Download citation
Download citation
link to html
In the title complex, [CdCl2(C12H12N2O)], the CdII ion is coordinated by two Cl atoms [Cd—Cl = 2.4402 (9) and 2.4422 (8) Å], and by one O [Cd—O = 2.396 (2) Å] and two N atoms [Cd—N = 2.303 (2) and 2.305 (2) Å] from a tridentate 2,2′-[oxydi(methyl­ene)]dipyridine ligand in a distorted trigonal–bipyramidal geometry. In the ligand, the two pyridyl rings make a dihedral angle of 16.85 (15)°. Weak inter­molecular C—H...Cl hydrogen bonds link the mol­ecules into two-dimensional layers parallel to the plane formed by the a+c and b vectors.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036574/cv2283sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036574/cv2283Isup2.hkl
Contains datablock I

CCDC reference: 657643

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.028
  • wR factor = 0.074
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level B SYMMS02_ALERT_1_B All angles should not be 90 for a monoclinic cell Cell 8.1397 12.5970 13.8230 Angles 90.0000 90.0000 90.0000
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.96 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ?
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cd1 (2) 2.13
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Complexes containing Cd(II) are very common and useful, and play a pivotal role in the area of optics. In most known structures, CdII ions assume octahedral coordination geometry, whereas five-coordinated Cd(II) complexes are very limited (Sawitzki et al. 1974; Reger et al., 2002; Zhang et al. 2007). Herewith we report the crystal structure of of the title compound, (I)- a new five-coordinated Cd(II) complex.

In (I) (Fig. 1), Cd1 has a distorted trigonal bipyramidal CdN2OCl2 coordination geometry. In a tridentate 2,2'-[oxydi(methylene)]dipyridine ligand, two pyridyl rings make a dihedral angle of 16.85 (15)°. In two neighbouring complexes related by inversion centre, there is a weak π-π interaction proved by short distance C3···C9i of 3.453 (5) Å [symmetry code: -x, -y, -z]. The weak intermolecular C—H···Cl hydrogen bonds (Table 1, Fig. 2) link the molecules into two-dimensional layers parallel to the plane formed by a+c and b vectors.

Related literature top

For crystal structures of related five-coordinated CdII complexes, see: Sawitzki & Schnering (1974); Reger et al. (2002); Zhang & Shi (2007).

Experimental top

5 ml me thanol solution of 2,2'-[oxydi(methylene)]dipyridine (0.0327 g, 0.163 mmol) was added into 8 ml H2O solution containing CdCl2.2.5H2O (0.0402 g, 0.176 mmol), and the mixture was stirred for a few minutes. The red single crystals were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement top

All H atom were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

Complexes containing Cd(II) are very common and useful, and play a pivotal role in the area of optics. In most known structures, CdII ions assume octahedral coordination geometry, whereas five-coordinated Cd(II) complexes are very limited (Sawitzki et al. 1974; Reger et al., 2002; Zhang et al. 2007). Herewith we report the crystal structure of of the title compound, (I)- a new five-coordinated Cd(II) complex.

In (I) (Fig. 1), Cd1 has a distorted trigonal bipyramidal CdN2OCl2 coordination geometry. In a tridentate 2,2'-[oxydi(methylene)]dipyridine ligand, two pyridyl rings make a dihedral angle of 16.85 (15)°. In two neighbouring complexes related by inversion centre, there is a weak π-π interaction proved by short distance C3···C9i of 3.453 (5) Å [symmetry code: -x, -y, -z]. The weak intermolecular C—H···Cl hydrogen bonds (Table 1, Fig. 2) link the molecules into two-dimensional layers parallel to the plane formed by a+c and b vectors.

For crystal structures of related five-coordinated CdII complexes, see: Sawitzki & Schnering (1974); Reger et al. (2002); Zhang & Shi (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I), showing the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level
[Figure 2] Fig. 2. A portion of the crystal packing of (I) showing the intermolecular hydrogen bonds as dashed lines.
Dichlorido{2,2'-[oxydi(methylene)]dipyridine-κ3N,N,N'}cadmium(II) top
Crystal data top
[CdCl2(C12H12N2O)]F(000) = 752
Mr = 383.54Dx = 1.797 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5221 reflections
a = 8.1397 (15) Åθ = 2.2–28.2°
b = 12.597 (2) ŵ = 1.91 mm1
c = 13.823 (3) ÅT = 298 K
β = 90.00 (1)°Block, red
V = 1417.3 (4) Å30.35 × 0.30 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2504 independent reflections
Radiation source: fine-focus sealed tube2259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.555, Tmax = 0.637k = 1214
6908 measured reflectionsl = 1316
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.0413P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2504 reflectionsΔρmax = 0.51 e Å3
164 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (6)
Crystal data top
[CdCl2(C12H12N2O)]V = 1417.3 (4) Å3
Mr = 383.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1397 (15) ŵ = 1.91 mm1
b = 12.597 (2) ÅT = 298 K
c = 13.823 (3) Å0.35 × 0.30 × 0.26 mm
β = 90.00 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2504 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2259 reflections with I > 2σ(I)
Tmin = 0.555, Tmax = 0.637Rint = 0.038
6908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.04Δρmax = 0.51 e Å3
2504 reflectionsΔρmin = 0.50 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.11080 (2)0.310375 (16)0.121183 (14)0.04107 (13)
O10.1024 (3)0.32605 (17)0.05150 (16)0.0573 (6)
N10.0571 (3)0.18529 (17)0.0506 (2)0.0463 (6)
N20.2095 (3)0.47121 (19)0.06695 (17)0.0412 (5)
C30.0493 (3)0.1670 (2)0.0436 (2)0.0454 (7)
C90.3299 (4)0.6388 (3)0.1051 (3)0.0549 (8)
H90.35580.68980.15140.066*
C70.1646 (4)0.1293 (3)0.1042 (3)0.0597 (8)
H70.17100.14290.17020.072*
C100.3719 (4)0.6525 (3)0.0100 (3)0.0566 (8)
H100.42810.71320.00920.068*
C80.2480 (4)0.5471 (2)0.1301 (2)0.0497 (7)
H80.21810.53770.19440.060*
C20.0691 (4)0.2318 (3)0.1024 (2)0.0535 (7)
H2A0.16990.19220.11260.064*
H2B0.02170.24820.16500.064*
C40.1469 (4)0.0920 (3)0.0877 (3)0.0662 (9)
H40.14100.08080.15410.079*
C50.2547 (4)0.0334 (3)0.0304 (4)0.0787 (12)
H50.31960.01930.05810.094*
C10.2060 (4)0.3997 (2)0.0970 (2)0.0487 (7)
H1A0.15090.43020.15270.058*
H1B0.30520.36470.11910.058*
C60.2647 (4)0.0532 (3)0.0654 (3)0.0705 (10)
H60.33810.01590.10410.085*
C110.3312 (3)0.5770 (3)0.0566 (3)0.0530 (8)
H110.35810.58630.12140.064*
Cl20.36235 (10)0.21466 (7)0.16135 (6)0.0580 (2)
Cl10.05175 (10)0.36258 (7)0.26186 (6)0.0595 (2)
C120.2489 (3)0.4856 (2)0.0264 (2)0.0419 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05013 (17)0.04633 (18)0.02674 (16)0.00318 (8)0.00138 (10)0.00116 (8)
O10.0820 (15)0.0613 (13)0.0286 (12)0.0183 (11)0.0046 (11)0.0049 (10)
N10.0484 (13)0.0449 (14)0.0457 (17)0.0009 (10)0.0018 (12)0.0020 (11)
N20.0461 (12)0.0429 (13)0.0347 (13)0.0004 (10)0.0025 (10)0.0026 (11)
C30.0420 (14)0.0469 (16)0.0473 (19)0.0082 (12)0.0065 (13)0.0114 (14)
C90.0514 (16)0.0481 (18)0.065 (2)0.0002 (14)0.0015 (16)0.0024 (16)
C70.0607 (18)0.060 (2)0.058 (2)0.0040 (16)0.0061 (16)0.0084 (17)
C100.0455 (16)0.0470 (17)0.077 (3)0.0017 (13)0.0035 (16)0.0100 (18)
C80.0565 (16)0.0504 (17)0.0423 (17)0.0007 (14)0.0017 (14)0.0038 (14)
C20.0589 (17)0.0634 (19)0.0381 (17)0.0016 (15)0.0001 (14)0.0158 (16)
C40.0671 (19)0.061 (2)0.070 (2)0.0027 (17)0.0153 (18)0.0223 (19)
C50.062 (2)0.056 (2)0.118 (4)0.0077 (17)0.017 (2)0.018 (2)
C10.0489 (15)0.0631 (19)0.0341 (16)0.0001 (13)0.0057 (13)0.0041 (14)
C60.063 (2)0.052 (2)0.097 (3)0.0113 (16)0.001 (2)0.009 (2)
C110.0474 (15)0.0584 (19)0.0532 (19)0.0019 (14)0.0077 (14)0.0204 (16)
Cl20.0549 (4)0.0674 (5)0.0516 (5)0.0075 (4)0.0007 (4)0.0050 (4)
Cl10.0673 (5)0.0726 (6)0.0387 (4)0.0084 (4)0.0136 (4)0.0028 (4)
C120.0354 (13)0.0514 (16)0.0388 (16)0.0056 (11)0.0015 (11)0.0072 (13)
Geometric parameters (Å, º) top
Cd1—N12.303 (2)C7—H70.9300
Cd1—N22.305 (2)C10—C111.365 (5)
Cd1—O12.396 (2)C10—H100.9300
Cd1—Cl22.4402 (9)C8—H80.9300
Cd1—Cl12.4422 (8)C2—H2A0.9700
O1—C11.403 (3)C2—H2B0.9700
O1—C21.407 (4)C4—C51.394 (6)
N1—C31.325 (4)C4—H40.9300
N1—C71.345 (4)C5—C61.349 (6)
N2—C81.332 (4)C5—H50.9300
N2—C121.342 (4)C1—C121.498 (4)
C3—C41.376 (4)C1—H1A0.9700
C3—C21.502 (5)C1—H1B0.9700
C9—C101.370 (5)C6—H60.9300
C9—C81.378 (4)C11—C121.396 (4)
C9—H90.9300C11—H110.9300
C7—C61.368 (5)
N1—Cd1—N2132.11 (9)N2—C8—C9123.5 (3)
N1—Cd1—O167.52 (8)N2—C8—H8118.3
N2—Cd1—O167.26 (8)C9—C8—H8118.3
N1—Cd1—Cl2104.85 (6)O1—C2—C3108.1 (2)
N2—Cd1—Cl2102.47 (6)O1—C2—H2A110.1
O1—Cd1—Cl2106.94 (6)C3—C2—H2A110.1
N1—Cd1—Cl1101.53 (7)O1—C2—H2B110.1
N2—Cd1—Cl1102.19 (6)C3—C2—H2B110.1
O1—Cd1—Cl1139.08 (6)H2A—C2—H2B108.4
Cl2—Cd1—Cl1113.98 (3)C3—C4—C5118.4 (4)
C1—O1—C2116.7 (2)C3—C4—H4120.8
C1—O1—Cd1118.96 (17)C5—C4—H4120.8
C2—O1—Cd1115.74 (18)C6—C5—C4119.8 (3)
C3—N1—C7118.8 (3)C6—C5—H5120.1
C3—N1—Cd1120.5 (2)C4—C5—H5120.1
C7—N1—Cd1120.8 (2)O1—C1—C12109.0 (2)
C8—N2—C12118.5 (2)O1—C1—H1A109.9
C8—N2—Cd1120.00 (19)C12—C1—H1A109.9
C12—N2—Cd1120.97 (19)O1—C1—H1B109.9
N1—C3—C4121.8 (3)C12—C1—H1B109.9
N1—C3—C2118.0 (3)H1A—C1—H1B108.3
C4—C3—C2120.2 (3)C5—C6—C7118.6 (4)
C10—C9—C8117.8 (3)C5—C6—H6120.7
C10—C9—H9121.1C7—C6—H6120.7
C8—C9—H9121.1C10—C11—C12119.4 (3)
N1—C7—C6122.6 (4)C10—C11—H11120.3
N1—C7—H7118.7C12—C11—H11120.3
C6—C7—H7118.7N2—C12—C11120.9 (3)
C11—C10—C9119.9 (3)N2—C12—C1118.3 (2)
C11—C10—H10120.0C11—C12—C1120.8 (3)
C9—C10—H10120.0
N1—Cd1—O1—C1174.5 (2)Cd1—N1—C3—C21.2 (3)
N2—Cd1—O1—C121.70 (19)C3—N1—C7—C60.9 (5)
Cl2—Cd1—O1—C175.0 (2)Cd1—N1—C7—C6179.0 (3)
Cl1—Cd1—O1—C1104.0 (2)C8—C9—C10—C110.6 (4)
N1—Cd1—O1—C227.6 (2)C12—N2—C8—C91.6 (4)
N2—Cd1—O1—C2168.6 (2)Cd1—N2—C8—C9170.0 (2)
Cl2—Cd1—O1—C271.9 (2)C10—C9—C8—N20.7 (5)
Cl1—Cd1—O1—C2109.1 (2)C1—O1—C2—C3177.3 (2)
N2—Cd1—N1—C335.0 (3)Cd1—O1—C2—C335.0 (3)
O1—Cd1—N1—C314.7 (2)N1—C3—C2—O122.5 (4)
Cl2—Cd1—N1—C387.8 (2)C4—C3—C2—O1156.9 (3)
Cl1—Cd1—N1—C3153.3 (2)N1—C3—C4—C50.8 (5)
N2—Cd1—N1—C7145.2 (2)C2—C3—C4—C5179.7 (3)
O1—Cd1—N1—C7165.4 (2)C3—C4—C5—C61.9 (5)
Cl2—Cd1—N1—C792.1 (2)C2—O1—C1—C12170.9 (3)
Cl1—Cd1—N1—C726.8 (2)Cd1—O1—C1—C1224.3 (3)
N1—Cd1—N2—C8153.2 (2)C4—C5—C6—C71.6 (6)
O1—Cd1—N2—C8173.5 (2)N1—C7—C6—C50.2 (5)
Cl2—Cd1—N2—C883.2 (2)C9—C10—C11—C120.9 (4)
Cl1—Cd1—N2—C835.1 (2)C8—N2—C12—C111.2 (4)
N1—Cd1—N2—C1235.5 (2)Cd1—N2—C12—C11170.33 (19)
O1—Cd1—N2—C1215.17 (18)C8—N2—C12—C1179.7 (3)
Cl2—Cd1—N2—C1288.18 (19)Cd1—N2—C12—C18.2 (3)
Cl1—Cd1—N2—C12153.55 (18)C10—C11—C12—N20.0 (4)
C7—N1—C3—C40.6 (4)C10—C11—C12—C1178.5 (3)
Cd1—N1—C3—C4179.3 (2)O1—C1—C12—N210.7 (3)
C7—N1—C3—C2178.9 (3)O1—C1—C12—C11170.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cl2i0.972.773.735 (3)175
C6—H6···Cl1ii0.932.823.701 (4)158
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C12H12N2O)]
Mr383.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.1397 (15), 12.597 (2), 13.823 (3)
β (°)90, 90.00 (1), 90
V3)1417.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.35 × 0.30 × 0.26
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.555, 0.637
No. of measured, independent and
observed [I > 2σ(I)] reflections
6908, 2504, 2259
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.04
No. of reflections2504
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.50

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXTL (Bruker, 2001), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cl2i0.972.773.735 (3)175
C6—H6···Cl1ii0.932.823.701 (4)158
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds