Download citation
Download citation
link to html
In the title compound, C16H16N42+·2Cl·4H2O, the mol­ecules and ions are linked through N—H...Cl, O—H...Cl, O—H...O and N—H...O hydrogen bonds, while π–π stacking inter­actions between benzimidazolium units [the centroid-to-centroid distances between stacking benzene rings are 3.635 (3) and 3.817 (3) Å, respectively] and an N—H...π inter­action help to stabilize the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031273/ez2080sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031273/ez2080Isup2.hkl
Contains datablock I

CCDC reference: 642280

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.036
  • wR factor = 0.105
  • Data-to-parameter ratio = 14.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

We present an 'axle' type polyaromatic compound (I) that contains multiple functional groups that can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman et al., 1981; Day & Arnold, 2000; Day et al., 2002; Kim et al., 2000).

The molecular structure of (I), shown in Fig. 1, consists of an organic cation, Cl- anions and lattice water molecules. The two benzimidazolyl rings in the organic cation are not co-planar, with a dihedral angle of 27.77 (6)° between them. Molecules are linked via a network of hydrogen bonds (N1—H1···O2, O2—H2C···Cl1, N2—H2A···Cl1, N3—H3A···Cl2, O1—H1B···Cl2, N4—H4A···O1, O1—H1A···O3, O3—H3B···Cl1; Table 1).

π···π stacking interactions are observed between nearly parallel benzimidazolyl benzene rings. The centroid-to-centroid distance between C1–C6 benzene rings is 3.635 (3) Å (symmetry code: –X,-Y,1-Z), while between C11–C16 benzene rings it is 3.817 (3) Å (symmetry codes:1-X,1-Y,-Z). In addition, an N—H···π interaction occurs between adjacent benzimidazolyl groups, with an N1—H1···Cg(3) angle of 79.89°, and H1···Cg(3) and N1···Cg(3) distances of 3.3964Å and 3.354 (3) Å, respectively [Cg(3) is the centroid of the C1–C6-benzene (symmetry codes:1-X,-Y,1-Z)].

Related literature top

For related literature, see: Day & Arnold (2000); Day et al. (2002); Freeman et al. (1981); Kim et al. (2000); Wang & Joullié (1957).

Experimental top

o-Phenylenediamine (5.40 g, 0.05 mol) and succinic acid (2.95 g, 0.025 mol) were refluxed for twelve hours in 50 mL of 4M HCl. The reaction mixture was then cooled for one day and the blue crystalline dihydrochloride was removed by filtration and dried. Crystals of the dihydrochloride suitable for X-ray diffraction were obtained by dissolving in water and allowing the solution to stand at room temperature for several days (Wang et al., 1957). Yield: 43%.

Refinement top

Water H atoms were located in a difference Fourier synthesis and refined in their as-found positions relative to O atoms with Uiso(H) =1.2Ueq(O). All other H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq (C, N).

Structure description top

We present an 'axle' type polyaromatic compound (I) that contains multiple functional groups that can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman et al., 1981; Day & Arnold, 2000; Day et al., 2002; Kim et al., 2000).

The molecular structure of (I), shown in Fig. 1, consists of an organic cation, Cl- anions and lattice water molecules. The two benzimidazolyl rings in the organic cation are not co-planar, with a dihedral angle of 27.77 (6)° between them. Molecules are linked via a network of hydrogen bonds (N1—H1···O2, O2—H2C···Cl1, N2—H2A···Cl1, N3—H3A···Cl2, O1—H1B···Cl2, N4—H4A···O1, O1—H1A···O3, O3—H3B···Cl1; Table 1).

π···π stacking interactions are observed between nearly parallel benzimidazolyl benzene rings. The centroid-to-centroid distance between C1–C6 benzene rings is 3.635 (3) Å (symmetry code: –X,-Y,1-Z), while between C11–C16 benzene rings it is 3.817 (3) Å (symmetry codes:1-X,1-Y,-Z). In addition, an N—H···π interaction occurs between adjacent benzimidazolyl groups, with an N1—H1···Cg(3) angle of 79.89°, and H1···Cg(3) and N1···Cg(3) distances of 3.3964Å and 3.354 (3) Å, respectively [Cg(3) is the centroid of the C1–C6-benzene (symmetry codes:1-X,-Y,1-Z)].

For related literature, see: Day & Arnold (2000); Day et al. (2002); Freeman et al. (1981); Kim et al. (2000); Wang & Joullié (1957).

Computing details top

Data collection: APEX2 (Bruker, Year?); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), shown with the atom numbering scheme and 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
2,2'-Ethylenedibenzimidazolium dichloride tetrahydrate top
Crystal data top
C16H16N42+·2Cl·4H2OZ = 2
Mr = 407.29F(000) = 428
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.174 (6) ÅCell parameters from 3317 reflections
b = 9.652 (8) Åθ = 1.4–25.0°
c = 15.411 (13) ŵ = 0.36 mm1
α = 80.504 (8)°T = 293 K
β = 79.684 (9)°Prism, colourless
γ = 68.520 (8)°0.17 × 0.14 × 0.08 mm
V = 971.2 (14) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3317 independent reflections
Radiation source: fine-focus sealed tube2933 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick,1997)
h = 88
Tmin = 0.941, Tmax = 0.972k = 1111
6584 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.056P)2 + 0.2765P]
where P = (Fo2 + 2Fc2)/3
3317 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H16N42+·2Cl·4H2Oγ = 68.520 (8)°
Mr = 407.29V = 971.2 (14) Å3
Triclinic, P1Z = 2
a = 7.174 (6) ÅMo Kα radiation
b = 9.652 (8) ŵ = 0.36 mm1
c = 15.411 (13) ÅT = 293 K
α = 80.504 (8)°0.17 × 0.14 × 0.08 mm
β = 79.684 (9)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3317 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick,1997)
2933 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.972Rint = 0.014
6584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.09Δρmax = 0.20 e Å3
3317 reflectionsΔρmin = 0.27 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6983 (2)1.03103 (18)0.52524 (10)0.0288 (3)
C20.6639 (3)1.16652 (19)0.47131 (12)0.0359 (4)
H20.58071.25720.49200.043*
C30.7605 (3)1.1583 (2)0.38534 (12)0.0385 (4)
H30.74241.24640.34730.046*
C40.8855 (3)1.0215 (2)0.35315 (11)0.0391 (4)
H40.94591.02120.29450.047*
C50.9199 (3)0.8880 (2)0.40694 (12)0.0374 (4)
H51.00280.79740.38610.045*
C60.8248 (2)0.89511 (18)0.49381 (11)0.0302 (4)
C70.7063 (2)0.84969 (19)0.63476 (11)0.0357 (4)
C80.6641 (3)0.7702 (2)0.72354 (13)0.0472 (5)
H8A0.60600.69700.71650.057*
H8B0.56540.84190.76100.057*
C90.8508 (3)0.6921 (2)0.76849 (12)0.0480 (5)
H9A0.94610.61590.73280.058*
H9B0.91360.76410.77210.058*
C100.8068 (3)0.6206 (2)0.85950 (11)0.0367 (4)
C110.7655 (2)0.45577 (18)0.97231 (11)0.0300 (4)
C120.7552 (3)0.32862 (19)1.02773 (12)0.0373 (4)
H120.77500.23961.00550.045*
C130.7139 (3)0.3424 (2)1.11733 (12)0.0427 (4)
H130.70790.25961.15670.051*
C140.6805 (3)0.4770 (2)1.15129 (12)0.0435 (5)
H140.65150.48121.21230.052*
C150.6896 (3)0.6028 (2)1.09654 (12)0.0402 (4)
H150.66630.69241.11880.048*
C160.7356 (2)0.58891 (18)1.00602 (11)0.0312 (4)
N10.6283 (2)0.99668 (16)0.61347 (9)0.0330 (3)
H10.54771.06030.64850.040*
N20.8250 (2)0.78573 (15)0.56483 (10)0.0369 (3)
H2A0.89140.69150.56380.044*
N30.7621 (2)0.68854 (16)0.93284 (9)0.0367 (3)
H3A0.75120.77980.93470.044*
N40.8080 (2)0.48110 (16)0.88072 (9)0.0352 (3)
H4A0.83120.41710.84380.042*
O10.8156 (2)0.29177 (16)0.76720 (9)0.0541 (4)
H1A0.74660.33520.71920.065*
H1B0.76410.21510.79530.065*
O20.3755 (2)0.19384 (16)0.72672 (9)0.0550 (4)
H2B0.30370.15360.76910.066*
H2C0.28370.27480.69440.066*
O30.6201 (3)0.46531 (18)0.62377 (10)0.0628 (4)
H3B0.49150.45930.61210.122 (12)*
H3C0.67960.48060.56790.107 (11)*
O40.7843 (3)0.9552 (2)0.12510 (12)0.0885 (6)
H4B0.90910.97250.11560.106*
H4C0.77350.96000.06750.106*
Cl10.18700 (7)0.47137 (5)0.58431 (3)0.05045 (17)
Cl20.76500 (10)1.01372 (6)0.90382 (4)0.0651 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0309 (8)0.0306 (8)0.0258 (8)0.0118 (7)0.0047 (6)0.0015 (6)
C20.0413 (9)0.0278 (9)0.0378 (10)0.0107 (7)0.0078 (8)0.0018 (7)
C30.0463 (10)0.0361 (9)0.0349 (10)0.0198 (8)0.0104 (8)0.0092 (7)
C40.0426 (10)0.0504 (11)0.0266 (9)0.0221 (8)0.0011 (7)0.0000 (8)
C50.0364 (9)0.0363 (9)0.0364 (10)0.0105 (7)0.0026 (7)0.0085 (8)
C60.0297 (8)0.0285 (8)0.0309 (9)0.0103 (7)0.0036 (6)0.0013 (7)
C70.0309 (9)0.0392 (10)0.0323 (9)0.0110 (7)0.0039 (7)0.0056 (7)
C80.0406 (10)0.0528 (12)0.0389 (11)0.0150 (9)0.0013 (8)0.0136 (9)
C90.0447 (11)0.0604 (13)0.0349 (10)0.0207 (9)0.0035 (8)0.0101 (9)
C100.0339 (9)0.0419 (10)0.0322 (9)0.0139 (8)0.0061 (7)0.0053 (8)
C110.0278 (8)0.0336 (9)0.0280 (8)0.0110 (7)0.0038 (6)0.0007 (7)
C120.0350 (9)0.0315 (9)0.0440 (11)0.0122 (7)0.0044 (7)0.0009 (8)
C130.0373 (10)0.0435 (11)0.0402 (11)0.0138 (8)0.0026 (8)0.0124 (8)
C140.0407 (10)0.0581 (12)0.0261 (9)0.0144 (9)0.0010 (7)0.0008 (8)
C150.0437 (10)0.0432 (10)0.0354 (10)0.0147 (8)0.0059 (8)0.0089 (8)
C160.0313 (8)0.0325 (9)0.0318 (9)0.0140 (7)0.0073 (7)0.0016 (7)
N10.0343 (7)0.0344 (8)0.0267 (7)0.0093 (6)0.0010 (6)0.0027 (6)
N20.0365 (8)0.0255 (7)0.0391 (8)0.0055 (6)0.0001 (6)0.0047 (6)
N30.0455 (8)0.0307 (7)0.0359 (8)0.0182 (6)0.0060 (6)0.0035 (6)
N40.0392 (8)0.0383 (8)0.0277 (8)0.0134 (6)0.0027 (6)0.0038 (6)
O10.0742 (10)0.0461 (8)0.0385 (8)0.0168 (7)0.0033 (7)0.0088 (6)
O20.0685 (9)0.0482 (8)0.0396 (8)0.0106 (7)0.0032 (7)0.0074 (6)
O30.0675 (10)0.0706 (11)0.0457 (9)0.0211 (8)0.0100 (7)0.0020 (7)
O40.1155 (16)0.1051 (15)0.0603 (11)0.0637 (13)0.0186 (10)0.0163 (10)
Cl10.0523 (3)0.0349 (3)0.0540 (3)0.0059 (2)0.0056 (2)0.0004 (2)
Cl20.0916 (4)0.0397 (3)0.0694 (4)0.0299 (3)0.0209 (3)0.0068 (3)
Geometric parameters (Å, º) top
C1—N11.393 (2)C11—C121.393 (3)
C1—C21.393 (2)C11—C161.395 (3)
C1—C61.400 (2)C12—C131.377 (3)
C2—C31.381 (3)C12—H120.9300
C2—H20.9300C13—C141.404 (3)
C3—C41.409 (3)C13—H130.9300
C3—H30.9300C14—C151.375 (3)
C4—C51.376 (3)C14—H140.9300
C4—H40.9300C15—C161.392 (3)
C5—C61.390 (3)C15—H150.9300
C5—H50.9300C16—N31.390 (2)
C6—N21.389 (2)N1—H10.8600
C7—N11.328 (2)N2—H2A0.8600
C7—N21.332 (2)N3—H3A0.8600
C7—C81.493 (3)N4—H4A0.8600
C8—C91.504 (3)O1—H1A0.9193
C8—H8A0.9700O1—H1B0.9531
C8—H8B0.9700O2—H2B0.8859
C9—C101.491 (3)O2—H2C0.9513
C9—H9A0.9700O3—H3B0.9944
C9—H9B0.9700O3—H3C0.9044
C10—N41.330 (3)O4—H4B0.9517
C10—N31.331 (2)O4—H4C0.8972
C11—N41.390 (2)
N1—C1—C2131.94 (15)N3—C10—C9124.31 (18)
N1—C1—C6106.44 (14)N4—C11—C12131.65 (16)
C2—C1—C6121.62 (16)N4—C11—C16106.66 (15)
C3—C2—C1116.08 (16)C12—C11—C16121.67 (16)
C3—C2—H2122.0C13—C12—C11116.09 (17)
C1—C2—H2122.0C13—C12—H12122.0
C2—C3—C4122.42 (16)C11—C12—H12122.0
C2—C3—H3118.8C12—C13—C14122.31 (17)
C4—C3—H3118.8C12—C13—H13118.8
C5—C4—C3121.21 (17)C14—C13—H13118.8
C5—C4—H4119.4C15—C14—C13121.59 (18)
C3—C4—H4119.4C15—C14—H14119.2
C4—C5—C6116.86 (16)C13—C14—H14119.2
C4—C5—H5121.6C14—C15—C16116.44 (17)
C6—C5—H5121.6C14—C15—H15121.8
N2—C6—C5132.39 (16)C16—C15—H15121.8
N2—C6—C1105.81 (15)N3—C16—C15132.35 (16)
C5—C6—C1121.80 (16)N3—C16—C11105.79 (15)
N1—C7—N2109.51 (15)C15—C16—C11121.87 (16)
N1—C7—C8124.61 (16)C7—N1—C1108.89 (14)
N2—C7—C8125.88 (17)C7—N1—H1125.6
C7—C8—C9112.55 (16)C1—N1—H1125.6
C7—C8—H8A109.1C7—N2—C6109.36 (15)
C9—C8—H8A109.1C7—N2—H2A125.3
C7—C8—H8B109.1C6—N2—H2A125.3
C9—C8—H8B109.1C10—N3—C16109.32 (15)
H8A—C8—H8B107.8C10—N3—H3A125.3
C10—C9—C8112.61 (16)C16—N3—H3A125.3
C10—C9—H9A109.1C10—N4—C11108.79 (14)
C8—C9—H9A109.1C10—N4—H4A125.6
C10—C9—H9B109.1C11—N4—H4A125.6
C8—C9—H9B109.1H1A—O1—H1B105.9
H9A—C9—H9B107.8H2B—O2—H2C107.8
N4—C10—N3109.43 (15)H3B—O3—H3C101.2
N4—C10—C9126.25 (17)H4B—O4—H4C95.8
N1—C1—C2—C3179.91 (17)C14—C15—C16—C111.7 (3)
C6—C1—C2—C30.4 (2)N4—C11—C16—N30.14 (17)
C1—C2—C3—C40.5 (3)C12—C11—C16—N3178.47 (15)
C2—C3—C4—C51.0 (3)N4—C11—C16—C15179.97 (15)
C3—C4—C5—C60.4 (3)C12—C11—C16—C151.4 (3)
C4—C5—C6—N2179.99 (17)N2—C7—N1—C10.24 (19)
C4—C5—C6—C10.6 (3)C8—C7—N1—C1179.21 (17)
N1—C1—C6—N20.16 (18)C2—C1—N1—C7179.59 (18)
C2—C1—C6—N2179.45 (15)C6—C1—N1—C70.04 (18)
N1—C1—C6—C5179.38 (15)N1—C7—N2—C60.4 (2)
C2—C1—C6—C51.0 (3)C8—C7—N2—C6179.10 (17)
N1—C7—C8—C9117.7 (2)C5—C6—N2—C7179.16 (19)
N2—C7—C8—C962.9 (3)C1—C6—N2—C70.31 (19)
C7—C8—C9—C10176.41 (17)N4—C10—N3—C161.00 (19)
C8—C9—C10—N490.8 (2)C9—C10—N3—C16178.32 (16)
C8—C9—C10—N390.0 (2)C15—C16—N3—C10179.36 (18)
N4—C11—C12—C13178.22 (17)C11—C16—N3—C100.51 (18)
C16—C11—C12—C130.0 (2)N3—C10—N4—C111.08 (19)
C11—C12—C13—C141.1 (3)C9—C10—N4—C11178.22 (16)
C12—C13—C14—C150.8 (3)C12—C11—N4—C10177.67 (17)
C13—C14—C15—C160.6 (3)C16—C11—N4—C100.74 (18)
C14—C15—C16—N3178.17 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.862.719 (2)178
N2—H2A···Cl1ii0.862.413.201 (2)152
N3—H3A···Cl20.862.263.104 (3)165
N4—H4A···O10.861.872.711 (3)167
O1—H1A···O30.921.902.798 (3)166
O1—H1B···Cl2iii0.952.343.216 (2)152
O2—H2B···O4iv0.891.932.790 (3)164
O2—H2C···Cl10.952.313.208 (2)156
O3—H3B···Cl10.992.263.249 (3)174
O3—H3C···Cl1iv0.902.413.310 (3)176
O4—H4B···Cl2v0.952.353.300 (3)174
O4—H4C···Cl2vi0.902.503.383 (3)169
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x+2, y+2, z+1; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formulaC16H16N42+·2Cl·4H2O
Mr407.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.174 (6), 9.652 (8), 15.411 (13)
α, β, γ (°)80.504 (8), 79.684 (9), 68.520 (8)
V3)971.2 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.17 × 0.14 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick,1997)
Tmin, Tmax0.941, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
6584, 3317, 2933
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.09
No. of reflections3317
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.27

Computer programs: APEX2 (Bruker, Year?), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.862.719 (2)178.4
N2—H2A···Cl1ii0.862.413.201 (2)152.4
N3—H3A···Cl20.862.263.104 (3)165.3
N4—H4A···O10.861.872.711 (3)166.5
O1—H1A···O30.921.902.798 (3)166.1
O1—H1B···Cl2iii0.952.343.216 (2)151.7
O2—H2B···O4iv0.891.932.790 (3)164.4
O2—H2C···Cl10.952.313.208 (2)156.3
O3—H3B···Cl10.992.263.249 (3)174.1
O3—H3C···Cl1iv0.902.413.310 (3)175.7
O4—H4B···Cl2v0.952.353.300 (3)173.6
O4—H4C···Cl2vi0.902.503.383 (3)169.4
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y+1, z+1; (v) x+2, y+2, z+1; (vi) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds