6)*
H3B0.7138 (18)0.4203 (19)0.4232 (10)0.052 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0322 (3)0.0349 (3)0.0477 (3)0.00080 (19)0.0030 (2)0.0154 (2)
O10.0212 (6)0.0325 (6)0.0321 (6)0.0040 (5)0.0045 (5)0.0102 (5)
O20.0443 (8)0.0477 (8)0.0444 (8)0.0147 (7)0.0090 (6)0.0099 (6)
O30.0436 (8)0.0431 (8)0.0530 (8)0.0132 (6)0.0279 (7)0.0152 (7)
O40.0320 (7)0.0720 (11)0.0715 (10)0.0050 (7)0.0118 (8)0.0226 (9)
O50.0222 (6)0.0611 (9)0.0511 (8)0.0062 (6)0.0044 (6)0.0019 (7)
O60.0370 (8)0.0379 (8)0.0470 (9)0.0070 (6)0.0045 (7)0.0071 (7)
N10.0218 (7)0.0297 (7)0.0289 (7)0.0033 (6)0.0001 (6)0.0049 (6)
N20.0204 (7)0.0297 (8)0.0327 (8)0.0001 (6)0.0001 (6)0.0063 (6)
N30.0270 (8)0.0373 (9)0.0488 (10)0.0034 (7)0.0050 (7)0.0137 (8)
C10.0204 (8)0.0294 (8)0.0291 (8)0.0001 (7)0.0005 (7)0.0012 (7)
C20.0249 (8)0.0294 (9)0.0328 (9)0.0004 (7)0.0070 (7)0.0055 (7)
C30.0292 (9)0.0310 (9)0.0289 (9)0.0022 (7)0.0036 (7)0.0055 (7)
C50.0233 (9)0.0297 (9)0.0410 (10)0.0020 (7)0.0066 (8)0.0096 (8)
C60.0198 (8)0.0334 (9)0.0283 (9)0.0018 (7)0.0017 (7)0.0026 (7)
C70.0281 (9)0.0300 (9)0.0293 (9)0.0014 (7)0.0003 (7)0.0016 (7)
C80.0224 (8)0.0398 (10)0.0458 (11)0.0000 (8)0.0026 (8)0.0105 (8)
C90.0357 (10)0.0489 (12)0.0390 (11)0.0130 (9)0.0100 (9)0.0074 (9)
C100.0429 (11)0.0425 (12)0.0608 (14)0.0079 (10)0.0133 (10)0.0226 (10)
C40.045 (6)0.032 (6)0.051 (8)0.002 (4)0.024 (5)0.005 (4)
C110.089 (9)0.070 (6)0.036 (5)0.016 (7)0.008 (6)0.004 (4)
C120.077 (9)0.075 (10)0.049 (7)0.004 (7)0.023 (6)0.017 (6)
C130.069 (8)0.075 (7)0.068 (9)0.027 (6)0.042 (6)0.025 (6)
C4'0.048 (4)0.044 (5)0.037 (3)0.000 (3)0.022 (3)0.007 (3)
C11'0.090 (6)0.091 (7)0.036 (4)0.025 (5)0.021 (4)0.008 (5)
C12'0.079 (5)0.047 (4)0.064 (6)0.023 (4)0.035 (4)0.000 (3)
C13'0.069 (6)0.093 (6)0.102 (8)0.028 (5)0.061 (5)0.039 (6)
Geometric parameters (Å, º) top
S1—C71.7270 (18)C9—H9C0.97
S1—C81.7319 (18)C10—H10A0.97
O1—N11.4116 (17)C10—H10B0.97
O1—C21.4532 (19)C10—H10C0.97
O2—C31.202 (2)C4—C131.526 (9)
O3—C31.317 (2)C4—C121.523 (9)
O3—C4'1.499 (5)C4—C111.520 (9)
O3—C41.501 (7)C11—H11A0.97
O4—C51.217 (2)C11—H11B0.97
O5—C51.256 (2)C11—H11C0.97
O6—H6A0.88 (3)C12—H12A0.97
O6—H6B0.81 (3)C12—H12B0.97
N1—C11.279 (2)C12—H12C0.97
N2—C71.327 (2)C13—H13A0.97
N2—C61.391 (2)C13—H13B0.97
N2—H2A0.90 (2)C13—H13C0.97
N3—C71.320 (2)C4'—C12'1.502 (7)
N3—H3A0.89 (2)C4'—C11'1.500 (7)
N3—H3B0.87 (2)C4'—C13'1.507 (7)
C1—C61.462 (2)C11'—H11D0.97
C1—C51.533 (2)C11'—H11E0.97
C2—C91.516 (3)C11'—H11F0.97
C2—C101.521 (3)C12'—H12D0.97
C2—C31.532 (2)C12'—H12E0.97
C6—C81.341 (2)C12'—H12F0.97
C8—H80.94C13'—H13D0.97
C9—H9A0.97C13'—H13E0.97
C9—H9B0.97C13'—H13F0.97
C7—S1—C890.04 (8)O3—C4—C13102.1 (11)
N1—O1—C2108.93 (11)O3—C4—C12106.7 (14)
C3—O3—C4'123.6 (5)C13—C4—C12109.8 (7)
C3—O3—C4118.9 (7)O3—C4—C11116.8 (16)
H6A—O6—H6B107 (3)C13—C4—C11110.1 (7)
C1—N1—O1111.81 (13)C12—C4—C11110.9 (7)
C7—N2—C6114.24 (15)C4—C11—H11A109.5
C7—N2—H2A118.4 (15)C4—C11—H11B109.5
C6—N2—H2A127.3 (15)H11A—C11—H11B109.5
C7—N3—H3A118.4 (14)C4—C11—H11C109.5
C7—N3—H3B117.8 (15)H11A—C11—H11C109.5
H3A—N3—H3B123 (2)H11B—C11—H11C109.5
N1—C1—C6115.08 (14)C4—C12—H12A109.5
N1—C1—C5126.26 (15)C4—C12—H12B109.5
C6—C1—C5118.66 (14)H12A—C12—H12B109.5
O1—C2—C9111.67 (14)C4—C12—H12C109.5
O1—C2—C10103.77 (13)H12A—C12—H12C109.5
C9—C2—C10111.70 (17)H12B—C12—H12C109.5
O1—C2—C3108.27 (13)C4—C13—H13A109.5
C9—C2—C3112.81 (15)C4—C13—H13B109.5
C10—C2—C3108.15 (15)H13A—C13—H13B109.5
O2—C3—O3124.96 (17)C4—C13—H13C109.5
O2—C3—C2124.58 (16)H13A—C13—H13C109.5
O3—C3—C2110.39 (15)H13B—C13—H13C109.5
O4—C5—O5127.28 (16)O3—C4'—C12'111.2 (7)
O4—C5—C1116.90 (16)O3—C4'—C11'104.4 (10)
O5—C5—C1115.81 (15)C12'—C4'—C11'113.3 (5)
C8—C6—N2112.38 (15)O3—C4'—C13'102.3 (7)
C8—C6—C1128.16 (15)C12'—C4'—C13'112.0 (6)
N2—C6—C1119.32 (15)C11'—C4'—C13'112.9 (5)
N3—C7—N2124.44 (17)C4'—C11'—H11D109.5
N3—C7—S1124.03 (14)C4'—C11'—H11E109.5
N2—C7—S1111.53 (12)H11D—C11'—H11E109.5
C6—C8—S1111.81 (13)C4'—C11'—H11F109.5
C6—C8—H8124.1H11D—C11'—H11F109.5
S1—C8—H8124.1H11E—C11'—H11F109.5
C2—C9—H9A109.5C4'—C12'—H12D109.5
C2—C9—H9B109.5C4'—C12'—H12E109.5
H9A—C9—H9B109.5H12D—C12'—H12E109.5
C2—C9—H9C109.5C4'—C12'—H12F109.5
H9A—C9—H9C109.5H12D—C12'—H12F109.5
H9B—C9—H9C109.5H12E—C12'—H12F109.5
C2—C10—H10A109.5C4'—C13'—H13D109.5
C2—C10—H10B109.5C4'—C13'—H13E109.5
H10A—C10—H10B109.5H13D—C13'—H13E109.5
C2—C10—H10C109.5C4'—C13'—H13F109.5
H10A—C10—H10C109.5H13D—C13'—H13F109.5
H10B—C10—H10C109.5H13E—C13'—H13F109.5
C2—O1—N1—C1178.74 (14)C7—N2—C6—C80.0 (2)
O1—N1—C1—C6178.92 (13)C7—N2—C6—C1175.93 (15)
O1—N1—C1—C51.7 (2)N1—C1—C6—C8155.94 (19)
N1—O1—C2—C956.78 (17)C5—C1—C6—C824.6 (3)
N1—O1—C2—C10177.25 (14)N1—C1—C6—N219.3 (2)
N1—O1—C2—C368.00 (16)C5—C1—C6—N2160.16 (16)
C4'—O3—C3—O20.5 (7)C6—N2—C7—N3179.26 (17)
C4—O3—C3—O211.0 (10)C6—N2—C7—S10.70 (19)
C4'—O3—C3—C2177.5 (7)C8—S1—C7—N3179.04 (17)
C4—O3—C3—C2166.0 (9)C8—S1—C7—N20.91 (14)
O1—C2—C3—O221.9 (2)N2—C6—C8—S10.7 (2)
C9—C2—C3—O2146.04 (18)C1—C6—C8—S1174.79 (15)
C10—C2—C3—O289.9 (2)C7—S1—C8—C60.92 (15)
O1—C2—C3—O3161.07 (14)C3—O3—C4—C13167.3 (10)
C9—C2—C3—O337.0 (2)C3—O3—C4—C1277.5 (12)
C10—C2—C3—O387.09 (18)C3—O3—C4—C1147.2 (13)
N1—C1—C5—O4100.4 (2)C3—O3—C4'—C12'53.7 (12)
C6—C1—C5—O478.9 (2)C3—O3—C4'—C11'68.8 (10)
N1—C1—C5—O579.1 (2)C3—O3—C4'—C13'173.4 (9)
C6—C1—C5—O5101.53 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O50.88 (3)1.85 (3)2.726 (2)179 (3)
O6—H6B···O20.81 (3)1.93 (3)2.745 (2)176 (3)
N2—H2A···O5i0.90 (2)1.81 (2)2.656 (2)156 (2)
N3—H3A···O6ii0.89 (2)1.85 (2)2.736 (2)174 (2)
N3—H3B···O5i0.87 (2)2.41 (2)3.077 (2)134 (2)
N3—H3B···O1i0.87 (2)2.59 (2)3.360 (2)149 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H19N3O5S·H2O
Mr347.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)223
a, b, c (Å)12.7918 (17), 12.2489 (15), 22.595 (3)
V3)3540.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.80 × 0.80 × 0.57
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.847, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
31871, 3232, 3096
Rint0.031
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.091, 1.08
No. of reflections3232
No. of parameters268
No. of restraints22
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.28

Computer programs: CrystalClear (Rigaku, 2001), CrystalClear, CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O50.88 (3)1.85 (3)2.726 (2)179 (3)
O6—H6B···O20.81 (3)1.93 (3)2.745 (2)176 (3)
N2—H2A···O5i0.90 (2)1.81 (2)2.656 (2)156 (2)
N3—H3A···O6ii0.89 (2)1.85 (2)2.736 (2)174 (2)
N3—H3B···O5i0.87 (2)2.41 (2)3.077 (2)134 (2)
N3—H3B···O1i0.87 (2)2.59 (2)3.360 (2)149 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds