Download citation
Download citation
link to html
In the title compound, C26H21NO7, all the five-membered rings adopt envelope conformations. The pyrrolizine nucleus is folded about the shared N—C bond. The mol­ecule is stabilized by an intra­molecular O—H...O hydrogen bond which generates an S(8) motif. The crystal packing reveals that symmetry-related mol­ecules are linked into a three-dimensional network by C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703560X/ci2413sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703560X/ci2413Isup2.hkl
Contains datablock I

CCDC reference: 659100

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.049
  • wR factor = 0.169
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C4 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C5 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of C19 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 7 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrrolizidine alkaloids represent a group of compounds present in a variety of plants throughout the world. The pyrrolizidine alkaloids are well documented for their mutagenic, antineoplastic, carcinogenic, hepatoxic and many pharmacological activities. Substituted pyrrolidine compounds have been found to have antimicrobial and antifungal activity against various pathogens (Amalraj et al., 2003). Several optically active pyrrolidine compounds have been used as intermediates in controlled asymmetric synthesis (Suzuki et al., 1994). The spiro-indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, e.g. vincrinstine, vinblastine and Spirotypostatins (Cordell, 1981). Against this background and in order to obtain detailed information on its molecular conformation, the structure determination of the title compound has been carried out and the results are presented here.

The title compound (Fig.1) consists of a pyrrolizine ring system (rings A and B) connected to a indane dione group (rings C and D) at C2, hydroxyl indane dione group (rings E and F) and methoxy carbonyl group at C4. All the five-membered rings A, B, C and E adopt envelope conformations. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the pyrrolidine ring A are q2 = 0.245 (2) Å, φ = 187.8 (5)° and Δs(N1) = 4.7 (2)°, for the pyrrolidine ring B are q2 = 0.399 (2) Å, φ = 318.6 (4)° and Δs(C8) = 3.2 (2)°, for the ring C are q2 = 0.141 (2) Å, φ = 5.0 (10)° and Δs(C2) = 1.7 (3)°, and for the ring E are q2 = 0.090 (3) Å, φ = 356.8 (17)° and Δs(C19) = 0.7 (3)°.

The molecule is stabilized by the intramolecular O5—H5···O4 hydrogen bond which generates an S(8) motif (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. Atom C22 in the molecule at (x, y, z) donates one proton to atom O7 in the molecule at (x, 1 + y, z), forming a C(6) chain along the b axis. Also, atoms C8 and C16 in the molecule at (x, y, z) donate one proton each to atom O4 and O3 in the molecule at (x, 1 - y, 1/2 + z) and (x, 1 - y, -1/2 + z), respectively, forming a chain along the c axis. These hydrogen bonds generate an R22(11) ring motif. The molecules at (x, y, z) and (-x, 2 - y, -z) are linked by C23—H23···O1 hydrogen bonds into cyclic centrosymmetric R22(18) dimers. Thus, the symmetry-related molecules are cross-linked by these hydrogen bonds to generate a three-dimensional network.

Related literature top

For general background, see: Amalraj et al. (2003); Cordell (1981); Suzuki et al. (1994). For synthesis, see: Ramesh et al. (2007). For ring conformations, see: Cremer & Pople (1975); Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the method reported in the literature (Ramesh et al., 2007). A solution of the Baylis–Hilman adduct of ninhydrin (1 mmol), proline (1 mmol) and ninhydrin (1 mmol) in methonol was refluxed. After completion of the reaction, as monitored by thin-layer chromatographic analysis, the solvent was removed under vacuum, and the crude product was subjected to column chromatography on silica gel (100–200 mesh) using petroleum ether/ethyl acetate (7:3) as eluent. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a ethanol solution.

Refinement top

H atoms were positioned geometrically (O—H = 0.82 Å and C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C,O) for the methyl and OH groups.

Structure description top

Pyrrolizidine alkaloids represent a group of compounds present in a variety of plants throughout the world. The pyrrolizidine alkaloids are well documented for their mutagenic, antineoplastic, carcinogenic, hepatoxic and many pharmacological activities. Substituted pyrrolidine compounds have been found to have antimicrobial and antifungal activity against various pathogens (Amalraj et al., 2003). Several optically active pyrrolidine compounds have been used as intermediates in controlled asymmetric synthesis (Suzuki et al., 1994). The spiro-indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, e.g. vincrinstine, vinblastine and Spirotypostatins (Cordell, 1981). Against this background and in order to obtain detailed information on its molecular conformation, the structure determination of the title compound has been carried out and the results are presented here.

The title compound (Fig.1) consists of a pyrrolizine ring system (rings A and B) connected to a indane dione group (rings C and D) at C2, hydroxyl indane dione group (rings E and F) and methoxy carbonyl group at C4. All the five-membered rings A, B, C and E adopt envelope conformations. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the pyrrolidine ring A are q2 = 0.245 (2) Å, φ = 187.8 (5)° and Δs(N1) = 4.7 (2)°, for the pyrrolidine ring B are q2 = 0.399 (2) Å, φ = 318.6 (4)° and Δs(C8) = 3.2 (2)°, for the ring C are q2 = 0.141 (2) Å, φ = 5.0 (10)° and Δs(C2) = 1.7 (3)°, and for the ring E are q2 = 0.090 (3) Å, φ = 356.8 (17)° and Δs(C19) = 0.7 (3)°.

The molecule is stabilized by the intramolecular O5—H5···O4 hydrogen bond which generates an S(8) motif (Bernstein et al., 1995). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. Atom C22 in the molecule at (x, y, z) donates one proton to atom O7 in the molecule at (x, 1 + y, z), forming a C(6) chain along the b axis. Also, atoms C8 and C16 in the molecule at (x, y, z) donate one proton each to atom O4 and O3 in the molecule at (x, 1 - y, 1/2 + z) and (x, 1 - y, -1/2 + z), respectively, forming a chain along the c axis. These hydrogen bonds generate an R22(11) ring motif. The molecules at (x, y, z) and (-x, 2 - y, -z) are linked by C23—H23···O1 hydrogen bonds into cyclic centrosymmetric R22(18) dimers. Thus, the symmetry-related molecules are cross-linked by these hydrogen bonds to generate a three-dimensional network.

For general background, see: Amalraj et al. (2003); Cordell (1981); Suzuki et al. (1994). For synthesis, see: Ramesh et al. (2007). For ring conformations, see: Cremer & Pople (1975); Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1988); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Methyl 1'-(2-hydroxy-1,3-dioxoindan-2-yl)-1,3-dioxoindane-2- spiro-3'-pyrrolizidine-1-carboxylate top
Crystal data top
C26H21NO7F(000) = 1920
Mr = 459.44Dx = 1.390 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 39.580 (5) Åθ = 2.3–68.0°
b = 7.6690 (15) ŵ = 0.85 mm1
c = 14.868 (3) ÅT = 293 K
β = 103.291 (16)°Block, colourless
V = 4392.0 (14) Å30.37 × 0.24 × 0.15 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
3118 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 68.0°, θmin = 2.3°
ω/2θ scansh = 047
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.784, Tmax = 0.881l = 1717
4055 measured reflections2 standard reflections every 60 min
3994 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.169 w = 1/[σ2(Fo2) + (0.1055P)2 + 3.9632P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
3994 reflectionsΔρmax = 0.26 e Å3
309 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00074 (11)
Crystal data top
C26H21NO7V = 4392.0 (14) Å3
Mr = 459.44Z = 8
Monoclinic, C2/cCu Kα radiation
a = 39.580 (5) ŵ = 0.85 mm1
b = 7.6690 (15) ÅT = 293 K
c = 14.868 (3) Å0.37 × 0.24 × 0.15 mm
β = 103.291 (16)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3118 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.052
Tmin = 0.784, Tmax = 0.8812 standard reflections every 60 min
4055 measured reflections intensity decay: 4%
3994 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 0.99Δρmax = 0.26 e Å3
3994 reflectionsΔρmin = 0.22 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.07308 (5)0.7325 (3)0.11713 (13)0.0797 (7)
O20.12466 (4)0.7130 (2)0.21385 (11)0.0554 (4)
O30.22421 (4)0.6868 (3)0.21202 (11)0.0619 (5)
O40.17375 (4)0.5356 (3)0.09529 (11)0.0693 (6)
O50.10878 (5)0.6593 (3)0.11651 (11)0.0674 (6)
H50.12920.62920.10030.101*
O60.10669 (5)1.0111 (2)0.03087 (14)0.0685 (5)
O70.05550 (6)0.4526 (3)0.0507 (2)0.1019 (9)
N10.16725 (4)0.4251 (2)0.09413 (11)0.0388 (4)
C20.18367 (5)0.5860 (3)0.07124 (13)0.0387 (5)
C30.15739 (5)0.7337 (3)0.06648 (15)0.0404 (5)
H3A0.15770.80930.01440.048*
H3B0.16290.80270.12260.048*
C40.12111 (5)0.6473 (3)0.05505 (13)0.0379 (5)
C50.12937 (5)0.4442 (3)0.06061 (15)0.0401 (5)
H5A0.12270.39580.00200.048*
C60.11382 (6)0.3280 (3)0.12542 (18)0.0537 (6)
H6A0.10100.39760.16080.064*
H6B0.09830.24140.09040.064*
C70.14515 (7)0.2410 (3)0.18904 (18)0.0582 (6)
H7A0.14120.22320.25040.070*
H7B0.15020.12950.16420.070*
C80.17429 (6)0.3687 (3)0.19145 (15)0.0506 (6)
H8A0.17310.46580.23250.061*
H8B0.19680.31290.21030.061*
C90.10343 (5)0.7037 (3)0.13072 (15)0.0438 (5)
C100.10900 (8)0.7620 (4)0.28863 (19)0.0719 (8)
H10A0.09990.87810.27850.108*
H10B0.12620.75800.34590.108*
H10C0.09050.68240.29130.108*
C110.21928 (6)0.6158 (3)0.13721 (15)0.0444 (5)
C120.24625 (5)0.5492 (3)0.09159 (15)0.0433 (5)
C130.28137 (6)0.5255 (3)0.1270 (2)0.0581 (6)
H130.29150.54990.18850.070*
C140.30097 (6)0.4644 (4)0.0679 (2)0.0663 (7)
H140.32470.44720.09030.080*
C150.28613 (7)0.4280 (3)0.0240 (2)0.0603 (7)
H150.30000.38720.06210.072*
C160.25130 (6)0.4510 (3)0.05965 (18)0.0519 (6)
H160.24140.42790.12150.062*
C170.23135 (5)0.5101 (3)0.00032 (15)0.0417 (5)
C180.19387 (5)0.5440 (3)0.01998 (14)0.0429 (5)
C190.09585 (5)0.6972 (3)0.03765 (15)0.0432 (5)
C200.08603 (6)0.8913 (3)0.04602 (15)0.0461 (5)
C210.04821 (6)0.9050 (3)0.08045 (16)0.0509 (6)
C220.02816 (8)1.0539 (4)0.1044 (2)0.0666 (7)
H220.03821.16410.09990.080*
C230.00700 (8)1.0321 (5)0.1347 (2)0.0837 (10)
H230.02101.12950.15170.100*
C240.02206 (8)0.8695 (6)0.1408 (3)0.0916 (11)
H240.04600.85920.16180.110*
C250.00228 (7)0.7217 (5)0.1162 (2)0.0813 (9)
H250.01250.61200.11960.098*
C260.03318 (6)0.7415 (4)0.08649 (18)0.0572 (6)
C270.06007 (6)0.6068 (3)0.05542 (19)0.0596 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0564 (11)0.1316 (19)0.0562 (11)0.0390 (11)0.0233 (8)0.0113 (11)
O20.0560 (9)0.0683 (11)0.0452 (9)0.0027 (8)0.0184 (7)0.0102 (8)
O30.0600 (10)0.0793 (12)0.0442 (9)0.0009 (9)0.0073 (7)0.0162 (8)
O40.0507 (9)0.1217 (17)0.0359 (9)0.0137 (10)0.0108 (7)0.0045 (9)
O50.0641 (11)0.0972 (15)0.0397 (9)0.0275 (10)0.0093 (7)0.0066 (9)
O60.0660 (11)0.0474 (10)0.0853 (14)0.0032 (8)0.0033 (10)0.0134 (9)
O70.0690 (13)0.0490 (12)0.166 (3)0.0109 (10)0.0172 (14)0.0075 (13)
N10.0420 (9)0.0408 (9)0.0358 (9)0.0042 (7)0.0136 (7)0.0006 (7)
C20.0387 (10)0.0439 (11)0.0362 (10)0.0013 (8)0.0139 (8)0.0003 (8)
C30.0422 (11)0.0379 (11)0.0436 (11)0.0000 (8)0.0151 (8)0.0009 (9)
C40.0384 (10)0.0381 (11)0.0390 (11)0.0030 (8)0.0128 (8)0.0003 (8)
C50.0421 (11)0.0353 (10)0.0451 (11)0.0015 (8)0.0146 (8)0.0030 (8)
C60.0578 (14)0.0404 (12)0.0708 (16)0.0016 (10)0.0307 (12)0.0032 (11)
C70.0731 (16)0.0492 (13)0.0587 (14)0.0032 (12)0.0281 (12)0.0118 (11)
C80.0598 (13)0.0521 (13)0.0414 (11)0.0080 (11)0.0151 (10)0.0081 (10)
C90.0462 (12)0.0416 (12)0.0472 (12)0.0082 (9)0.0179 (9)0.0033 (9)
C100.090 (2)0.0815 (19)0.0528 (15)0.0068 (16)0.0352 (14)0.0064 (14)
C110.0455 (11)0.0468 (12)0.0411 (11)0.0001 (9)0.0106 (9)0.0008 (9)
C120.0415 (11)0.0397 (11)0.0497 (12)0.0023 (9)0.0128 (9)0.0004 (9)
C130.0409 (12)0.0566 (15)0.0734 (17)0.0021 (10)0.0061 (11)0.0038 (12)
C140.0386 (12)0.0605 (16)0.102 (2)0.0028 (11)0.0202 (13)0.0014 (15)
C150.0531 (14)0.0488 (13)0.090 (2)0.0010 (11)0.0390 (13)0.0045 (13)
C160.0556 (13)0.0488 (13)0.0601 (14)0.0022 (10)0.0317 (11)0.0023 (10)
C170.0437 (11)0.0392 (11)0.0462 (11)0.0008 (8)0.0184 (9)0.0019 (9)
C180.0427 (11)0.0526 (12)0.0358 (11)0.0009 (9)0.0139 (9)0.0011 (9)
C190.0431 (11)0.0439 (12)0.0431 (11)0.0060 (9)0.0113 (9)0.0026 (9)
C200.0502 (12)0.0463 (12)0.0418 (11)0.0024 (10)0.0103 (9)0.0040 (9)
C210.0505 (13)0.0565 (14)0.0469 (12)0.0122 (10)0.0136 (10)0.0036 (10)
C220.0699 (17)0.0660 (17)0.0646 (16)0.0251 (14)0.0170 (13)0.0096 (13)
C230.0645 (18)0.104 (3)0.088 (2)0.0416 (18)0.0273 (16)0.0277 (19)
C240.0455 (15)0.129 (3)0.101 (2)0.0209 (18)0.0179 (15)0.034 (2)
C250.0469 (14)0.094 (2)0.098 (2)0.0011 (15)0.0061 (14)0.0195 (19)
C260.0462 (12)0.0637 (16)0.0612 (15)0.0041 (11)0.0112 (11)0.0069 (12)
C270.0494 (13)0.0533 (15)0.0696 (16)0.0003 (11)0.0007 (11)0.0003 (12)
Geometric parameters (Å, º) top
O1—C91.192 (3)C10—H10A0.96
O2—C91.327 (3)C10—H10B0.96
O2—C101.442 (3)C10—H10C0.96
O3—C111.213 (3)C11—C121.481 (3)
O4—C181.217 (3)C12—C131.380 (3)
O5—C191.413 (3)C12—C171.391 (3)
O5—H50.82C13—C141.380 (4)
O6—C201.216 (3)C13—H130.93
O7—C271.201 (3)C14—C151.386 (4)
N1—C21.470 (3)C14—H140.93
N1—C81.474 (3)C15—C161.370 (4)
N1—C51.475 (3)C15—H150.93
C2—C31.528 (3)C16—C171.388 (3)
C2—C181.535 (3)C16—H160.93
C2—C111.538 (3)C17—C181.468 (3)
C3—C41.555 (3)C18—O41.217 (3)
C3—H3A0.97C19—C201.537 (3)
C3—H3B0.97C19—C271.544 (3)
C4—C91.518 (3)C20—O61.216 (3)
C4—C191.553 (3)C20—C211.470 (3)
C4—C51.590 (3)C21—C261.382 (4)
C5—C61.541 (3)C21—C221.389 (3)
C5—H5A0.98C22—C231.371 (4)
C6—C71.529 (4)C22—H220.93
C6—H6A0.97C23—C241.376 (5)
C6—H6B0.97C23—H230.93
C7—C81.508 (4)C24—C251.378 (5)
C7—H7A0.97C24—H240.93
C7—H7B0.97C25—C261.379 (4)
C8—H8A0.97C25—H250.93
C8—H8B0.97C26—C271.479 (4)
C9—O2—C10116.08 (19)H10B—C10—H10C109.5
C19—O5—H5109.5O3—C11—C12126.4 (2)
C2—N1—C8118.65 (17)O3—C11—C2125.6 (2)
C2—N1—C5107.91 (15)C12—C11—C2107.93 (17)
C8—N1—C5108.00 (16)C13—C12—C17120.5 (2)
N1—C2—C3107.47 (15)C13—C12—C11129.8 (2)
N1—C2—C18104.38 (16)C17—C12—C11109.70 (18)
C3—C2—C18115.39 (17)C12—C13—C14117.8 (2)
N1—C2—C11111.49 (16)C12—C13—H13121.1
C3—C2—C11115.68 (17)C14—C13—H13121.1
C18—C2—C11101.89 (16)C13—C14—C15121.5 (2)
C2—C3—C4106.92 (17)C13—C14—H14119.2
C2—C3—H3A110.3C15—C14—H14119.2
C4—C3—H3A110.3C16—C15—C14121.1 (2)
C2—C3—H3B110.3C16—C15—H15119.5
C4—C3—H3B110.3C14—C15—H15119.5
H3A—C3—H3B108.6C15—C16—C17117.7 (2)
C9—C4—C19105.97 (16)C15—C16—H16121.1
C9—C4—C3111.66 (17)C17—C16—H16121.1
C19—C4—C3112.47 (17)C16—C17—C12121.3 (2)
C9—C4—C5111.40 (16)C16—C17—C18128.9 (2)
C19—C4—C5111.72 (16)C12—C17—C18109.77 (18)
C3—C4—C5103.77 (15)O4—C18—C17126.24 (19)
N1—C5—C6104.63 (17)O4—C18—C2125.06 (19)
N1—C5—C4107.21 (16)C17—C18—C2108.67 (17)
C6—C5—C4119.49 (17)O5—C19—C20105.39 (18)
N1—C5—H5A108.4O5—C19—C27104.98 (19)
C6—C5—H5A108.4C20—C19—C27102.48 (17)
C4—C5—H5A108.4O5—C19—C4113.81 (16)
C7—C6—C5104.81 (18)C20—C19—C4114.18 (18)
C7—C6—H6A110.8C27—C19—C4114.79 (19)
C5—C6—H6A110.8O6—C20—C21126.8 (2)
C7—C6—H6B110.8O6—C20—C19124.8 (2)
C5—C6—H6B110.8C21—C20—C19108.40 (19)
H6A—C6—H6B108.9C26—C21—C22121.1 (2)
C8—C7—C6103.77 (19)C26—C21—C20110.3 (2)
C8—C7—H7A111.0C22—C21—C20128.6 (2)
C6—C7—H7A111.0C23—C22—C21117.4 (3)
C8—C7—H7B111.0C23—C22—H22121.3
C6—C7—H7B111.0C21—C22—H22121.3
H7A—C7—H7B109.0C22—C23—C24121.6 (3)
N1—C8—C7101.33 (18)C22—C23—H23119.2
N1—C8—H8A111.5C24—C23—H23119.2
C7—C8—H8A111.5C23—C24—C25121.1 (3)
N1—C8—H8B111.5C23—C24—H24119.4
C7—C8—H8B111.5C25—C24—H24119.4
H8A—C8—H8B109.3C24—C25—C26117.9 (3)
O1—C9—O2123.1 (2)C24—C25—H25121.0
O1—C9—C4123.0 (2)C26—C25—H25121.0
O2—C9—C4113.85 (17)C25—C26—C21120.8 (2)
O2—C10—H10A109.5C25—C26—C27129.0 (3)
O2—C10—H10B109.5C21—C26—C27110.2 (2)
H10A—C10—H10B109.5O7—C27—C26126.8 (2)
O2—C10—H10C109.5O7—C27—C19125.2 (2)
H10A—C10—H10C109.5C26—C27—C19107.8 (2)
C8—N1—C2—C396.3 (2)C11—C12—C17—C16177.7 (2)
C5—N1—C2—C326.8 (2)C13—C12—C17—C18179.1 (2)
C8—N1—C2—C18140.68 (18)C11—C12—C17—C181.5 (2)
C5—N1—C2—C1896.18 (17)C16—C17—C18—O44.9 (4)
C8—N1—C2—C1131.4 (2)C12—C17—C18—O4174.1 (2)
C5—N1—C2—C11154.57 (16)C16—C17—C18—C2173.1 (2)
N1—C2—C3—C418.4 (2)C12—C17—C18—C27.8 (2)
C18—C2—C3—C497.5 (2)N1—C2—C18—O475.0 (3)
C11—C2—C3—C4143.72 (17)C3—C2—C18—O442.6 (3)
C2—C3—C4—C9123.77 (18)C11—C2—C18—O4168.8 (2)
C2—C3—C4—C19117.25 (18)N1—C2—C18—C17102.99 (19)
C2—C3—C4—C53.7 (2)C3—C2—C18—C17139.32 (18)
C2—N1—C5—C6152.10 (17)C11—C2—C18—C1713.2 (2)
C8—N1—C5—C622.7 (2)C9—C4—C19—O5177.89 (19)
C2—N1—C5—C424.3 (2)C3—C4—C19—O555.6 (2)
C8—N1—C5—C4105.14 (18)C5—C4—C19—O560.6 (2)
C9—C4—C5—N1108.08 (18)C9—C4—C19—C2056.8 (2)
C19—C4—C5—N1133.60 (17)C3—C4—C19—C2065.4 (2)
C3—C4—C5—N112.2 (2)C5—C4—C19—C20178.33 (17)
C9—C4—C5—C610.5 (3)C9—C4—C19—C2761.1 (2)
C19—C4—C5—C6107.8 (2)C3—C4—C19—C27176.63 (18)
C3—C4—C5—C6130.8 (2)C5—C4—C19—C2760.4 (2)
N1—C5—C6—C73.4 (2)O5—C19—C20—O675.5 (3)
C4—C5—C6—C7123.3 (2)C27—C19—C20—O6174.9 (2)
C5—C6—C7—C827.2 (2)C4—C19—C20—O650.2 (3)
C2—N1—C8—C7162.84 (18)O5—C19—C20—C21101.1 (2)
C5—N1—C8—C739.7 (2)C27—C19—C20—C218.5 (2)
C6—C7—C8—N140.4 (2)C4—C19—C20—C21133.28 (19)
C10—O2—C9—O10.5 (4)O6—C20—C21—C26178.2 (2)
C10—O2—C9—C4178.6 (2)C19—C20—C21—C265.3 (3)
C19—C4—C9—O118.5 (3)O6—C20—C21—C221.2 (4)
C3—C4—C9—O1141.3 (2)C19—C20—C21—C22175.3 (2)
C5—C4—C9—O1103.2 (3)C26—C21—C22—C230.5 (4)
C19—C4—C9—O2163.39 (18)C20—C21—C22—C23179.8 (3)
C3—C4—C9—O240.6 (2)C21—C22—C23—C240.5 (5)
C5—C4—C9—O274.9 (2)C22—C23—C24—C250.1 (6)
N1—C2—C11—O385.2 (3)C23—C24—C25—C260.8 (5)
C3—C2—C11—O337.9 (3)C24—C25—C26—C210.9 (5)
C18—C2—C11—O3163.9 (2)C24—C25—C26—C27179.3 (3)
N1—C2—C11—C1296.95 (19)C22—C21—C26—C250.2 (4)
C3—C2—C11—C12139.87 (18)C20—C21—C26—C25179.2 (3)
C18—C2—C11—C1213.9 (2)C22—C21—C26—C27178.9 (2)
O3—C11—C12—C1311.7 (4)C20—C21—C26—C270.6 (3)
C2—C11—C12—C13170.5 (2)C25—C26—C27—O70.0 (5)
O3—C11—C12—C17167.6 (2)C21—C26—C27—O7178.6 (3)
C2—C11—C12—C1710.2 (2)C25—C26—C27—C19175.3 (3)
C17—C12—C13—C140.8 (4)C21—C26—C27—C196.2 (3)
C11—C12—C13—C14178.5 (2)O5—C19—C27—O774.2 (4)
C12—C13—C14—C150.1 (4)C20—C19—C27—O7175.9 (3)
C13—C14—C15—C160.2 (4)C4—C19—C27—O751.5 (4)
C14—C15—C16—C170.7 (4)O5—C19—C27—C26101.1 (2)
C15—C16—C17—C121.7 (3)C20—C19—C27—C268.8 (3)
C15—C16—C17—C18179.4 (2)C4—C19—C27—C26133.2 (2)
C13—C12—C17—C161.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.821.892.691 (2)165
C8—H8A···O4i0.972.563.259 (3)130
C16—H16···O3ii0.932.573.481 (3)168
C22—H22···O7iii0.932.383.280 (4)163
C23—H23···O1iv0.932.473.238 (3)140
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z; (iv) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC26H21NO7
Mr459.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)39.580 (5), 7.6690 (15), 14.868 (3)
β (°) 103.291 (16)
V3)4392.0 (14)
Z8
Radiation typeCu Kα
µ (mm1)0.85
Crystal size (mm)0.37 × 0.24 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.784, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
4055, 3994, 3118
Rint0.052
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.169, 0.99
No. of reflections3994
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius, 1988), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai, 1997), SHELXL97 and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O40.821.892.691 (2)165
C8—H8A···O4i0.972.563.259 (3)130
C16—H16···O3ii0.932.573.481 (3)168
C22—H22···O7iii0.932.383.280 (4)163
C23—H23···O1iv0.932.473.238 (3)140
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+1, z1/2; (iii) x, y+1, z; (iv) x, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds