Download citation
Download citation
link to html
The title compound (systematic name: 4,7,10-trioxa-1,13-diaza­tricyclo[11.6.3.014,19]icosa-14,16,18-triene-20,22-dione), C17H22N2O5, is a macrocycle containing two roughly perpendicular parts, viz. the benzo-fused macrocycle and the dicarbonyl spacer. The carbonyl groups point out of the cavity, far away from the O atoms of the macrocycle, and so cannot be involved in coordination to a metal ion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807029753/dn2198sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807029753/dn2198Isup2.hkl
Contains datablock I

CCDC reference: 657762

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.049
  • wR factor = 0.150
  • Data-to-parameter ratio = 19.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for C12 - C13 .. 7.43 su
Alert level C DIFMX01_ALERT_2_C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 0.634 Test value = 0.600 DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.79 PLAT097_ALERT_2_C Maximum (Positive) Residual Density ............ 0.63 e/A    PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.77 Ratio
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Since the pioneering work of Pederson (Pedersen, 1967), extensive research has been devoted to the preparation and study of the macrocyclic polyethers properties. Several types of ligands have been synthesized to enhance the stability of the cation-ligand complex and to achieve better selectivity (Izatt et al., 1991; Izatt et al., 1995; Veggel et al., 1991; Rothermel et al. 1992; Basak et al., 1998). These last years, research was focused on the synthesis of macrocycles being able to have potential applications in different fields such as the ionic and molecular recognition (Dietrich et al., 1991), chemical analysis (Cram & Ho, 1986), the extraction and the metal elements transport through pecific membranes (Izatt et al., 1987; Costero & Rodriguez, 1992; Chang et al., 1986, Bürger & Seebach, 1994). In addition, from a reactional point of view, this type of compound is used as well in the supramolecular catalysis (Sam & Simmons, 1972; Liotta & Harris, 1974) or in the separation of the pairs of ions while behaving as base (Takaki et al., 1972; Bourgoin et al., 1975). In this context, we prepared the 2,4-dioxo-1,5 benzodizepino-15-crown-3, obtained by condensation of the dichlorotetraethlene-glycol with the 1,5-benzodiazepine-2,4-dione by phase transfer catalysis conditions (Keïta et al., 2003; Lazrak et al., 2004)using dimethylformamide as solvent. (I).

The molecular structure of (I) is built up from a benzodiazepine fragment and a crown ether as a a spacer (Fig. 1). The bond lengths and angles are within the expected range for similar structures deposited in the Cambridge Structural Database, Version 5.27, 2006(Allen, 2002). The crystal structure is stabilized by Van der Waals forces.

Related literature top

For related literature, see: Allen (2002); Bürger & Seebach (1994); Basak & Shain (1998); Bourgoin et al. (1975); Chang et al. (1986); Costero & Rodriguez (1992); Cram & Ho (1986); Dietrich et al. (1991); Izatt et al. (1987, 1991, 1995); Keïta et al. (2003); Lazrak et al. (2004); Liotta & Harris (1974); Pedersen (1967); Rothermel et al. (1992); Sam & Simmons (1972); Takaki et al. (1972); Veggel et al. (1991).

Experimental top

With a solution of 11.10–3 mole of the 1,5-benzodiazepine-2,4-dione in 60 ml of dimethylformamide, one adds 33. 10–3 mole of potassium carbonate, 11. 10–3 mole of the di-chloro tetraethylene glycol and 6 10–3 mole of tetra-n-butylammonium bromide. Under agitation, the mixture is heated at a temperature between 80 and 90°C during 24 h. After filtration of salts, the filtrate is concentrated under reduced pressure (1.10–2 m mH g). The compound is purified by silica gel column chromatography (eluant/chloroform/methanol: 95/5).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with = Uiso(H) = 1.2Ueq(C).

Structure description top

Since the pioneering work of Pederson (Pedersen, 1967), extensive research has been devoted to the preparation and study of the macrocyclic polyethers properties. Several types of ligands have been synthesized to enhance the stability of the cation-ligand complex and to achieve better selectivity (Izatt et al., 1991; Izatt et al., 1995; Veggel et al., 1991; Rothermel et al. 1992; Basak et al., 1998). These last years, research was focused on the synthesis of macrocycles being able to have potential applications in different fields such as the ionic and molecular recognition (Dietrich et al., 1991), chemical analysis (Cram & Ho, 1986), the extraction and the metal elements transport through pecific membranes (Izatt et al., 1987; Costero & Rodriguez, 1992; Chang et al., 1986, Bürger & Seebach, 1994). In addition, from a reactional point of view, this type of compound is used as well in the supramolecular catalysis (Sam & Simmons, 1972; Liotta & Harris, 1974) or in the separation of the pairs of ions while behaving as base (Takaki et al., 1972; Bourgoin et al., 1975). In this context, we prepared the 2,4-dioxo-1,5 benzodizepino-15-crown-3, obtained by condensation of the dichlorotetraethlene-glycol with the 1,5-benzodiazepine-2,4-dione by phase transfer catalysis conditions (Keïta et al., 2003; Lazrak et al., 2004)using dimethylformamide as solvent. (I).

The molecular structure of (I) is built up from a benzodiazepine fragment and a crown ether as a a spacer (Fig. 1). The bond lengths and angles are within the expected range for similar structures deposited in the Cambridge Structural Database, Version 5.27, 2006(Allen, 2002). The crystal structure is stabilized by Van der Waals forces.

For related literature, see: Allen (2002); Bürger & Seebach (1994); Basak & Shain (1998); Bourgoin et al. (1975); Chang et al. (1986); Costero & Rodriguez (1992); Cram & Ho (1986); Dietrich et al. (1991); Izatt et al. (1987, 1991, 1995); Keïta et al. (2003); Lazrak et al. (2004); Liotta & Harris (1974); Pedersen (1967); Rothermel et al. (1992); Sam & Simmons (1972); Takaki et al. (1972); Veggel et al. (1991).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : Molecular view of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii
4,7,10-Trioxa-1,13-diazatricyclo[11.6.3.014,19]icosa-14,16,18-triene- 20,22-dione top
Crystal data top
C17H22N2O5F(000) = 712
Mr = 334.37Dx = 1.327 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8091 reflections
a = 11.786 (3) Åθ = 2.3–22.2°
b = 8.092 (2) ŵ = 0.10 mm1
c = 18.062 (5) ÅT = 296 K
β = 103.692 (17)°Block, colourless
V = 1673.8 (8) Å30.25 × 0.19 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4249 independent reflections
Radiation source: fine-focus sealed tube2847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 28.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1515
Tmin = 0.950, Tmax = 0.994k = 1010
58268 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.6508P]
where P = (Fo2 + 2Fc2)/3
4249 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H22N2O5V = 1673.8 (8) Å3
Mr = 334.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.786 (3) ŵ = 0.10 mm1
b = 8.092 (2) ÅT = 296 K
c = 18.062 (5) Å0.25 × 0.19 × 0.05 mm
β = 103.692 (17)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4249 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2847 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.994Rint = 0.056
58268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.02Δρmax = 0.63 e Å3
4249 reflectionsΔρmin = 0.23 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20967 (11)0.18321 (16)0.97933 (8)0.0311 (3)
N20.30717 (12)0.48339 (16)0.93351 (8)0.0346 (3)
O10.33317 (11)0.01059 (14)0.95379 (9)0.0491 (4)
O20.46850 (13)0.39526 (18)0.89713 (9)0.0593 (4)
O30.03654 (12)0.00746 (18)0.84001 (8)0.0523 (4)
O40.11484 (14)0.5203 (2)0.78801 (8)0.0608 (4)
O50.02232 (14)0.2477 (2)0.71616 (9)0.0708 (5)
C10.10071 (17)0.4975 (3)1.09477 (11)0.0501 (5)
H10.05110.50301.12780.060*
C20.15493 (17)0.6394 (3)1.07702 (11)0.0494 (5)
H20.14430.73931.09990.059*
C30.12066 (15)0.3484 (2)1.06322 (9)0.0396 (4)
H30.08750.25251.07720.047*
C40.22434 (16)0.6323 (2)1.02571 (10)0.0420 (4)
H40.26140.72761.01480.050*
C50.19048 (13)0.3397 (2)1.01025 (9)0.0304 (3)
C60.24003 (14)0.4840 (2)0.98966 (9)0.0322 (3)
C70.40197 (14)0.3828 (2)0.93951 (10)0.0375 (4)
C80.31806 (14)0.12811 (19)0.97673 (10)0.0333 (4)
C90.41718 (13)0.2502 (2)0.99990 (11)0.0374 (4)
H9A0.41610.29911.04880.045*
H9B0.49140.19461.00460.045*
C100.10919 (14)0.0749 (2)0.94951 (10)0.0355 (4)
H10A0.04430.10720.97090.043*
H10B0.12960.03840.96450.043*
C110.07348 (16)0.0865 (3)0.86399 (11)0.0474 (5)
H11A0.06760.20130.84810.057*
H11B0.13080.03240.84160.057*
C120.28953 (19)0.6158 (2)0.87579 (11)0.0466 (5)
H12A0.36470.66480.87600.056*
H12B0.24130.70120.89040.056*
C130.2335 (2)0.5609 (3)0.79602 (13)0.0600 (6)
H13A0.23970.64860.76060.072*
H13B0.27470.46520.78340.072*
C140.0747 (2)0.0112 (3)0.75962 (13)0.0693 (7)
H14A0.13710.09230.74870.083*
H14B0.01050.05400.74020.083*
C150.1168 (2)0.1426 (4)0.71898 (15)0.0842 (9)
H15A0.15990.11680.66760.101*
H15B0.16930.19860.74470.101*
C160.0551 (3)0.5107 (3)0.70931 (13)0.0714 (7)
H16A0.10520.45830.68060.086*
H16B0.03690.62110.68920.086*
C170.0534 (2)0.4149 (4)0.70047 (13)0.0763 (8)
H17A0.09800.45500.73550.092*
H17B0.10090.42600.64890.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0283 (6)0.0268 (7)0.0385 (7)0.0017 (5)0.0088 (5)0.0010 (5)
N20.0387 (7)0.0269 (7)0.0406 (8)0.0030 (6)0.0144 (6)0.0008 (6)
O10.0446 (7)0.0277 (6)0.0760 (10)0.0037 (5)0.0165 (7)0.0054 (6)
O20.0534 (8)0.0561 (9)0.0809 (11)0.0055 (7)0.0410 (8)0.0002 (8)
O30.0448 (7)0.0668 (9)0.0454 (7)0.0242 (7)0.0106 (6)0.0088 (6)
O40.0686 (10)0.0751 (10)0.0376 (7)0.0089 (8)0.0106 (7)0.0001 (7)
O50.0629 (10)0.0820 (12)0.0626 (10)0.0037 (9)0.0053 (8)0.0052 (9)
C10.0423 (10)0.0748 (14)0.0338 (9)0.0152 (10)0.0104 (8)0.0082 (9)
C20.0498 (11)0.0513 (11)0.0448 (10)0.0172 (9)0.0065 (8)0.0129 (9)
C30.0343 (8)0.0531 (11)0.0317 (8)0.0013 (8)0.0086 (7)0.0026 (7)
C40.0429 (9)0.0334 (9)0.0470 (10)0.0066 (7)0.0050 (8)0.0062 (7)
C50.0282 (7)0.0325 (8)0.0296 (7)0.0037 (6)0.0048 (6)0.0006 (6)
C60.0308 (8)0.0313 (8)0.0338 (8)0.0042 (6)0.0061 (6)0.0003 (6)
C70.0333 (8)0.0314 (8)0.0507 (10)0.0078 (7)0.0161 (7)0.0073 (7)
C80.0330 (8)0.0269 (8)0.0404 (9)0.0018 (6)0.0091 (7)0.0043 (7)
C90.0265 (7)0.0337 (9)0.0513 (10)0.0031 (7)0.0078 (7)0.0041 (7)
C100.0323 (8)0.0303 (8)0.0448 (9)0.0066 (7)0.0112 (7)0.0036 (7)
C110.0379 (9)0.0599 (12)0.0456 (10)0.0163 (9)0.0121 (8)0.0031 (9)
C120.0590 (11)0.0300 (9)0.0537 (11)0.0079 (8)0.0187 (9)0.0070 (8)
C130.0777 (15)0.0543 (12)0.0555 (12)0.0009 (11)0.0306 (11)0.0118 (10)
C140.0695 (15)0.0887 (18)0.0486 (12)0.0384 (14)0.0122 (11)0.0221 (12)
C150.0585 (14)0.133 (3)0.0515 (14)0.0227 (16)0.0061 (11)0.0033 (15)
C160.109 (2)0.0618 (15)0.0395 (12)0.0099 (14)0.0106 (12)0.0042 (10)
C170.0862 (18)0.0896 (19)0.0407 (12)0.0155 (16)0.0099 (11)0.0094 (12)
Geometric parameters (Å, º) top
N1—C81.364 (2)C7—C91.510 (3)
N1—C51.423 (2)C8—C91.511 (2)
N1—C101.469 (2)C9—H9A0.9700
N2—C71.366 (2)C9—H9B0.9700
N2—C61.426 (2)C10—C111.505 (3)
N2—C121.475 (2)C10—H10A0.9700
O1—C81.2240 (19)C10—H10B0.9700
O2—C71.223 (2)C11—H11A0.9700
O3—C111.419 (2)C11—H11B0.9700
O3—C141.423 (3)C12—C131.503 (3)
O4—C131.410 (3)C12—H12A0.9700
O4—C161.431 (3)C12—H12B0.9700
O5—C151.411 (3)C13—H13A0.9700
O5—C171.413 (3)C13—H13B0.9700
C1—C31.378 (3)C14—C151.470 (4)
C1—C21.388 (3)C14—H14A0.9700
C1—H10.9300C14—H14B0.9700
C2—C41.375 (3)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C51.404 (2)C16—C171.471 (4)
C3—H30.9300C16—H16A0.9700
C4—C61.398 (2)C16—H16B0.9700
C4—H40.9300C17—H17A0.9700
C5—C61.395 (2)C17—H17B0.9700
C8—N1—C5122.77 (13)H10A—C10—H10B108.1
C8—N1—C10118.20 (13)O3—C11—C10107.38 (14)
C5—N1—C10119.03 (13)O3—C11—H11A110.2
C7—N2—C6121.80 (14)C10—C11—H11A110.2
C7—N2—C12117.70 (15)O3—C11—H11B110.2
C6—N2—C12119.39 (14)C10—C11—H11B110.2
C11—O3—C14113.89 (15)H11A—C11—H11B108.5
C13—O4—C16110.95 (18)N2—C12—C13114.77 (16)
C15—O5—C17114.5 (2)N2—C12—H12A108.6
C3—C1—C2119.72 (17)C13—C12—H12A108.6
C3—C1—H1120.1N2—C12—H12B108.6
C2—C1—H1120.1C13—C12—H12B108.6
C4—C2—C1120.10 (17)H12A—C12—H12B107.6
C4—C2—H2120.0O4—C13—C12111.57 (17)
C1—C2—H2120.0O4—C13—H13A109.3
C1—C3—C5120.71 (17)C12—C13—H13A109.3
C1—C3—H3119.6O4—C13—H13B109.3
C5—C3—H3119.6C12—C13—H13B109.3
C2—C4—C6120.98 (18)H13A—C13—H13B108.0
C2—C4—H4119.5O3—C14—C15114.1 (2)
C6—C4—H4119.5O3—C14—H14A108.7
C6—C5—C3119.31 (15)C15—C14—H14A108.7
C6—C5—N1121.65 (13)O3—C14—H14B108.7
C3—C5—N1119.03 (15)C15—C14—H14B108.7
C5—C6—C4118.99 (15)H14A—C14—H14B107.6
C5—C6—N2121.60 (14)O5—C15—C14110.6 (2)
C4—C6—N2119.41 (15)O5—C15—H15A109.5
O2—C7—N2122.34 (17)C14—C15—H15A109.5
O2—C7—C9121.79 (16)O5—C15—H15B109.5
N2—C7—C9115.83 (14)C14—C15—H15B109.5
O1—C8—N1121.59 (15)H15A—C15—H15B108.1
O1—C8—C9121.89 (15)O4—C16—C17110.3 (2)
N1—C8—C9116.45 (14)O4—C16—H16A109.6
C7—C9—C8108.22 (14)C17—C16—H16A109.6
C7—C9—H9A110.1O4—C16—H16B109.6
C8—C9—H9A110.1C17—C16—H16B109.6
C7—C9—H9B110.1H16A—C16—H16B108.1
C8—C9—H9B110.1O5—C17—C16107.8 (2)
H9A—C9—H9B108.4O5—C17—H17A110.2
N1—C10—C11110.15 (13)C16—C17—H17A110.2
N1—C10—H10A109.6O5—C17—H17B110.2
C11—C10—H10A109.6C16—C17—H17B110.2
N1—C10—H10B109.6H17A—C17—H17B108.5
C11—C10—H10B109.6

Experimental details

Crystal data
Chemical formulaC17H22N2O5
Mr334.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)11.786 (3), 8.092 (2), 18.062 (5)
β (°) 103.692 (17)
V3)1673.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.19 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.950, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
58268, 4249, 2847
Rint0.056
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.151, 1.02
No. of reflections4249
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds