Download citation
Download citation
link to html
In the title compound, [Cu(C17H8O9)(C12H8N2)2]·2H2O, the CuII cation is hexa­coordinated by two carboxyl­ate O atoms from one of the two deprotonated carboxyl groups in the 3,3,4,4-benzophenone tetra­carboxyl­ate, and four N atoms from two 1,10-phenanthrolines, showing a slightly distorted octa­hedral geometry. A network of hydrogen bonds links the units into a three-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034678/ez2087sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034678/ez2087Isup2.hkl
Contains datablock I

CCDC reference: 657608

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.044
  • wR factor = 0.127
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT420_ALERT_2_B D-H Without Acceptor O10 - H1W ... ? PLAT420_ALERT_2_B D-H Without Acceptor O10 - H2W ... ? PLAT420_ALERT_2_B D-H Without Acceptor O11 - H3W ... ? PLAT432_ALERT_2_B Short Inter X...Y Contact O1 .. C33 .. 2.84 Ang.
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.40 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O1 .. 6.52 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O2 .. 9.76 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - N4 .. 7.70 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O2 PLAT432_ALERT_2_C Short Inter X...Y Contact O1 .. C30 .. 3.01 Ang. PLAT482_ALERT_4_C Small D-H..A Angle Rep for O11 .. O6 .. 94.00 Deg.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.01 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 4 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 9 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In recent years, carboxylic acids have been widely used as polydentate ligands that can coordinate to transition or rare earth ions, yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). For example, Kim et al. (2001) focused on the syntheses of transition metal complexes containing benzene carboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using 3,3,4,4-benzophenone tetracarboxylate as a polydentate ligand. Here we report the synthesis and X-ray crystal structure analysis of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The Cu(II) ion is hexa-coordinated, with two carboxylate oxygen atoms from the 3,3,4,4-benzophenone tetracarboxylate and four nitrogen atoms from two 1,10-phenanthrolines, showing a slightly distorted octahedral geometry. The Cu—O bond and Cu—N distances are in the ranges 2.378 (2)–2.0837 (19) and 2.114 (3)–2.179 (3) Å, respectively.

Related literature top

For uses of carboxylic acids in materials science, see: Church & Halvorson (1959). For uses in biological systems, see: Chung et al. (1971); Okabe & Oya (2000); Serre et al. (2005); Pocker & Fong (1980); Scapin et al. (1997); Kim et al. (2001).

Experimental top

A mixture of copper acetate (0.5 mmol, 0.149 g), 3,3,4,4-benzophenone tetracarboxylic acid (0.5 mmol, 0.162 g), and 1,10-phenanthroline (0.5 mmol, 0.10 g) in 20 ml of a 1:1 solution of water and ethanol was sealed in a 30 ml Teflon-lined stainless steel autoclave, and kept at 150 °C for 2 days. Green, block-shaped crystals were obtained at a yield of 20% after slowly cooling to room temperature. Anal. Calc. for C41H28CuN4O11: C 60.28, H 3.43, N 6.86, Cu 7.84%; Found: C 60.33, H 3.49, N 6.81, Cu 7.80%.

Refinement top

The H atoms of the water molecule were located from difference density maps and were refined with distance restraints of d(H–H) = 1.38 (2) Å, d(O—H) = 0.88 (2) Å, and with a fixed Uiso of 0.80 Å2. All other H atoms were placed in calculated positions with a C—H bond distance of 0.93 Å and Uiso(H) = 1.2Ueq of the carrier atom.

Structure description top

In recent years, carboxylic acids have been widely used as polydentate ligands that can coordinate to transition or rare earth ions, yielding complexes with interesting properties that are useful in materials science (Church & Halvorson, 1959; Chung et al., 1971) and in biological systems (Okabe & Oya, 2000; Serre et al., 2005; Pocker & Fong, 1980; Scapin et al., 1997). For example, Kim et al. (2001) focused on the syntheses of transition metal complexes containing benzene carboxylate and rigid aromatic pyridine ligands in order to study their electronic conductivity and magnetic properties. The importance of transition metal dicarboxylate complexes motivated us to pursue synthetic strategies for these compounds, using 3,3,4,4-benzophenone tetracarboxylate as a polydentate ligand. Here we report the synthesis and X-ray crystal structure analysis of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The Cu(II) ion is hexa-coordinated, with two carboxylate oxygen atoms from the 3,3,4,4-benzophenone tetracarboxylate and four nitrogen atoms from two 1,10-phenanthrolines, showing a slightly distorted octahedral geometry. The Cu—O bond and Cu—N distances are in the ranges 2.378 (2)–2.0837 (19) and 2.114 (3)–2.179 (3) Å, respectively.

For uses of carboxylic acids in materials science, see: Church & Halvorson (1959). For uses in biological systems, see: Chung et al. (1971); Okabe & Oya (2000); Serre et al. (2005); Pocker & Fong (1980); Scapin et al. (1997); Kim et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the the title compound, showing the atomic numbering scheme and 30% probability displacement ellipsoids.
(2,2'-Dicarboxy-4,4'-carbonyldibenzoato)bis(1,10-phenanthroline)copper(II) dihydrate top
Crystal data top
[Cu(C17H8O9)(C12H8N2)2]·2H2OF(000) = 1676
Mr = 816.21Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6912 reflections
a = 14.3011 (9) Åθ = 1.5–26.0°
b = 16.9401 (10) ŵ = 0.69 mm1
c = 14.9839 (9) ÅT = 293 K
β = 101.371 (1)°Block, green
V = 3558.8 (4) Å30.15 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6912 independent reflections
Radiation source: fine-focus sealed tube3976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1617
Tmin = 0.904, Tmax = 0.904k = 2020
17576 measured reflectionsl = 917
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0662P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6912 reflectionsΔρmax = 0.86 e Å3
528 parametersΔρmin = 0.84 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00
Crystal data top
[Cu(C17H8O9)(C12H8N2)2]·2H2OV = 3558.8 (4) Å3
Mr = 816.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3011 (9) ŵ = 0.69 mm1
b = 16.9401 (10) ÅT = 293 K
c = 14.9839 (9) Å0.15 × 0.15 × 0.15 mm
β = 101.371 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6912 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3976 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.904Rint = 0.061
17576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.86 e Å3
6912 reflectionsΔρmin = 0.84 e Å3
528 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8370 (3)0.4926 (3)0.2632 (3)0.0593 (11)
H10.79170.45260.25100.071*
C20.9332 (3)0.4719 (3)0.2790 (3)0.0715 (13)
H20.95090.41930.27710.086*
C31.0000 (3)0.5284 (3)0.2971 (3)0.0723 (13)
H31.06420.51480.30620.087*
C40.9735 (3)0.6076 (3)0.3024 (3)0.0625 (12)
C51.0388 (3)0.6732 (3)0.3252 (3)0.0756 (14)
H51.10400.66350.33790.091*
C61.0082 (3)0.7460 (3)0.3285 (3)0.0752 (14)
H61.05250.78650.34260.090*
C70.9086 (3)0.7648 (3)0.3108 (3)0.0588 (11)
C80.8728 (3)0.8412 (3)0.3158 (3)0.0691 (12)
H80.91440.88360.32950.083*
C90.7774 (3)0.8531 (3)0.3006 (3)0.0644 (12)
H90.75290.90350.30490.077*
C100.7162 (3)0.7889 (2)0.2785 (3)0.0573 (11)
H100.65080.79800.26770.069*
C110.8423 (2)0.7034 (2)0.2890 (3)0.0486 (10)
C120.8751 (2)0.6237 (2)0.2842 (3)0.0497 (10)
C130.4743 (3)0.7042 (3)0.2495 (3)0.0657 (12)
H130.50020.71280.31070.079*
C140.3821 (3)0.7304 (3)0.2149 (4)0.0725 (13)
H140.34690.75490.25310.087*
C150.3435 (3)0.7201 (2)0.1253 (3)0.0622 (12)
H150.28260.73880.10140.075*
C160.3957 (2)0.6813 (2)0.0699 (3)0.0490 (10)
C170.3613 (3)0.6667 (2)0.0247 (3)0.0604 (12)
H170.30080.68410.05200.072*
C180.4146 (3)0.6282 (2)0.0746 (3)0.0573 (11)
H180.38990.61870.13590.069*
C190.5088 (3)0.6014 (2)0.0358 (3)0.0479 (9)
C200.5678 (3)0.5606 (2)0.0853 (3)0.0567 (11)
H200.54660.55030.14690.068*
C210.6558 (3)0.5365 (2)0.0428 (3)0.0584 (11)
H210.69480.50870.07460.070*
C220.6866 (3)0.5537 (2)0.0485 (3)0.0523 (10)
H220.74750.53740.07660.063*
C230.5450 (2)0.6154 (2)0.0557 (3)0.0390 (8)
C240.4882 (2)0.6564 (2)0.1100 (3)0.0418 (9)
C250.5931 (2)0.5078 (2)0.3286 (3)0.0412 (9)
C260.5346 (2)0.45871 (19)0.3815 (2)0.0358 (8)
C270.5710 (2)0.40717 (19)0.4523 (2)0.0367 (8)
C280.6751 (2)0.3964 (2)0.4895 (3)0.0428 (9)
C290.5087 (2)0.3617 (2)0.4913 (2)0.0377 (8)
H290.53350.32740.53860.045*
C300.4100 (2)0.36606 (19)0.4614 (2)0.0339 (8)
C310.3744 (2)0.4195 (2)0.3933 (2)0.0392 (9)
H310.30880.42470.37400.047*
C320.4356 (2)0.4653 (2)0.3536 (2)0.0427 (9)
H320.41040.50080.30790.051*
C330.3490 (2)0.3106 (2)0.5019 (2)0.0361 (8)
C340.2422 (2)0.31950 (19)0.4831 (2)0.0360 (8)
C350.1875 (2)0.2517 (2)0.4652 (2)0.0410 (9)
H350.21850.20390.46170.049*
C360.0881 (2)0.2516 (2)0.4520 (3)0.0433 (9)
C370.0438 (3)0.1704 (2)0.4357 (3)0.0600 (12)
C380.0422 (2)0.3247 (2)0.4594 (3)0.0392 (8)
C390.0641 (2)0.3395 (2)0.4486 (3)0.0541 (11)
C400.0981 (2)0.3921 (2)0.4798 (3)0.0411 (9)
H400.06810.43980.48660.049*
C410.1964 (2)0.39093 (19)0.4903 (3)0.0385 (8)
H410.23130.43740.50190.046*
Cu10.66501 (3)0.61130 (3)0.23968 (3)0.04183 (16)
N10.8075 (2)0.5662 (2)0.2648 (2)0.0497 (8)
N20.7463 (2)0.71606 (18)0.2723 (2)0.0472 (8)
N30.5263 (2)0.66769 (19)0.1986 (2)0.0494 (8)
N40.63421 (19)0.59196 (16)0.0981 (2)0.0451 (8)
O10.62329 (16)0.57379 (14)0.35849 (17)0.0443 (6)
O20.60284 (18)0.48301 (17)0.25289 (18)0.0618 (8)
O30.72864 (16)0.42358 (16)0.4347 (2)0.0560 (7)
H3A0.78320.40690.45080.084*
O40.70660 (18)0.3663 (2)0.5624 (2)0.0740 (8)
O50.38447 (16)0.25576 (14)0.54750 (18)0.0476 (5)
O60.0945 (2)0.11279 (17)0.4451 (3)0.0797 (9)
O70.04731 (19)0.16318 (18)0.4096 (3)0.0849 (9)
H70.07190.20710.40390.153*
O80.12265 (18)0.28825 (19)0.4100 (3)0.1021 (12)
O90.09096 (16)0.40276 (15)0.4745 (2)0.0529 (6)
O100.7694 (4)0.4462 (5)0.7582 (5)0.072 (3)
O110.1075 (10)0.9558 (9)0.4964 (13)0.071 (3)
H1W0.7161 (12)0.443 (3)0.771 (3)0.080*
H2W0.8127 (19)0.447 (4)0.8053 (19)0.080*
H3W0.096 (3)0.933 (4)0.4435 (16)0.080*
H4W0.158 (2)0.980 (3)0.516 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.055 (2)0.065 (3)0.062 (3)0.012 (2)0.022 (2)0.010 (2)
C20.064 (3)0.074 (3)0.083 (4)0.024 (2)0.030 (3)0.017 (3)
C30.045 (2)0.102 (4)0.074 (3)0.022 (2)0.021 (2)0.019 (3)
C40.040 (2)0.090 (3)0.059 (3)0.009 (2)0.015 (2)0.017 (3)
C50.034 (2)0.119 (4)0.075 (4)0.007 (3)0.012 (2)0.014 (3)
C60.052 (3)0.092 (4)0.085 (4)0.015 (3)0.020 (3)0.006 (3)
C70.050 (2)0.076 (3)0.051 (3)0.010 (2)0.011 (2)0.011 (2)
C80.076 (3)0.070 (3)0.062 (3)0.017 (3)0.014 (3)0.005 (2)
C90.075 (3)0.058 (3)0.060 (3)0.002 (2)0.014 (2)0.006 (2)
C100.058 (2)0.064 (3)0.052 (3)0.007 (2)0.013 (2)0.014 (2)
C110.040 (2)0.067 (3)0.040 (2)0.0021 (18)0.0122 (18)0.011 (2)
C120.0363 (19)0.068 (3)0.048 (3)0.0039 (18)0.0166 (18)0.013 (2)
C130.050 (2)0.093 (3)0.057 (3)0.015 (2)0.017 (2)0.007 (3)
C140.052 (3)0.091 (3)0.075 (4)0.017 (2)0.015 (3)0.014 (3)
C150.043 (2)0.065 (3)0.073 (3)0.011 (2)0.001 (2)0.002 (3)
C160.041 (2)0.046 (2)0.057 (3)0.0018 (17)0.002 (2)0.007 (2)
C170.046 (2)0.059 (3)0.066 (3)0.002 (2)0.014 (2)0.006 (2)
C180.061 (3)0.056 (3)0.048 (3)0.009 (2)0.005 (2)0.003 (2)
C190.057 (2)0.041 (2)0.046 (3)0.0150 (18)0.011 (2)0.0048 (19)
C200.075 (3)0.051 (2)0.048 (3)0.018 (2)0.020 (2)0.006 (2)
C210.067 (3)0.058 (3)0.058 (3)0.010 (2)0.031 (2)0.008 (2)
C220.045 (2)0.055 (2)0.062 (3)0.0040 (18)0.022 (2)0.002 (2)
C230.0411 (19)0.0355 (18)0.040 (2)0.0067 (15)0.0076 (17)0.0052 (17)
C240.0393 (19)0.039 (2)0.046 (3)0.0018 (16)0.0061 (18)0.0069 (18)
C250.0253 (17)0.055 (2)0.043 (2)0.0009 (16)0.0065 (16)0.000 (2)
C260.0303 (17)0.044 (2)0.035 (2)0.0038 (15)0.0109 (15)0.0096 (17)
C270.0267 (16)0.043 (2)0.042 (2)0.0000 (14)0.0091 (16)0.0068 (17)
C280.0290 (17)0.047 (2)0.053 (3)0.0011 (16)0.0092 (18)0.003 (2)
C290.0290 (17)0.0428 (19)0.041 (2)0.0045 (14)0.0071 (16)0.0004 (17)
C300.0245 (15)0.0402 (19)0.038 (2)0.0002 (14)0.0091 (15)0.0085 (17)
C310.0231 (16)0.050 (2)0.043 (2)0.0017 (15)0.0019 (15)0.0027 (19)
C320.0320 (18)0.054 (2)0.042 (2)0.0042 (16)0.0065 (17)0.0023 (18)
C330.0315 (17)0.0329 (19)0.044 (2)0.0052 (15)0.0080 (16)0.0049 (17)
C340.0258 (16)0.043 (2)0.042 (2)0.0015 (14)0.0128 (15)0.0025 (17)
C350.0352 (19)0.039 (2)0.053 (2)0.0023 (15)0.0181 (18)0.0023 (18)
C360.0333 (18)0.043 (2)0.055 (3)0.0053 (15)0.0130 (18)0.0004 (19)
C370.044 (2)0.051 (3)0.090 (4)0.012 (2)0.025 (2)0.007 (2)
C380.0257 (16)0.043 (2)0.049 (2)0.0027 (15)0.0073 (16)0.0004 (18)
C390.0286 (19)0.055 (3)0.079 (3)0.0022 (18)0.013 (2)0.004 (2)
C400.0273 (16)0.042 (2)0.054 (2)0.0053 (15)0.0098 (16)0.0020 (18)
C410.0265 (16)0.0373 (19)0.052 (2)0.0009 (14)0.0095 (16)0.0010 (18)
Cu10.0311 (2)0.0549 (3)0.0406 (3)0.0029 (2)0.00990 (19)0.0077 (2)
N10.0458 (18)0.058 (2)0.048 (2)0.0079 (16)0.0166 (16)0.0102 (17)
N20.0412 (17)0.057 (2)0.044 (2)0.0050 (15)0.0109 (15)0.0135 (16)
N30.0429 (17)0.064 (2)0.041 (2)0.0053 (15)0.0077 (16)0.0010 (17)
N40.0384 (16)0.0452 (18)0.055 (2)0.0019 (13)0.0172 (15)0.0076 (15)
O10.0424 (13)0.0413 (14)0.0509 (17)0.0039 (11)0.0135 (12)0.0007 (13)
O20.0624 (17)0.087 (2)0.0431 (17)0.0233 (15)0.0275 (14)0.0160 (16)
O30.0252 (12)0.0642 (17)0.081 (2)0.0072 (12)0.0155 (14)0.0142 (15)
O40.0324 (13)0.119 (2)0.0676 (17)0.0069 (14)0.0020 (12)0.0308 (16)
O50.0314 (12)0.0411 (13)0.0703 (14)0.0044 (9)0.0100 (10)0.0081 (11)
O60.0604 (18)0.0370 (14)0.140 (3)0.0056 (13)0.0168 (18)0.0061 (15)
O70.0422 (16)0.0554 (17)0.158 (3)0.0182 (13)0.0219 (17)0.0232 (18)
O80.0266 (14)0.0729 (19)0.198 (4)0.0097 (13)0.0017 (17)0.043 (2)
O90.0250 (12)0.0535 (14)0.0808 (17)0.0039 (10)0.0122 (11)0.0022 (12)
O100.065 (6)0.083 (7)0.061 (7)0.008 (6)0.017 (5)0.018 (6)
O110.072 (6)0.067 (6)0.080 (8)0.001 (5)0.032 (5)0.004 (6)
Geometric parameters (Å, º) top
C1—N11.318 (5)C24—N31.345 (5)
C1—C21.393 (5)C25—O21.244 (4)
C1—H10.9300C25—O11.249 (4)
C2—C31.341 (6)C25—C261.511 (5)
C2—H20.9300C25—Cu12.539 (4)
C3—C41.401 (6)C26—C271.392 (5)
C3—H30.9300C26—C321.400 (4)
C4—C121.407 (5)C27—C291.391 (5)
C4—C51.448 (6)C27—C281.495 (5)
C5—C61.311 (6)C28—O41.209 (4)
C5—H50.9300C28—O31.311 (4)
C6—C71.433 (6)C29—C301.396 (4)
C6—H60.9300C29—H290.9300
C7—C81.400 (6)C30—C311.383 (5)
C7—C111.401 (5)C30—C331.491 (4)
C8—C91.354 (6)C31—C321.388 (5)
C8—H80.9300C31—H310.9300
C9—C101.393 (6)C32—H320.9300
C9—H90.9300C33—O51.205 (4)
C10—N21.316 (5)C33—C341.504 (4)
C10—H100.9300C34—C351.386 (4)
C11—N21.364 (4)C34—C411.390 (4)
C11—C121.436 (5)C35—C361.396 (4)
C12—N11.363 (5)C35—H350.9300
C13—N31.321 (5)C36—C381.417 (5)
C13—C141.391 (5)C36—C371.514 (5)
C13—H130.9300C37—O61.207 (4)
C14—C151.358 (6)C37—O71.290 (4)
C14—H140.9300C38—C401.393 (4)
C15—C161.386 (5)C38—C391.518 (4)
C15—H150.9300C39—O91.226 (4)
C16—C241.406 (5)C39—O81.264 (4)
C16—C171.427 (6)C40—C411.384 (4)
C17—C181.337 (6)C40—H400.9300
C17—H170.9300C41—H410.9300
C18—C191.432 (5)Cu1—O12.085 (2)
C18—H180.9300Cu1—N42.106 (3)
C19—C231.387 (5)Cu1—N22.125 (3)
C19—C201.410 (5)Cu1—N12.139 (3)
C20—C211.356 (6)Cu1—N32.178 (3)
C20—H200.9300Cu1—O22.371 (3)
C21—C221.383 (6)O3—H3A0.8200
C21—H210.9300O7—H70.8200
C22—N41.325 (4)O10—H1W0.821 (11)
C22—H220.9300O10—H2W0.84 (3)
C23—N41.366 (4)O11—H3W0.87 (3)
C23—C241.438 (5)O11—H4W0.83 (4)
N1—C1—C2122.9 (4)C26—C27—C28123.8 (3)
N1—C1—H1118.6O4—C28—O3123.7 (3)
C2—C1—H1118.5O4—C28—C27123.7 (3)
C3—C2—C1119.7 (4)O3—C28—C27112.7 (3)
C3—C2—H2120.2C27—C29—C30121.8 (3)
C1—C2—H2120.1C27—C29—H29119.1
C2—C3—C4120.3 (4)C30—C29—H29119.1
C2—C3—H3119.8C31—C30—C29118.3 (3)
C4—C3—H3119.9C31—C30—C33123.5 (3)
C3—C4—C12116.5 (4)C29—C30—C33118.2 (3)
C3—C4—C5125.5 (4)C30—C31—C32120.7 (3)
C12—C4—C5118.1 (4)C30—C31—H31119.6
C6—C5—C4121.8 (4)C32—C31—H31119.7
C6—C5—H5119.1C31—C32—C26120.9 (3)
C4—C5—H5119.1C31—C32—H32119.5
C5—C6—C7121.9 (4)C26—C32—H32119.6
C5—C6—H6119.1O5—C33—C30120.1 (3)
C7—C6—H6119.0O5—C33—C34118.8 (3)
C8—C7—C11117.4 (4)C30—C33—C34121.0 (3)
C8—C7—C6123.8 (4)C35—C34—C41118.6 (3)
C11—C7—C6118.7 (4)C35—C34—C33117.8 (3)
C9—C8—C7119.7 (4)C41—C34—C33123.3 (3)
C9—C8—H8120.2C34—C35—C36123.3 (3)
C7—C8—H8120.1C34—C35—H35118.4
C8—C9—C10119.3 (4)C36—C35—H35118.3
C8—C9—H9120.5C35—C36—C38117.5 (3)
C10—C9—H9120.3C35—C36—C37114.0 (3)
N2—C10—C9123.3 (4)C38—C36—C37128.4 (3)
N2—C10—H10118.2O6—C37—O7120.5 (4)
C9—C10—H10118.4O6—C37—C36119.5 (3)
N2—C11—C7122.5 (4)O7—C37—C36120.0 (4)
N2—C11—C12117.7 (3)C40—C38—C36118.6 (3)
C7—C11—C12119.8 (3)C40—C38—C39114.0 (3)
N1—C12—C4122.9 (4)C36—C38—C39127.3 (3)
N1—C12—C11117.3 (3)O9—C39—O8121.6 (3)
C4—C12—C11119.7 (4)O9—C39—C38118.7 (3)
N3—C13—C14122.3 (4)O8—C39—C38119.6 (4)
N3—C13—H13118.8C41—C40—C38122.7 (3)
C14—C13—H13118.9C41—C40—H40118.7
C15—C14—C13119.8 (4)C38—C40—H40118.7
C15—C14—H14120.0C40—C41—C34119.2 (3)
C13—C14—H14120.1C40—C41—H41120.4
C14—C15—C16119.5 (4)C34—C41—H41120.4
C14—C15—H15120.3O1—Cu1—N4140.77 (10)
C16—C15—H15120.2O1—Cu1—N2107.09 (11)
C15—C16—C24117.3 (4)N4—Cu1—N2110.97 (11)
C15—C16—C17123.9 (4)O1—Cu1—N199.44 (11)
C24—C16—C17118.9 (4)N4—Cu1—N197.14 (11)
C18—C17—C16121.2 (4)N2—Cu1—N178.41 (12)
C18—C17—H17119.4O1—Cu1—N388.70 (11)
C16—C17—H17119.4N4—Cu1—N377.60 (12)
C17—C18—C19121.4 (4)N2—Cu1—N397.19 (12)
C17—C18—H18119.3N1—Cu1—N3171.58 (12)
C19—C18—H18119.3O1—Cu1—O258.28 (9)
C23—C19—C20117.2 (4)N4—Cu1—O286.22 (10)
C23—C19—C18119.1 (4)N2—Cu1—O2160.63 (11)
C20—C19—C18123.7 (4)N1—Cu1—O291.00 (11)
C21—C20—C19119.8 (4)N3—Cu1—O295.17 (11)
C21—C20—H20120.1O1—Cu1—C2529.28 (10)
C19—C20—H20120.1N4—Cu1—C25113.30 (12)
C20—C21—C22119.1 (4)N2—Cu1—C25135.70 (12)
C20—C21—H21120.4N1—Cu1—C2597.53 (11)
C22—C21—H21120.5N3—Cu1—C2590.63 (11)
N4—C22—C21123.5 (4)O2—Cu1—C2529.08 (10)
N4—C22—H22118.2C1—N1—C12117.6 (3)
C21—C22—H22118.3C1—N1—Cu1129.3 (3)
N4—C23—C19122.9 (3)C12—N1—Cu1113.1 (2)
N4—C23—C24117.2 (3)C10—N2—C11117.7 (3)
C19—C23—C24119.9 (3)C10—N2—Cu1128.9 (3)
N3—C24—C16122.9 (4)C11—N2—Cu1113.4 (3)
N3—C24—C23117.5 (3)C13—N3—C24118.1 (3)
C16—C24—C23119.5 (4)C13—N3—Cu1128.9 (3)
O2—C25—O1122.5 (3)C24—N3—Cu1112.7 (2)
O2—C25—C26117.8 (3)C22—N4—C23117.5 (3)
O1—C25—C26119.5 (3)C22—N4—Cu1127.7 (3)
O2—C25—Cu167.9 (2)C23—N4—Cu1114.4 (2)
O1—C25—Cu154.76 (18)C25—O1—Cu196.0 (2)
C26—C25—Cu1168.3 (2)C25—O2—Cu183.0 (2)
C27—C26—C32118.8 (3)C28—O3—H3A109.6
C27—C26—C25125.6 (3)C37—O7—H7109.4
C32—C26—C25115.6 (3)H1W—O10—H2W112 (3)
C29—C27—C26119.5 (3)H3W—O11—H4W122 (4)
C29—C27—C28116.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H4W···O6i0.83 (4)2.58 (5)2.764 (14)94 (4)
O3—H3A···O8ii0.822.563.198 (4)136
O3—H3A···O9ii0.821.772.555 (3)161
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C17H8O9)(C12H8N2)2]·2H2O
Mr816.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.3011 (9), 16.9401 (10), 14.9839 (9)
β (°) 101.371 (1)
V3)3558.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.15 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.904, 0.904
No. of measured, independent and
observed [I > 2σ(I)] reflections
17576, 6912, 3976
Rint0.061
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.00
No. of reflections6912
No. of parameters528
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.84

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H4W···O6i0.83 (4)2.58 (5)2.764 (14)94 (4)
O3—H3A···O8ii0.822.563.198 (4)135.7
O3—H3A···O9ii0.821.772.555 (3)161.1
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds