Download citation
Download citation
link to html
The title compound, C20H11N3O4, was synthesized by one-pot reaction of isatin, malononitrile and 4-hydroxy­coumarin in water. In the title mol­ecule, the angle between the pyran plane and the indole ring system with a common spiro C atom is 88.23 (8)°. The mol­ecules are linked into a three-dimensional framework by the formation of moderate N—H...O and N—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807034174/fb2056sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807034174/fb2056Isup2.hkl
Contains datablock I

CCDC reference: 299591

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.048
  • wR factor = 0.107
  • Data-to-parameter ratio = 12.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The indole nucleus is a well known heterocycle (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our program devoted to the preparation of heterocyclic compounds involving indole derivatives (Wang et al., 2006), we have synthesized a series of spirooxindoles via reactions of substituted isatins together with malononitrile and 4-hydroxycoumarin in water. Herein we report the crystal structure of the title compound, (I) (Fig. 1).

In (I), the atoms of the pyran ring (C1/C2/C3/C4/C5/O1) are almost coplanar with the largest deviation of O1 being 0.067 (1) Å from the mean plane (Spek, 2003).

The angle between the pyran plane and the indole ring with a common spiro atom C3 is 88.23 (8)°.

The molecules are linked into a three-dimensional framework structure by the formation of the moderate N—H···O and N—H···N hydrogen bonds. The atom N3 donates a hydrogen H3B to the atom O4i [Symmetry code: (i) -x + 1/2, y + 1/2, -z + 1/2.] forming thus a graph set C(7) - (Fig. 2) (Bernstein et al., 1995). The adjacent chains are connected by the pairs of N1—H1···O2ii hydrogen bonds forming a sheet with a cyclic motif R22(14) (Fig. 3). [Symmetry code: (ii) -x + 1, -y, -z + 1.] The sheet is parallel to (001).

The sheets also interact via N3—H3A···N2iii with a graph set R22(12), forming thus a three-dimensional network structure. [Symmetry code: (iii) -x + 1/2, -y + 1/2, -z + 1.]

Related literature top

For general background, see: Abdel-Rahman et al. (2004); da Silva et al. (2001); Joshi & Chand, (1982); Wang & Ji (2006).

For related literature, see: Bernstein et al. (1995); Spek (2003).

Experimental top

The title compound was prepared by the reaction of isatin (1 mmol), malononitrile (1 mmol) and 4-hydroxycoumarin (1 mmol) in water (5 ml). The reaction was catalyzed by TEBA (triethylbenzylammonium chloride, 1 mmol). After stirring at 333 K for 2 h, the reaction mixture was cooled and washed with small amount of ethanol. The crude product was filtered and single crystals of the title compound were obtained from 95% aqueous ethanol solution by slow evaporation at room temperature (yield 80%; m.p. 563–564 K). Spectroscopic analysis: IR (KBr, n, cm-1): 3357, 3303, 3195, 2955, 2199, 1721, 1667, 1613, 1523, 1474, 1366, 1227, 1132, 1072, 972, 864, 748, 563 1H NMR (400 MHz, DMSO-d6): 7.95 (d, 1H, J = 8.0 Hz, ArH), 7.77 (t, 1H, J = 7.6 Hz, ArH), 7.67 (br s, 2H, NH2), 7.57 (t, 1H, J = 7.6 Hz, ArH), 7.50 (d, 1H, J = 8.4 Hz, ArH), 7.22 (t, 2H, J = 7.6 Hz, ArH), 6.93 (t, 1H, J = 7.6 Hz, ArH), 6.85 (d, 1H, J = 8.0 Hz, ArH).

Refinement top

Despite the fact that all the H atoms were discernible in the difference Fourier maps all the C-aryl H atoms were situated into the idealized positions and allowed to ride on their parent atoms, with C–H = 0.95 and Uiso(H) = 1.2Ueq(C). As to the H atoms attached to the N atoms their coordinates were freely refined since these atoms are involved in the hydrogen bonds

while Uiso(H) = 1.2Ueq(C) or 1.2 Ueq(N).

Structure description top

The indole nucleus is a well known heterocycle (da Silva et al., 2001). Compounds carrying the indole moiety exhibit antibacterial and fungicidal activities (Joshi & Chand, 1982). Spirooxindole ring systems are found in a number of alkaloids like horsifiline, spirotryprostatin and elacomine (Abdel-Rahman et al., 2004). As a part of our program devoted to the preparation of heterocyclic compounds involving indole derivatives (Wang et al., 2006), we have synthesized a series of spirooxindoles via reactions of substituted isatins together with malononitrile and 4-hydroxycoumarin in water. Herein we report the crystal structure of the title compound, (I) (Fig. 1).

In (I), the atoms of the pyran ring (C1/C2/C3/C4/C5/O1) are almost coplanar with the largest deviation of O1 being 0.067 (1) Å from the mean plane (Spek, 2003).

The angle between the pyran plane and the indole ring with a common spiro atom C3 is 88.23 (8)°.

The molecules are linked into a three-dimensional framework structure by the formation of the moderate N—H···O and N—H···N hydrogen bonds. The atom N3 donates a hydrogen H3B to the atom O4i [Symmetry code: (i) -x + 1/2, y + 1/2, -z + 1/2.] forming thus a graph set C(7) - (Fig. 2) (Bernstein et al., 1995). The adjacent chains are connected by the pairs of N1—H1···O2ii hydrogen bonds forming a sheet with a cyclic motif R22(14) (Fig. 3). [Symmetry code: (ii) -x + 1, -y, -z + 1.] The sheet is parallel to (001).

The sheets also interact via N3—H3A···N2iii with a graph set R22(12), forming thus a three-dimensional network structure. [Symmetry code: (iii) -x + 1/2, -y + 1/2, -z + 1.]

For general background, see: Abdel-Rahman et al. (2004); da Silva et al. (2001); Joshi & Chand, (1982); Wang & Ji (2006).

For related literature, see: Bernstein et al. (1995); Spek (2003).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title structure, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Part of the title crystal structure, showing the a (001) sheet with the N—H···O hydrogen bonds. For the sake of clarity, the H atoms bonded to C atoms have been omitted. O, N, C atoms are depicted in red, blue and black, respectively. [Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 1/2; (ii) -x + 1, -y, -z + 1.]
[Figure 3] Fig. 3. Part of the title crystal structure, showing a cyclic motif R22(14) of the N1—H1···O2ii hydrogen bond pattern. O, N, C atoms are depicted in red, blue and black, respectively. [Symmetry code: (ii) -x + 1, -y, -z + 1.]
(3RS)-2'-Amino-2,5'-dioxo-1,2-dihydro-5'H-spiro[indole-3,4'- pyrano[3,2-c]chromene]-3'-carbonitrile top
Crystal data top
C20H11N3O4F(000) = 1472
Mr = 357.32Dx = 1.416 Mg m3
Monoclinic, C2/cMelting point = 563–564 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.265 (4) ÅCell parameters from 5284 reflections
b = 11.0076 (12) Åθ = 3.0–25.3°
c = 14.864 (2) ŵ = 0.10 mm1
β = 125.820 (3)°T = 173 K
V = 3351.9 (8) Å3Block, colourless
Z = 80.31 × 0.30 × 0.20 mm
Data collection top
Rigaku Mercury
diffractometer
3068 independent reflections
Radiation source: fine-focus sealed tube2674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 7.31 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω scansh = 3030
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1312
Tmin = 0.969, Tmax = 0.980l = 1717
16029 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0419P)2 + 2.3453P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
3068 reflectionsΔρmax = 0.20 e Å3
255 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
35 constraintsExtinction coefficient: 0.0011 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C20H11N3O4V = 3351.9 (8) Å3
Mr = 357.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.265 (4) ŵ = 0.10 mm1
b = 11.0076 (12) ÅT = 173 K
c = 14.864 (2) Å0.31 × 0.30 × 0.20 mm
β = 125.820 (3)°
Data collection top
Rigaku Mercury
diffractometer
3068 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2674 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.980Rint = 0.035
16029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.20 e Å3
3068 reflectionsΔρmin = 0.22 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27661 (6)0.34373 (11)0.22134 (10)0.0312 (3)
O20.48118 (6)0.16044 (12)0.36788 (11)0.0377 (4)
O30.42608 (6)0.24176 (13)0.20112 (11)0.0383 (3)
O40.37375 (6)0.00143 (12)0.37643 (11)0.0392 (4)
N10.46001 (7)0.07244 (14)0.54446 (12)0.0292 (4)
H10.4763 (9)0.0014 (19)0.5746 (17)0.035*
N20.31587 (8)0.17282 (17)0.55027 (14)0.0411 (4)
N30.21451 (7)0.32125 (16)0.28103 (14)0.0337 (4)
H3A0.2087 (10)0.3088 (19)0.3354 (19)0.040*
H3B0.1874 (10)0.369 (2)0.2224 (18)0.040*
C10.32893 (8)0.31103 (16)0.22205 (15)0.0274 (4)
C20.38132 (8)0.25213 (16)0.30683 (14)0.0267 (4)
C30.38915 (8)0.21902 (15)0.41237 (14)0.0254 (4)
C40.32491 (8)0.24481 (16)0.39560 (14)0.0267 (4)
C50.27354 (8)0.30078 (16)0.30509 (14)0.0275 (4)
C60.43259 (9)0.21535 (16)0.29663 (15)0.0302 (4)
C70.37258 (9)0.30335 (17)0.11484 (15)0.0331 (4)
C80.37033 (10)0.32238 (19)0.02064 (17)0.0407 (5)
H80.40440.29450.01650.049*
C90.31716 (11)0.38302 (19)0.06707 (17)0.0433 (5)
H90.31480.39710.13240.052*
C100.26699 (10)0.42402 (19)0.06187 (17)0.0423 (5)
H100.23080.46570.12330.051*
C110.26960 (9)0.40437 (18)0.03233 (15)0.0365 (5)
H110.23540.43260.03600.044*
C120.32293 (9)0.34260 (16)0.12260 (14)0.0301 (4)
C130.40581 (8)0.08170 (16)0.43953 (15)0.0281 (4)
C140.48718 (8)0.18667 (16)0.59080 (15)0.0287 (4)
C150.54420 (9)0.21274 (19)0.69336 (16)0.0370 (5)
H150.57130.14990.74320.044*
C160.56031 (10)0.3339 (2)0.72057 (17)0.0435 (5)
H160.59910.35470.79050.052*
C170.52090 (10)0.42502 (19)0.64776 (17)0.0428 (5)
H170.53280.50750.66870.051*
C180.46399 (9)0.39779 (17)0.54424 (16)0.0342 (4)
H180.43710.46050.49400.041*
C190.44769 (8)0.27733 (16)0.51654 (14)0.0258 (4)
C200.31907 (8)0.20584 (17)0.47984 (15)0.0299 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0286 (7)0.0382 (8)0.0272 (6)0.0093 (5)0.0166 (6)0.0074 (6)
O20.0327 (7)0.0409 (8)0.0439 (8)0.0105 (6)0.0248 (7)0.0131 (6)
O30.0372 (8)0.0490 (8)0.0364 (8)0.0095 (6)0.0259 (7)0.0107 (6)
O40.0398 (8)0.0314 (7)0.0386 (8)0.0057 (6)0.0185 (7)0.0072 (6)
N10.0286 (8)0.0256 (8)0.0289 (8)0.0044 (6)0.0142 (7)0.0056 (7)
N20.0298 (9)0.0597 (12)0.0331 (9)0.0053 (8)0.0181 (8)0.0090 (8)
N30.0268 (8)0.0467 (10)0.0262 (8)0.0111 (7)0.0147 (7)0.0074 (8)
C10.0262 (9)0.0274 (9)0.0278 (9)0.0010 (7)0.0154 (8)0.0003 (8)
C20.0267 (9)0.0258 (9)0.0268 (9)0.0001 (7)0.0152 (8)0.0011 (7)
C30.0225 (9)0.0266 (9)0.0252 (9)0.0020 (7)0.0129 (7)0.0018 (7)
C40.0242 (9)0.0303 (10)0.0241 (9)0.0023 (7)0.0133 (8)0.0011 (7)
C50.0271 (9)0.0310 (10)0.0239 (9)0.0011 (7)0.0146 (8)0.0023 (7)
C60.0310 (10)0.0296 (10)0.0330 (10)0.0011 (8)0.0203 (9)0.0032 (8)
C70.0343 (10)0.0341 (10)0.0302 (10)0.0011 (8)0.0184 (8)0.0021 (8)
C80.0469 (12)0.0455 (12)0.0393 (11)0.0030 (10)0.0306 (10)0.0017 (10)
C90.0580 (13)0.0429 (12)0.0324 (11)0.0093 (10)0.0283 (10)0.0014 (9)
C100.0499 (12)0.0372 (12)0.0320 (11)0.0015 (9)0.0196 (10)0.0082 (9)
C110.0382 (11)0.0341 (11)0.0329 (10)0.0003 (8)0.0184 (9)0.0039 (9)
C120.0334 (10)0.0292 (10)0.0265 (9)0.0015 (8)0.0169 (8)0.0022 (8)
C130.0280 (9)0.0299 (10)0.0294 (9)0.0008 (8)0.0186 (8)0.0004 (8)
C140.0244 (9)0.0333 (10)0.0287 (9)0.0023 (7)0.0156 (8)0.0012 (8)
C150.0258 (10)0.0473 (12)0.0291 (10)0.0026 (8)0.0112 (8)0.0022 (9)
C160.0314 (11)0.0545 (14)0.0329 (11)0.0094 (9)0.0122 (9)0.0074 (10)
C170.0438 (12)0.0385 (12)0.0433 (12)0.0128 (9)0.0238 (10)0.0089 (10)
C180.0352 (10)0.0308 (10)0.0367 (10)0.0016 (8)0.0210 (9)0.0005 (9)
C190.0244 (9)0.0288 (9)0.0252 (9)0.0002 (7)0.0151 (8)0.0008 (7)
C200.0197 (9)0.0376 (11)0.0281 (10)0.0023 (7)0.0116 (8)0.0016 (8)
Geometric parameters (Å, º) top
O1—C11.364 (2)C4—C201.411 (3)
O1—C51.375 (2)C7—C81.384 (3)
O2—C61.213 (2)C7—C121.394 (3)
O3—C61.361 (2)C8—C91.378 (3)
O3—C71.379 (2)C8—H80.9500
O4—C131.218 (2)C9—C101.390 (3)
N1—C131.348 (2)C9—H90.9500
N1—C141.405 (2)C10—C111.380 (3)
N1—H10.88 (2)C10—H100.9500
N2—C201.155 (2)C11—C121.401 (3)
N3—C51.334 (2)C11—H110.9500
N3—H3A0.91 (2)C14—C151.382 (3)
N3—H3B0.90 (2)C14—C191.386 (2)
C1—C21.345 (2)C15—C161.384 (3)
C1—C121.438 (2)C15—H150.9500
C2—C61.447 (2)C16—C171.381 (3)
C2—C31.507 (2)C16—H160.9500
C3—C41.518 (2)C17—C181.391 (3)
C3—C191.522 (2)C17—H170.9500
C3—C131.558 (2)C18—C191.378 (3)
C4—C51.353 (2)C18—H180.9500
C1—O1—C5118.03 (13)C8—C9—C10121.36 (19)
C6—O3—C7121.95 (14)C8—C9—H9119.3
C13—N1—C14111.93 (15)C10—C9—H9119.3
C13—N1—H1120.9 (13)C11—C10—C9120.14 (19)
C14—N1—H1126.9 (13)C11—C10—H10119.9
C5—N3—H3A118.2 (13)C9—C10—H10119.9
C5—N3—H3B117.1 (13)C10—C11—C12119.74 (19)
H3A—N3—H3B121.4 (19)C10—C11—H11120.1
C2—C1—O1123.54 (16)C12—C11—H11120.1
C2—C1—C12122.25 (16)C7—C12—C11118.61 (17)
O1—C1—C12114.19 (15)C7—C12—C1116.86 (16)
C1—C2—C6119.16 (16)C11—C12—C1124.45 (17)
C1—C2—C3123.35 (16)O4—C13—N1126.97 (17)
C6—C2—C3117.47 (15)O4—C13—C3124.92 (16)
C2—C3—C4107.92 (14)N1—C13—C3108.10 (15)
C2—C3—C19114.49 (14)C15—C14—C19121.91 (18)
C4—C3—C19113.41 (14)C15—C14—N1128.42 (17)
C2—C3—C13110.83 (14)C19—C14—N1109.67 (15)
C4—C3—C13108.96 (14)C14—C15—C16117.44 (18)
C19—C3—C13101.03 (13)C14—C15—H15121.3
C5—C4—C20118.91 (16)C16—C15—H15121.3
C5—C4—C3124.04 (16)C17—C16—C15121.13 (18)
C20—C4—C3117.04 (15)C17—C16—H16119.4
N3—C5—C4127.95 (17)C15—C16—H16119.4
N3—C5—O1110.22 (15)C16—C17—C18120.98 (19)
C4—C5—O1121.82 (15)C16—C17—H17119.5
O2—C6—O3117.36 (16)C18—C17—H17119.5
O2—C6—C2123.94 (17)C19—C18—C17118.20 (18)
O3—C6—C2118.69 (15)C19—C18—H18120.9
O3—C7—C8116.93 (17)C17—C18—H18120.9
O3—C7—C12121.00 (16)C18—C19—C14120.33 (17)
C8—C7—C12122.07 (18)C18—C19—C3130.72 (16)
C9—C8—C7118.07 (19)C14—C19—C3108.94 (15)
C9—C8—H8121.0N2—C20—C4178.28 (19)
C7—C8—H8121.0
C5—O1—C1—C28.6 (2)O3—C7—C12—C11179.78 (17)
C5—O1—C1—C12170.11 (15)C8—C7—C12—C110.7 (3)
O1—C1—C2—C6176.44 (16)O3—C7—C12—C12.7 (3)
C12—C1—C2—C62.1 (3)C8—C7—C12—C1176.34 (18)
O1—C1—C2—C32.0 (3)C10—C11—C12—C70.6 (3)
C12—C1—C2—C3179.40 (16)C10—C11—C12—C1176.26 (18)
C1—C2—C3—C49.1 (2)C2—C1—C12—C73.5 (3)
C6—C2—C3—C4169.42 (15)O1—C1—C12—C7175.24 (15)
C1—C2—C3—C19118.24 (19)C2—C1—C12—C11179.66 (18)
C6—C2—C3—C1963.3 (2)O1—C1—C12—C111.6 (3)
C1—C2—C3—C13128.30 (18)C14—N1—C13—O4175.88 (18)
C6—C2—C3—C1350.2 (2)C14—N1—C13—C35.80 (19)
C2—C3—C4—C56.8 (2)C2—C3—C13—O454.4 (2)
C19—C3—C4—C5121.10 (19)C4—C3—C13—O464.2 (2)
C13—C3—C4—C5127.24 (18)C19—C3—C13—O4176.12 (17)
C2—C3—C4—C20172.28 (16)C2—C3—C13—N1127.26 (15)
C19—C3—C4—C2059.8 (2)C4—C3—C13—N1114.14 (15)
C13—C3—C4—C2051.9 (2)C19—C3—C13—N15.52 (18)
C20—C4—C5—N32.9 (3)C13—N1—C14—C15176.13 (18)
C3—C4—C5—N3176.17 (17)C13—N1—C14—C193.6 (2)
C20—C4—C5—O1178.32 (16)C19—C14—C15—C161.0 (3)
C3—C4—C5—O12.6 (3)N1—C14—C15—C16179.36 (18)
C1—O1—C5—N3168.19 (15)C14—C15—C16—C170.1 (3)
C1—O1—C5—C410.8 (2)C15—C16—C17—C180.6 (3)
C7—O3—C6—O2179.72 (16)C16—C17—C18—C190.5 (3)
C7—O3—C6—C20.7 (3)C17—C18—C19—C140.3 (3)
C1—C2—C6—O2178.94 (18)C17—C18—C19—C3178.86 (18)
C3—C2—C6—O20.4 (3)C15—C14—C19—C181.1 (3)
C1—C2—C6—O30.0 (3)N1—C14—C19—C18179.20 (16)
C3—C2—C6—O3178.58 (15)C15—C14—C19—C3179.91 (16)
C6—O3—C7—C8178.35 (17)N1—C14—C19—C30.4 (2)
C6—O3—C7—C120.8 (3)C2—C3—C19—C1858.7 (2)
O3—C7—C8—C9179.59 (17)C4—C3—C19—C1865.7 (2)
C12—C7—C8—C90.5 (3)C13—C3—C19—C18177.87 (18)
C7—C8—C9—C100.1 (3)C2—C3—C19—C14122.58 (16)
C8—C9—C10—C110.0 (3)C4—C3—C19—C14112.97 (17)
C9—C10—C11—C120.2 (3)C13—C3—C19—C143.45 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O4i0.90 (2)1.98 (2)2.855 (2)164.2 (19)
N1—H1···O2ii0.88 (2)2.00 (2)2.865 (2)172.2 (19)
N3—H3A···N2iii0.91 (2)2.13 (2)3.022 (2)164.7 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC20H11N3O4
Mr357.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)25.265 (4), 11.0076 (12), 14.864 (2)
β (°) 125.820 (3)
V3)3351.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.31 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.969, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
16029, 3068, 2674
Rint0.035
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.107, 1.15
No. of reflections3068
No. of parameters255
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), CrystalClear, CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O4i0.90 (2)1.98 (2)2.855 (2)164.2 (19)
N1—H1···O2ii0.88 (2)2.00 (2)2.865 (2)172.2 (19)
N3—H3A···N2iii0.91 (2)2.13 (2)3.022 (2)164.7 (18)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds