Download citation
Download citation
link to html
The title compound, C18H28N6O6, is a derivative of glycoluril, with two ethyl acetate substituents on the convex face of the glycoluril system. Two equivalent six-membered rings bind the N atoms from separate rings of the glycoluril unit to form the flexible sidewalls of a mol­ecular clip. One N atom from each ring carries an ethyl substituent. The crystal packing is stabilized by non-classical C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031819/cv2270sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031819/cv2270Isup2.hkl
Contains datablock I

CCDC reference: 657663

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.068
  • wR factor = 0.190
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.71 Ratio
Alert level C DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 0.762 Test value = 0.600 DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT097_ALERT_2_C Maximum (Positive) Residual Density ............ 0.76 e/A    PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.47 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for N1 - C3 .. 5.69 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C2 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In 1905, Behrend reported that the condensation of glycoluril and formadehyde in dilute HCl yielded an insoluble polymeric material now known as Behrend's polymer (Behrend et al., 1905). After 76 years, the molecular structure (obtained by heating Behrend's polymer in H2SO4) was disclosed by Mock and co-workers who named it cucurbituril (Freeman et al., 1981). Glycoluril and its derivatives have during the past two decades established an impressive career as building block for supramolecular chemistry (Freeman et al., 1981; Rebek, 2005; Rowan et al., 1999; Wu et al., 2002). As a part of our ongoing investigation into glycoluril derivatives (Li et al., 2006), we report here the structure of the title compound (I) (Fig. 1).

The molecular structure of (I) is shown in Fig. 1. It has four fused rings - two imidazole and two triazinane rings, respectively. The crystal packing is stabilized by intermolecular non-classical C—H···O hydrogen bonds (Table 1).

Related literature top

For preparation of the title compound, see: Li et al. (2006). For general background regarding glycoluril and its derivatives, see: Behrend et al. (1905); Freeman et al. (1981); Rebek (2005); Rowan et al. (1999); Wu et al. (2002).

Experimental top

The title compound was synthesized according to the procedure of Li et al. (2006) in 10% isolated yield. Crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of a chloroform and methaol solution in ratio of 20:1 at 293 K.

Refinement top

All H atoms were positioned geometrically (C—H = 0.96–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) (1.5Ueq(C) for methly) of the parent atoms.

Structure description top

In 1905, Behrend reported that the condensation of glycoluril and formadehyde in dilute HCl yielded an insoluble polymeric material now known as Behrend's polymer (Behrend et al., 1905). After 76 years, the molecular structure (obtained by heating Behrend's polymer in H2SO4) was disclosed by Mock and co-workers who named it cucurbituril (Freeman et al., 1981). Glycoluril and its derivatives have during the past two decades established an impressive career as building block for supramolecular chemistry (Freeman et al., 1981; Rebek, 2005; Rowan et al., 1999; Wu et al., 2002). As a part of our ongoing investigation into glycoluril derivatives (Li et al., 2006), we report here the structure of the title compound (I) (Fig. 1).

The molecular structure of (I) is shown in Fig. 1. It has four fused rings - two imidazole and two triazinane rings, respectively. The crystal packing is stabilized by intermolecular non-classical C—H···O hydrogen bonds (Table 1).

For preparation of the title compound, see: Li et al. (2006). For general background regarding glycoluril and its derivatives, see: Behrend et al. (1905); Freeman et al. (1981); Rebek (2005); Rowan et al. (1999); Wu et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.
Diethyl 2,6-diethyl-4,8-dioxo-2,3,6,7-tetrahydro-1H,5H-2,3a,4a,6,7a,8a-ηexaazacyclopenta[def]fluorene-8 b,8c-dicarboxylate top
Crystal data top
C18H28N6O6F(000) = 1808
Mr = 424.47Dx = 1.352 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3350 reflections
a = 20.3689 (13) Åθ = 2.5–22.8°
b = 7.8804 (5) ŵ = 0.10 mm1
c = 25.9921 (16) ÅT = 292 K
β = 91.697 (1)°Block, colourless
V = 4170.3 (5) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2901 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
φ and ω scansh = 2420
13315 measured reflectionsk = 99
3662 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0969P)2 + 6.5727P]
where P = (Fo2 + 2Fc2)/3
3662 reflections(Δ/σ)max < 0.001
275 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C18H28N6O6V = 4170.3 (5) Å3
Mr = 424.47Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.3689 (13) ŵ = 0.10 mm1
b = 7.8804 (5) ÅT = 292 K
c = 25.9921 (16) Å0.30 × 0.20 × 0.20 mm
β = 91.697 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2901 reflections with I > 2σ(I)
13315 measured reflectionsRint = 0.031
3662 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.04Δρmax = 0.76 e Å3
3662 reflectionsΔρmin = 0.50 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5192 (2)0.4727 (9)0.3310 (2)0.115 (2)
H1A0.51980.39430.30270.172*
H1B0.55290.44270.35590.172*
H1C0.52700.58550.31860.172*
C20.45446 (17)0.4660 (5)0.35513 (14)0.0613 (9)
H2A0.45090.35990.37380.074*
H2B0.45170.55780.37990.074*
C30.39338 (16)0.6401 (4)0.29128 (11)0.0521 (8)
H3A0.36680.62430.26010.062*
H3B0.43680.67580.28130.062*
C40.33661 (15)0.4321 (4)0.33911 (11)0.0459 (7)
H4A0.34290.33210.36050.055*
H4B0.30630.40230.31110.055*
C50.39979 (14)0.8907 (4)0.35146 (11)0.0429 (7)
C60.31809 (13)0.5820 (3)0.42271 (10)0.0374 (6)
C70.30321 (13)0.7315 (3)0.34576 (10)0.0344 (6)
C80.24532 (14)0.7504 (4)0.30633 (11)0.0417 (7)
C90.14594 (14)0.6412 (4)0.27281 (13)0.0526 (8)
H9A0.15840.60890.23840.063*
H9B0.12960.75690.27160.063*
C100.09497 (19)0.5268 (6)0.29102 (18)0.0849 (13)
H10A0.11200.41340.29320.127*
H10B0.05790.52920.26740.127*
H10C0.08160.56290.32440.127*
C110.30001 (13)0.8576 (3)0.39207 (10)0.0363 (6)
C120.23560 (15)0.9608 (4)0.39291 (12)0.0462 (7)
C130.1855 (2)1.2302 (6)0.3808 (2)0.0906 (14)
H13A0.19441.33130.36100.109*
H13B0.14981.16880.36370.109*
C140.1675 (3)1.2762 (8)0.4321 (3)0.128 (2)
H14A0.15011.17870.44910.191*
H14B0.13481.36390.43030.191*
H14C0.20551.31680.45100.191*
C150.38474 (15)1.0349 (4)0.43596 (12)0.0472 (7)
H15A0.42761.08360.42990.057*
H15B0.35591.12640.44590.057*
C160.32934 (15)0.8260 (4)0.48422 (11)0.0470 (7)
H16A0.29690.90550.49630.056*
H16B0.33540.73900.51030.056*
C170.44876 (16)0.8037 (4)0.47574 (13)0.0542 (8)
H17A0.48680.87140.46740.065*
H17B0.44170.72110.44850.065*
C180.4623 (2)0.7123 (5)0.52582 (16)0.0754 (11)
H18A0.46090.79170.55380.113*
H18B0.50500.66080.52530.113*
H18C0.42960.62610.53030.113*
N10.39898 (13)0.4795 (3)0.31793 (9)0.0498 (7)
N20.36403 (11)0.7760 (3)0.32213 (8)0.0406 (6)
N30.30724 (11)0.5667 (3)0.36995 (8)0.0359 (5)
N40.35879 (11)0.9595 (3)0.38760 (9)0.0393 (6)
N50.30415 (11)0.7466 (3)0.43647 (8)0.0372 (5)
N60.39087 (12)0.9148 (3)0.47816 (9)0.0469 (6)
O10.45657 (11)0.9299 (3)0.34542 (9)0.0636 (7)
O20.33390 (12)0.4685 (3)0.45184 (8)0.0536 (6)
O30.24162 (13)0.8728 (4)0.27949 (11)0.0837 (9)
O40.20263 (9)0.6294 (2)0.30835 (7)0.0441 (5)
O50.18423 (11)0.8918 (3)0.39870 (10)0.0624 (7)
O60.24504 (12)1.1218 (3)0.38462 (13)0.0812 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (3)0.201 (6)0.087 (3)0.026 (3)0.002 (2)0.011 (4)
C20.056 (2)0.072 (2)0.055 (2)0.0107 (17)0.0103 (16)0.0021 (17)
C30.0484 (18)0.071 (2)0.0370 (16)0.0034 (15)0.0055 (13)0.0026 (15)
C40.0529 (18)0.0413 (15)0.0428 (16)0.0034 (13)0.0097 (14)0.0052 (13)
C50.0364 (16)0.0516 (17)0.0405 (15)0.0100 (13)0.0011 (12)0.0145 (13)
C60.0384 (15)0.0360 (14)0.0377 (15)0.0082 (12)0.0034 (12)0.0062 (12)
C70.0345 (14)0.0342 (13)0.0344 (14)0.0035 (11)0.0032 (11)0.0034 (11)
C80.0417 (16)0.0445 (16)0.0384 (15)0.0039 (13)0.0077 (12)0.0089 (13)
C90.0371 (16)0.0630 (19)0.0566 (19)0.0025 (14)0.0149 (14)0.0001 (15)
C100.048 (2)0.103 (3)0.102 (3)0.021 (2)0.016 (2)0.015 (3)
C110.0331 (14)0.0333 (13)0.0424 (15)0.0056 (11)0.0004 (11)0.0038 (11)
C120.0420 (17)0.0380 (15)0.0581 (19)0.0074 (13)0.0053 (14)0.0002 (13)
C130.080 (3)0.068 (3)0.124 (4)0.010 (2)0.005 (3)0.018 (3)
C140.127 (5)0.117 (4)0.140 (5)0.008 (4)0.030 (4)0.047 (4)
C150.0483 (18)0.0383 (15)0.0544 (18)0.0111 (13)0.0062 (14)0.0022 (13)
C160.0562 (19)0.0498 (17)0.0351 (15)0.0069 (14)0.0009 (13)0.0058 (13)
C170.0535 (19)0.0525 (18)0.0559 (19)0.0064 (15)0.0116 (15)0.0058 (15)
C180.070 (2)0.074 (2)0.081 (3)0.010 (2)0.026 (2)0.017 (2)
N10.0513 (16)0.0541 (15)0.0435 (14)0.0085 (12)0.0034 (12)0.0020 (12)
N20.0381 (13)0.0480 (13)0.0356 (12)0.0042 (10)0.0001 (10)0.0049 (10)
N30.0406 (13)0.0338 (11)0.0327 (12)0.0043 (9)0.0064 (9)0.0023 (9)
N40.0376 (13)0.0367 (12)0.0433 (13)0.0089 (10)0.0043 (10)0.0037 (10)
N50.0426 (13)0.0362 (12)0.0330 (12)0.0069 (10)0.0022 (10)0.0020 (9)
N60.0536 (15)0.0437 (13)0.0428 (14)0.0072 (12)0.0069 (11)0.0048 (11)
O10.0419 (13)0.0848 (17)0.0644 (15)0.0225 (12)0.0067 (11)0.0081 (12)
O20.0770 (16)0.0419 (11)0.0411 (11)0.0071 (10)0.0120 (10)0.0114 (9)
O30.0736 (17)0.0874 (18)0.0875 (19)0.0298 (14)0.0399 (15)0.0500 (16)
O40.0349 (11)0.0496 (11)0.0471 (12)0.0065 (9)0.0091 (9)0.0052 (9)
O50.0426 (13)0.0577 (14)0.0871 (18)0.0013 (11)0.0073 (12)0.0011 (12)
O60.0559 (15)0.0467 (14)0.140 (3)0.0042 (11)0.0048 (16)0.0078 (15)
Geometric parameters (Å, º) top
C1—C21.479 (6)C10—H10A0.9600
C1—H1A0.9600C10—H10B0.9600
C1—H1B0.9600C10—H10C0.9600
C1—H1C0.9600C11—N51.448 (3)
C2—N11.469 (4)C11—N41.449 (3)
C2—H2A0.9700C11—C121.544 (4)
C2—H2B0.9700C12—O51.192 (3)
C3—N11.446 (4)C12—O61.302 (4)
C3—N21.475 (4)C13—C141.438 (7)
C3—H3A0.9700C13—O61.485 (5)
C3—H3B0.9700C13—H13A0.9700
C4—N11.448 (4)C13—H13B0.9700
C4—N31.468 (4)C14—H14A0.9600
C4—H4A0.9700C14—H14B0.9600
C4—H4B0.9700C14—H14C0.9600
C5—O11.212 (3)C15—N61.452 (4)
C5—N21.377 (4)C15—N41.474 (4)
C5—N41.386 (4)C15—H15A0.9700
C6—O21.210 (3)C15—H15B0.9700
C6—N51.377 (3)C16—N61.448 (4)
C6—N31.388 (3)C16—N51.469 (3)
C7—N21.442 (3)C16—H16A0.9700
C7—N31.444 (3)C16—H16B0.9700
C7—C81.547 (4)C17—N61.471 (4)
C7—C111.564 (4)C17—C181.506 (5)
C8—O31.192 (3)C17—H17A0.9700
C8—O41.293 (3)C17—H17B0.9700
C9—O41.460 (3)C18—H18A0.9600
C9—C101.464 (5)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C9—H9B0.9700
C2—C1—H1A109.5O5—C12—C11120.7 (3)
C2—C1—H1B109.5O6—C12—C11112.4 (3)
H1A—C1—H1B109.5C14—C13—O6108.3 (5)
C2—C1—H1C109.5C14—C13—H13A110.0
H1A—C1—H1C109.5O6—C13—H13A110.0
H1B—C1—H1C109.5C14—C13—H13B110.0
N1—C2—C1113.3 (3)O6—C13—H13B110.0
N1—C2—H2A108.9H13A—C13—H13B108.4
C1—C2—H2A108.9C13—C14—H14A109.5
N1—C2—H2B108.9C13—C14—H14B109.5
C1—C2—H2B108.9H14A—C14—H14B109.5
H2A—C2—H2B107.7C13—C14—H14C109.5
N1—C3—N2113.8 (2)H14A—C14—H14C109.5
N1—C3—H3A108.8H14B—C14—H14C109.5
N2—C3—H3A108.8N6—C15—N4113.7 (2)
N1—C3—H3B108.8N6—C15—H15A108.8
N2—C3—H3B108.8N4—C15—H15A108.8
H3A—C3—H3B107.7N6—C15—H15B108.8
N1—C4—N3113.4 (2)N4—C15—H15B108.8
N1—C4—H4A108.9H15A—C15—H15B107.7
N3—C4—H4A108.9N6—C16—N5113.3 (2)
N1—C4—H4B108.9N6—C16—H16A108.9
N3—C4—H4B108.9N5—C16—H16A108.9
H4A—C4—H4B107.7N6—C16—H16B108.9
O1—C5—N2125.9 (3)N5—C16—H16B108.9
O1—C5—N4125.8 (3)H16A—C16—H16B107.7
N2—C5—N4108.2 (2)N6—C17—C18111.9 (3)
O2—C6—N5125.9 (3)N6—C17—H17A109.2
O2—C6—N3125.9 (3)C18—C17—H17A109.2
N5—C6—N3108.1 (2)N6—C17—H17B109.2
N2—C7—N3111.5 (2)C18—C17—H17B109.2
N2—C7—C8110.0 (2)H17A—C17—H17B107.9
N3—C7—C8114.1 (2)C17—C18—H18A109.5
N2—C7—C11103.2 (2)C17—C18—H18B109.5
N3—C7—C11103.9 (2)H18A—C18—H18B109.5
C8—C7—C11113.6 (2)C17—C18—H18C109.5
O3—C8—O4126.2 (3)H18A—C18—H18C109.5
O3—C8—C7120.0 (3)H18B—C18—H18C109.5
O4—C8—C7113.7 (2)C3—N1—C4110.5 (2)
O4—C9—C10108.1 (3)C3—N1—C2115.3 (3)
O4—C9—H9A110.1C4—N1—C2113.4 (3)
C10—C9—H9A110.1C5—N2—C7111.8 (2)
O4—C9—H9B110.1C5—N2—C3124.1 (2)
C10—C9—H9B110.1C7—N2—C3114.9 (2)
H9A—C9—H9B108.4C6—N3—C7110.9 (2)
C9—C10—H10A109.5C6—N3—C4123.2 (2)
C9—C10—H10B109.5C7—N3—C4115.5 (2)
H10A—C10—H10B109.5C5—N4—C11110.7 (2)
C9—C10—H10C109.5C5—N4—C15121.9 (2)
H10A—C10—H10C109.5C11—N4—C15115.6 (2)
H10B—C10—H10C109.5C6—N5—C11111.7 (2)
N5—C11—N4111.7 (2)C6—N5—C16123.5 (2)
N5—C11—C12109.6 (2)C11—N5—C16115.2 (2)
N4—C11—C12114.4 (2)C16—N6—C15110.0 (2)
N5—C11—C7103.1 (2)C16—N6—C17114.5 (2)
N4—C11—C7103.7 (2)C15—N6—C17114.0 (3)
C12—C11—C7113.6 (2)C8—O4—C9116.6 (2)
O5—C12—O6126.8 (3)C12—O6—C13116.6 (3)
N2—C7—C8—O344.8 (4)C8—C7—N3—C6134.4 (2)
N3—C7—C8—O3170.9 (3)C11—C7—N3—C610.2 (3)
C11—C7—C8—O370.3 (4)N2—C7—N3—C446.0 (3)
N2—C7—C8—O4138.7 (2)C8—C7—N3—C479.3 (3)
N3—C7—C8—O412.6 (3)C11—C7—N3—C4156.5 (2)
C11—C7—C8—O4106.1 (3)N1—C4—N3—C691.5 (3)
N2—C7—C11—N5115.2 (2)N1—C4—N3—C750.3 (3)
N3—C7—C11—N51.2 (2)O1—C5—N4—C11166.8 (3)
C8—C7—C11—N5125.7 (2)N2—C5—N4—C1115.9 (3)
N2—C7—C11—N41.4 (2)O1—C5—N4—C1525.8 (4)
N3—C7—C11—N4117.8 (2)N2—C5—N4—C15156.9 (2)
C8—C7—C11—N4117.7 (2)N5—C11—N4—C5100.0 (3)
N2—C7—C11—C12126.2 (2)C12—C11—N4—C5134.7 (2)
N3—C7—C11—C12117.4 (2)C7—C11—N4—C510.4 (3)
C8—C7—C11—C127.1 (3)N5—C11—N4—C1543.7 (3)
N5—C11—C12—O550.3 (4)C12—C11—N4—C1581.6 (3)
N4—C11—C12—O5176.7 (3)C7—C11—N4—C15154.1 (2)
C7—C11—C12—O564.4 (4)N6—C15—N4—C590.4 (3)
N5—C11—C12—O6132.3 (3)N6—C15—N4—C1149.0 (3)
N4—C11—C12—O66.0 (4)O2—C6—N5—C11168.3 (3)
C7—C11—C12—O6112.9 (3)N3—C6—N5—C1115.0 (3)
N2—C3—N1—C451.4 (3)O2—C6—N5—C1624.0 (4)
N2—C3—N1—C278.8 (3)N3—C6—N5—C16159.4 (2)
N3—C4—N1—C351.2 (3)N4—C11—N5—C6102.5 (3)
N3—C4—N1—C279.9 (3)C12—C11—N5—C6129.5 (2)
C1—C2—N1—C365.4 (5)C7—C11—N5—C68.2 (3)
C1—C2—N1—C4165.8 (4)N4—C11—N5—C1644.9 (3)
O1—C5—N2—C7167.7 (3)C12—C11—N5—C1683.0 (3)
N4—C5—N2—C715.1 (3)C7—C11—N5—C16155.7 (2)
O1—C5—N2—C322.6 (4)N6—C16—N5—C691.7 (3)
N4—C5—N2—C3160.1 (2)N6—C16—N5—C1151.5 (3)
N3—C7—N2—C5102.8 (3)N5—C16—N6—C1553.3 (3)
C8—C7—N2—C5129.7 (2)N5—C16—N6—C1776.6 (3)
C11—C7—N2—C58.1 (3)N4—C15—N6—C1652.1 (3)
N3—C7—N2—C345.7 (3)N4—C15—N6—C1778.1 (3)
C8—C7—N2—C381.9 (3)C18—C17—N6—C1666.0 (3)
C11—C7—N2—C3156.6 (2)C18—C17—N6—C15166.1 (3)
N1—C3—N2—C593.8 (3)O3—C8—O4—C92.6 (5)
N1—C3—N2—C750.3 (3)C7—C8—O4—C9178.8 (2)
O2—C6—N3—C7167.5 (3)C10—C9—O4—C8162.9 (3)
N5—C6—N3—C715.8 (3)O5—C12—O6—C131.5 (6)
O2—C6—N3—C424.3 (4)C11—C12—O6—C13175.7 (3)
N5—C6—N3—C4159.1 (2)C14—C13—O6—C1283.9 (5)
N2—C7—N3—C6100.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O3i0.972.533.460 (4)160
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H28N6O6
Mr424.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)292
a, b, c (Å)20.3689 (13), 7.8804 (5), 25.9921 (16)
β (°) 91.697 (1)
V3)4170.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13315, 3662, 2901
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.190, 1.04
No. of reflections3662
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.50

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O3i0.972.533.460 (4)160
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds