Download citation
Download citation
link to html
The phenyl and naphthyl ring systems are at an angle of 47.57 (9)° in the title compound, C16H12O3S. Only weak C—H...O inter­actions are present in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703437X/gg2026sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703437X/gg2026Isup2.hkl
Contains datablock I

CCDC reference: 659092

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.047
  • wR factor = 0.127
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.814 1.000 Tmin(prime) and Tmax expected: 0.943 0.981 RR(prime) = 0.847 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.85 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992, Tharakan et al.,1992, Alford et al., 1991, Jiang et al., 1990, Narayanan & Krakow, 1983). An X-ray study of the title compound (I) was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure of (I) is shown in Fig. 1 with selected geometric parameters provided in Table 1. The S—C, S—O and S=O bond lengths are comparable with those found in related structures previously reported by our research group (Manivannan et al. 2005 & references cited therein).

A Newman projection along the O10—S1 bond is provided in Fig. 2. Using C11 as a reference point, the orientations of the two sulfonyl oxygen atoms (O8 and O9) and the phenyl carbon (C2) have been deduced from the corresponding torsion angles (C11–O10–S1–O8/O9/C2). Helical nomeclature is employed to assign + or -synclinal and +antiperiplanar conformations. The C2–S1–O10–C11 torsion angle of 60.6 (2)° corresponds to +synclinal conformation; as expected the dihedral angle between the mean planes of the phenyl and naphthyl rings of 47.57 (7)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Manivannan et al. 2005 & references cited therein).

The crystal structure of (I) is stabilized by weak intermolecular C—H···O interactions (Desiraju et al., 1999) (Table 2, Fig. 3).

Related literature top

For a detailed account of the molecular and supramolecular architectures of aromatic sulfonates, see Manivannan et al. (2005) and references cited therein.

For related literature, see: Alford et al. (1991); Desiraju & Steiner (1999); Jiang et al. (1990); Narayanan & Krakow (1983); Sheldrick (1998b); Spungin et al. (1992); Tharakan et al. (1992).

Experimental top

Benzenesulfonyl chloride (10 mmol), dissolved in acetone, was added dropwise to 2-naphthol (10 mmol) in aqueous NaOH (8 ml, 5%) with constant stirring. The precipitate (6.5 mmol, yield 65%) was filtered and recrystallized from aqueous ethanol.

Refinement top

All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined.

Structure description top

Aromatic sulfonates are used in monitoring the merging of lipids (Yachi et al., 1989) and in many other fields (Spungin et al., 1992, Tharakan et al.,1992, Alford et al., 1991, Jiang et al., 1990, Narayanan & Krakow, 1983). An X-ray study of the title compound (I) was undertaken in order to determine its crystal and molecular structure owing to the biological importance of its analogues. The molecular structure of (I) is shown in Fig. 1 with selected geometric parameters provided in Table 1. The S—C, S—O and S=O bond lengths are comparable with those found in related structures previously reported by our research group (Manivannan et al. 2005 & references cited therein).

A Newman projection along the O10—S1 bond is provided in Fig. 2. Using C11 as a reference point, the orientations of the two sulfonyl oxygen atoms (O8 and O9) and the phenyl carbon (C2) have been deduced from the corresponding torsion angles (C11–O10–S1–O8/O9/C2). Helical nomeclature is employed to assign + or -synclinal and +antiperiplanar conformations. The C2–S1–O10–C11 torsion angle of 60.6 (2)° corresponds to +synclinal conformation; as expected the dihedral angle between the mean planes of the phenyl and naphthyl rings of 47.57 (7)° shows that the two rings are not coplanar. This is similar to the situation reported by us for other aromatic sulfonates (Manivannan et al. 2005 & references cited therein).

The crystal structure of (I) is stabilized by weak intermolecular C—H···O interactions (Desiraju et al., 1999) (Table 2, Fig. 3).

For a detailed account of the molecular and supramolecular architectures of aromatic sulfonates, see Manivannan et al. (2005) and references cited therein.

For related literature, see: Alford et al. (1991); Desiraju & Steiner (1999); Jiang et al. (1990); Narayanan & Krakow (1983); Sheldrick (1998b); Spungin et al. (1992); Tharakan et al. (1992).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius
[Figure 2] Fig. 2. A Newman projection along the O10—S1 bond with C11 as a reference point, +/-sc = +/-synclinal, -ap = -antiperiplanar.
[Figure 3] Fig. 3. The molecular packing viewed down the b-axis. Dashed lines represent the weak C—H···O interactions within the lattice.
2-Napthyl benzenesulfonate top
Crystal data top
C16H12O3SDx = 1.392 Mg m3
Mr = 284.32Melting point = 394–396 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2747 reflections
a = 11.8910 (11) Åθ = 2.5–27.3°
b = 10.8909 (12) ŵ = 0.24 mm1
c = 20.958 (2) ÅT = 120 K
V = 2714.1 (5) Å3Plate, colourless
Z = 80.24 × 0.16 × 0.08 mm
F(000) = 1184
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
3917 independent reflections
Radiation source: fine-focus sealed tube2262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 8 pixels mm-1θmax = 30.4°, θmin = 1.9°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998a)
k = 1514
Tmin = 0.814, Tmax = 1.000l = 2921
19056 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.8434P]
where P = (Fo2 + 2Fc2)/3
3917 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C16H12O3SV = 2714.1 (5) Å3
Mr = 284.32Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 11.8910 (11) ŵ = 0.24 mm1
b = 10.8909 (12) ÅT = 120 K
c = 20.958 (2) Å0.24 × 0.16 × 0.08 mm
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
3917 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998a)
2262 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 1.000Rint = 0.089
19056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.127All H-atom parameters refined
S = 1.00Δρmax = 0.33 e Å3
3917 reflectionsΔρmin = 0.46 e Å3
229 parameters
Special details top

Experimental. none

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15762 (4)0.88595 (5)0.40500 (2)0.01934 (14)
C20.30301 (18)0.8898 (2)0.39181 (10)0.0187 (4)
C30.3510 (2)0.8047 (2)0.35098 (11)0.0250 (5)
C40.4658 (2)0.8075 (2)0.34121 (12)0.0315 (6)
C50.5312 (2)0.8953 (2)0.37184 (12)0.0313 (6)
C60.4828 (2)0.9788 (2)0.41258 (13)0.0308 (6)
C70.36756 (19)0.9777 (2)0.42299 (11)0.0248 (5)
O80.10154 (13)0.83470 (15)0.35111 (7)0.0274 (4)
O90.12184 (13)1.00159 (14)0.42973 (7)0.0255 (4)
O100.14112 (12)0.78362 (13)0.45886 (7)0.0206 (3)
C110.19407 (19)0.8014 (2)0.51926 (10)0.0188 (5)
C120.29256 (19)0.7343 (2)0.53019 (11)0.0216 (5)
C130.3430 (2)0.7432 (2)0.58838 (11)0.0227 (5)
C140.3508 (2)0.8323 (2)0.69741 (11)0.0261 (5)
C150.3072 (2)0.9087 (2)0.74265 (12)0.0311 (6)
C160.2074 (2)0.9743 (2)0.73036 (12)0.0319 (6)
C170.1535 (2)0.9632 (2)0.67294 (11)0.0270 (5)
C180.14591 (19)0.8753 (2)0.56366 (10)0.0200 (5)
C190.29784 (19)0.8194 (2)0.63705 (11)0.0207 (5)
C200.19838 (19)0.8870 (2)0.62448 (10)0.0201 (5)
H30.306 (2)0.745 (2)0.3302 (11)0.024 (6)*
H40.503 (2)0.749 (2)0.3146 (11)0.030 (7)*
H50.610 (2)0.894 (2)0.3643 (11)0.028 (6)*
H60.523 (2)1.039 (2)0.4320 (12)0.041 (8)*
H70.3328 (19)1.037 (2)0.4526 (12)0.030 (7)*
H120.3242 (19)0.686 (2)0.4979 (11)0.020 (6)*
H130.412 (2)0.695 (2)0.5964 (11)0.025 (6)*
H140.420 (2)0.787 (2)0.7050 (11)0.030 (7)*
H150.343 (2)0.916 (2)0.7828 (13)0.038 (7)*
H160.182 (2)1.024 (3)0.7619 (15)0.051 (9)*
H170.081 (2)1.005 (2)0.6640 (10)0.022 (6)*
H180.076 (2)0.918 (2)0.5537 (10)0.019 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0171 (2)0.0239 (3)0.0170 (3)0.0006 (2)0.0006 (2)0.0004 (2)
C20.0173 (10)0.0218 (11)0.0172 (10)0.0002 (9)0.0022 (8)0.0032 (9)
C30.0253 (12)0.0258 (13)0.0241 (12)0.0005 (11)0.0020 (10)0.0049 (9)
C40.0284 (13)0.0372 (15)0.0289 (13)0.0110 (12)0.0037 (11)0.0033 (11)
C50.0182 (11)0.0428 (16)0.0328 (14)0.0026 (12)0.0033 (11)0.0128 (12)
C60.0238 (13)0.0322 (14)0.0365 (15)0.0080 (11)0.0007 (11)0.0025 (12)
C70.0243 (12)0.0227 (12)0.0273 (12)0.0032 (10)0.0030 (10)0.0013 (10)
O80.0240 (9)0.0384 (10)0.0199 (8)0.0049 (7)0.0037 (7)0.0012 (7)
O90.0245 (8)0.0258 (9)0.0262 (9)0.0065 (7)0.0022 (7)0.0005 (7)
O100.0212 (8)0.0238 (8)0.0168 (7)0.0054 (6)0.0014 (6)0.0001 (6)
C110.0209 (10)0.0197 (11)0.0160 (10)0.0034 (9)0.0012 (9)0.0012 (9)
C120.0242 (12)0.0196 (11)0.0211 (11)0.0009 (9)0.0033 (10)0.0004 (9)
C130.0202 (11)0.0229 (11)0.0248 (12)0.0004 (10)0.0008 (10)0.0006 (9)
C140.0270 (12)0.0286 (13)0.0227 (12)0.0019 (11)0.0055 (11)0.0040 (10)
C150.0410 (15)0.0333 (14)0.0191 (12)0.0080 (12)0.0065 (11)0.0027 (10)
C160.0455 (16)0.0301 (14)0.0201 (12)0.0013 (12)0.0050 (12)0.0039 (11)
C170.0318 (13)0.0277 (13)0.0216 (12)0.0044 (11)0.0046 (11)0.0014 (10)
C180.0183 (11)0.0227 (11)0.0188 (11)0.0000 (10)0.0005 (9)0.0038 (9)
C190.0215 (11)0.0198 (11)0.0210 (11)0.0038 (9)0.0004 (9)0.0029 (9)
C200.0248 (11)0.0178 (11)0.0177 (10)0.0018 (10)0.0005 (9)0.0036 (9)
Geometric parameters (Å, º) top
S1—O81.4254 (16)C11—C121.399 (3)
S1—O91.4267 (16)C12—C131.363 (3)
S1—O101.5983 (15)C12—H120.93 (2)
S1—C21.751 (2)C13—C191.420 (3)
C2—C31.384 (3)C13—H130.99 (2)
C2—C71.390 (3)C14—C151.363 (4)
C3—C41.382 (3)C14—C191.420 (3)
C3—H30.94 (2)C14—H140.97 (3)
C4—C51.389 (4)C15—C161.409 (4)
C4—H40.95 (2)C15—H150.95 (3)
C5—C61.374 (4)C16—C171.368 (3)
C5—H50.95 (3)C16—H160.91 (3)
C6—C71.388 (3)C17—C201.416 (3)
C6—H60.91 (3)C17—H170.99 (2)
C7—H70.99 (2)C18—C201.425 (3)
O10—C111.427 (2)C18—H180.98 (2)
C11—C181.358 (3)C19—C201.418 (3)
O8—S1—O9119.60 (10)C13—C12—C11118.5 (2)
O8—S1—O10103.24 (9)C13—C12—H12120.8 (14)
O9—S1—O10108.81 (9)C11—C12—H12120.7 (14)
O8—S1—C2110.25 (10)C12—C13—C19121.2 (2)
O9—S1—C2109.31 (10)C12—C13—H13118.7 (13)
O10—S1—C2104.43 (9)C19—C13—H13120.1 (13)
C3—C2—C7121.6 (2)C15—C14—C19120.8 (2)
C3—C2—S1119.23 (18)C15—C14—H14121.2 (14)
C7—C2—S1119.16 (17)C19—C14—H14118.0 (14)
C4—C3—C2119.0 (2)C14—C15—C16120.1 (2)
C4—C3—H3120.2 (14)C14—C15—H15119.8 (16)
C2—C3—H3120.8 (15)C16—C15—H15120.0 (16)
C3—C4—C5120.0 (2)C17—C16—C15120.7 (2)
C3—C4—H4121.9 (15)C17—C16—H16122.7 (19)
C5—C4—H4118.1 (15)C15—C16—H16116.6 (19)
C6—C5—C4120.6 (2)C16—C17—C20120.4 (2)
C6—C5—H5121.7 (15)C16—C17—H17122.1 (13)
C4—C5—H5117.7 (14)C20—C17—H17117.4 (13)
C5—C6—C7120.3 (2)C11—C18—C20118.8 (2)
C5—C6—H6122.2 (17)C11—C18—H18119.8 (13)
C7—C6—H6117.4 (17)C20—C18—H18121.5 (13)
C6—C7—C2118.5 (2)C20—C19—C14119.0 (2)
C6—C7—H7120.4 (14)C20—C19—C13119.0 (2)
C2—C7—H7121.0 (14)C14—C19—C13122.0 (2)
C11—O10—S1118.55 (13)C17—C20—C19119.0 (2)
C18—C11—C12123.4 (2)C17—C20—C18122.0 (2)
C18—C11—O10120.15 (19)C19—C20—C18119.0 (2)
C12—C11—O10116.35 (19)
O8—S1—C2—C327.2 (2)O10—C11—C12—C13176.67 (19)
O9—S1—C2—C3160.58 (17)C11—C12—C13—C190.5 (3)
O10—S1—C2—C383.12 (19)C19—C14—C15—C161.2 (4)
O8—S1—C2—C7153.28 (17)C14—C15—C16—C170.6 (4)
O9—S1—C2—C719.9 (2)C15—C16—C17—C201.0 (4)
O10—S1—C2—C796.41 (19)C12—C11—C18—C200.7 (3)
C7—C2—C3—C40.1 (4)O10—C11—C18—C20177.35 (18)
S1—C2—C3—C4179.43 (19)C15—C14—C19—C200.2 (3)
C2—C3—C4—C50.4 (4)C15—C14—C19—C13178.2 (2)
C3—C4—C5—C60.8 (4)C12—C13—C19—C200.0 (3)
C4—C5—C6—C70.9 (4)C12—C13—C19—C14178.4 (2)
C5—C6—C7—C20.5 (4)C16—C17—C20—C192.0 (3)
C3—C2—C7—C60.2 (3)C16—C17—C20—C18178.6 (2)
S1—C2—C7—C6179.36 (18)C14—C19—C20—C171.4 (3)
O8—S1—O10—C11175.90 (15)C13—C19—C20—C17179.8 (2)
O9—S1—O10—C1156.06 (17)C14—C19—C20—C18179.2 (2)
C2—S1—O10—C1160.58 (17)C13—C19—C20—C180.8 (3)
S1—O10—C11—C1881.0 (2)C11—C18—C20—C17179.5 (2)
S1—O10—C11—C12102.1 (2)C11—C18—C20—C191.1 (3)
C18—C11—C12—C130.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O90.99 (2)2.58 (2)2.937 (3)101.1 (16)
C12—H12···O9i0.93 (2)2.55 (2)3.448 (3)161.6 (19)
C13—H13···O8ii0.99 (2)2.52 (2)3.432 (3)152.1 (18)
C18—H18···O9iii0.98 (2)2.53 (2)3.457 (3)157.8 (17)
C5—H5···Cg2iv0.95 (3)3.0073.554118.05
C5—H5···Cg3v0.95 (3)2.9773.617125.99
C6—H6···Cg2v0.91 (3)3.2093.973142.81
C15—H15···Cg1vi0.95 (3)3.0733.862141.70
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+3/2, z+1; (iii) x, y+2, z+1; (iv) x, y, z+1/2; (v) x+1, y, z; (vi) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H12O3S
Mr284.32
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)120
a, b, c (Å)11.8910 (11), 10.8909 (12), 20.958 (2)
V3)2714.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.24 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART CCD 1K area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998a)
Tmin, Tmax0.814, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19056, 3917, 2262
Rint0.089
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.127, 1.00
No. of reflections3917
No. of parameters229
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.33, 0.46

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
S1—O81.4254 (16)S1—O101.5983 (15)
S1—O91.4267 (16)S1—C21.751 (2)
O8—S1—O9119.60 (10)O9—S1—C2109.31 (10)
O8—S1—O10103.24 (9)O10—S1—C2104.43 (9)
O9—S1—O10108.81 (9)C11—O10—S1118.55 (13)
O8—S1—C2110.25 (10)
O8—S1—O10—C11175.90 (15)C2—S1—O10—C1160.58 (17)
O9—S1—O10—C1156.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O9i0.93 (2)2.55 (2)3.448 (3)161.6 (19)
C13—H13···O8ii0.99 (2)2.52 (2)3.432 (3)152.1 (18)
C18—H18···O9iii0.98 (2)2.53 (2)3.457 (3)157.8 (17)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+3/2, z+1; (iii) x, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds