Download citation
Download citation
link to html
In the title compound, C21H16BrFN2, the pyrazoline ring forms dihedral angles of 8.1 (2), 14.2 (2) and 71.4 (2)° with the phenyl, 4-bromo­phenyl and 4-fluoro­phenyl substituents, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807033120/gk2085sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807033120/gk2085Isup2.hkl
Contains datablock I

CCDC reference: 657765

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.043
  • wR factor = 0.107
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.10
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C7 = ... S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrazolines are important five-membered heterocyclic compounds. 1-Acetyl-3,5-diaryl-2-pyrazolines have been found to inhibit the monoamine oxidases (Manna et al., 2002). 1,3,5-Triaryl-2-pyrazolines were also used as scintillation solutes (Wiley et al.,1958). Here we report the crystal strucutre of the title triaryl-2-pyrazoline. The title molecule is shown in Fig. 1; all bond lengths and bond angles are normal (Guo et al., 2006). The mean plane of pyrazoline ring N1/N2/C7—C9 is inclined to the best planes of the phenyl, 4-bromophenyl and 4-fluorophenyl substituents by 14.2 (2), 8.1 (2) and 71.4 (2)°, respectively.

Related literature top

For information on arylpyrazolines, see: Manna et al. (2002); Wiley et al. (1958). For the crystal structure of a similar triarylpyrazoline derivative, see: Guo et al. (2006).

Experimental top

1-(4-Bromophenyl)-3-(4-fluorophenyl)-2-propenyl-1-ketone (0.02 mol) and phenylhydrazine (0.02 mol) were added to 99.5% acetic acid (40 ml) and stirred with refluxing for 6 h. The mixture was poured into ice-water to afford yellow solid. The solid was filtrated and washed with water until pH of the solution was about 7.0. Finally, the yellow solid was dried at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H distances of 0.93–0.96 Å and Uiso=1.2–1.5Ueq of the parent atoms.

Structure description top

Pyrazolines are important five-membered heterocyclic compounds. 1-Acetyl-3,5-diaryl-2-pyrazolines have been found to inhibit the monoamine oxidases (Manna et al., 2002). 1,3,5-Triaryl-2-pyrazolines were also used as scintillation solutes (Wiley et al.,1958). Here we report the crystal strucutre of the title triaryl-2-pyrazoline. The title molecule is shown in Fig. 1; all bond lengths and bond angles are normal (Guo et al., 2006). The mean plane of pyrazoline ring N1/N2/C7—C9 is inclined to the best planes of the phenyl, 4-bromophenyl and 4-fluorophenyl substituents by 14.2 (2), 8.1 (2) and 71.4 (2)°, respectively.

For information on arylpyrazolines, see: Manna et al. (2002); Wiley et al. (1958). For the crystal structure of a similar triarylpyrazoline derivative, see: Guo et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 30% probability level.
3-(4-Bromophenyl)-5-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C21H16BrFN2F(000) = 800
Mr = 395.27Dx = 1.501 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1936 reflections
a = 15.271 (3) Åθ = 2.3–20.6°
b = 11.245 (2) ŵ = 2.37 mm1
c = 10.727 (2) ÅT = 298 K
β = 108.321 (3)°Plate, yellow
V = 1748.8 (6) Å30.35 × 0.31 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3096 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
π and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1718
Tmin = 0.492, Tmax = 0.815k = 1311
7203 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0175P)2 + 1.2354P]
where P = (Fo2 + 2Fc2)/3
3096 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C21H16BrFN2V = 1748.8 (6) Å3
Mr = 395.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.271 (3) ŵ = 2.37 mm1
b = 11.245 (2) ÅT = 298 K
c = 10.727 (2) Å0.35 × 0.31 × 0.09 mm
β = 108.321 (3)°
Data collection top
Bruker SMART APEX
diffractometer
3096 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1957 reflections with I > 2σ(I)
Tmin = 0.492, Tmax = 0.815Rint = 0.029
7203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.01Δρmax = 0.50 e Å3
3096 reflectionsΔρmin = 0.63 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7173 (3)0.3506 (4)0.5661 (4)0.0687 (10)
H10.76110.35430.64890.082*
C20.6527 (3)0.4398 (4)0.5276 (4)0.0749 (11)
H20.65250.50350.58280.090*
C30.5896 (3)0.4319 (4)0.4071 (5)0.0738 (11)
C40.5879 (3)0.3412 (4)0.3239 (4)0.0792 (12)
H40.54370.33860.24130.095*
C50.6531 (3)0.2524 (4)0.3638 (4)0.0740 (11)
H50.65240.18910.30780.089*
C60.7190 (2)0.2564 (3)0.4854 (3)0.0598 (9)
C70.7940 (3)0.1637 (3)0.5307 (4)0.0715 (10)
H70.80710.14860.62470.086*
C80.8841 (3)0.1979 (4)0.5025 (4)0.0820 (12)
H8A0.87960.27630.46350.098*
H8B0.93660.19590.58210.098*
C90.8916 (3)0.1039 (3)0.4082 (3)0.0633 (9)
C100.9613 (2)0.0970 (3)0.3421 (4)0.0611 (9)
C111.0370 (3)0.1734 (3)0.3722 (4)0.0723 (11)
H111.04350.23100.43670.087*
C121.1024 (3)0.1657 (4)0.3085 (4)0.0762 (12)
H121.15230.21760.32980.091*
C131.0933 (2)0.0813 (4)0.2141 (4)0.0723 (11)
C141.0200 (3)0.0046 (4)0.1822 (4)0.0785 (11)
H141.01430.05300.11780.094*
C150.9549 (3)0.0129 (4)0.2456 (4)0.0753 (11)
H150.90510.03930.22310.090*
C160.7075 (3)0.0327 (3)0.4722 (4)0.0658 (10)
C170.6978 (3)0.1413 (4)0.4081 (4)0.0710 (10)
H170.73200.15760.35210.085*
C180.6379 (3)0.2246 (4)0.4273 (4)0.0801 (12)
H180.63150.29690.38320.096*
C190.5869 (3)0.2037 (4)0.5102 (4)0.0831 (12)
H190.54750.26170.52380.100*
C200.5951 (3)0.0962 (4)0.5724 (4)0.0834 (12)
H200.56040.08080.62790.100*
C210.6544 (3)0.0102 (4)0.5535 (4)0.0770 (11)
H210.65880.06300.59540.092*
Br11.18176 (3)0.06824 (5)0.12420 (5)0.0946 (2)
F10.52413 (17)0.5188 (2)0.3673 (3)0.1060 (8)
N10.8282 (2)0.0237 (3)0.3876 (3)0.0656 (8)
N20.7700 (2)0.0519 (3)0.4573 (3)0.0780 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.077 (3)0.068 (3)0.062 (2)0.008 (2)0.0222 (19)0.010 (2)
C20.085 (3)0.062 (3)0.087 (3)0.009 (2)0.040 (3)0.015 (2)
C30.068 (3)0.066 (3)0.096 (3)0.001 (2)0.040 (2)0.010 (3)
C40.080 (3)0.086 (3)0.065 (3)0.011 (2)0.015 (2)0.010 (3)
C50.094 (3)0.067 (3)0.060 (3)0.009 (2)0.024 (2)0.012 (2)
C60.073 (2)0.053 (2)0.059 (2)0.0068 (19)0.0279 (19)0.0023 (19)
C70.088 (3)0.060 (3)0.068 (2)0.004 (2)0.026 (2)0.004 (2)
C80.077 (3)0.073 (3)0.092 (3)0.004 (2)0.021 (2)0.012 (2)
C90.066 (2)0.055 (2)0.063 (2)0.0034 (19)0.0113 (18)0.0053 (19)
C100.053 (2)0.052 (2)0.069 (2)0.0022 (17)0.0070 (18)0.0050 (19)
C110.061 (2)0.061 (2)0.083 (3)0.002 (2)0.005 (2)0.004 (2)
C120.052 (2)0.064 (3)0.101 (3)0.0082 (19)0.008 (2)0.010 (2)
C130.054 (2)0.066 (3)0.091 (3)0.0000 (19)0.014 (2)0.012 (2)
C140.071 (3)0.066 (3)0.103 (3)0.011 (2)0.032 (2)0.010 (2)
C150.063 (2)0.067 (3)0.097 (3)0.018 (2)0.026 (2)0.009 (2)
C160.067 (2)0.058 (3)0.071 (2)0.0082 (19)0.021 (2)0.013 (2)
C170.068 (2)0.061 (3)0.088 (3)0.002 (2)0.029 (2)0.003 (2)
C180.075 (3)0.062 (3)0.106 (3)0.005 (2)0.031 (2)0.004 (2)
C190.080 (3)0.080 (3)0.094 (3)0.008 (2)0.033 (2)0.012 (3)
C200.090 (3)0.091 (4)0.076 (3)0.004 (3)0.037 (2)0.011 (3)
C210.095 (3)0.067 (3)0.075 (3)0.003 (2)0.036 (2)0.001 (2)
Br10.0622 (3)0.1061 (4)0.1179 (4)0.0031 (2)0.0318 (2)0.0126 (3)
F10.0852 (17)0.0916 (18)0.148 (2)0.0161 (15)0.0462 (16)0.0240 (17)
N10.072 (2)0.0533 (19)0.072 (2)0.0006 (16)0.0236 (16)0.0048 (16)
N20.092 (2)0.053 (2)0.102 (2)0.0041 (18)0.050 (2)0.0085 (18)
Geometric parameters (Å, º) top
C1—C61.374 (5)C11—C121.378 (5)
C1—C21.376 (5)C11—H110.9300
C1—H10.9300C12—C131.363 (5)
C2—C31.351 (6)C12—H120.9300
C2—H20.9300C13—C141.369 (5)
C3—C41.350 (6)C13—Br11.897 (4)
C3—F11.367 (5)C14—C151.374 (5)
C4—C51.379 (6)C14—H140.9300
C4—H40.9300C15—H150.9300
C5—C61.376 (5)C16—C171.386 (5)
C5—H50.9300C16—C211.388 (5)
C6—C71.511 (5)C16—N21.392 (5)
C7—N21.468 (5)C17—C181.370 (5)
C7—C81.547 (5)C17—H170.9300
C7—H70.9800C18—C191.374 (5)
C8—C91.492 (5)C18—H180.9300
C8—H8A0.9700C19—C201.367 (6)
C8—H8B0.9700C19—H190.9300
C9—N11.290 (4)C20—C211.383 (6)
C9—C101.456 (5)C20—H200.9300
C10—C151.382 (5)C21—H210.9300
C10—C111.394 (5)N1—N21.367 (4)
C6—C1—C2121.8 (4)C12—C11—H11119.2
C6—C1—H1119.1C10—C11—H11119.2
C2—C1—H1119.1C13—C12—C11119.5 (4)
C3—C2—C1117.9 (4)C13—C12—H12120.3
C3—C2—H2121.0C11—C12—H12120.3
C1—C2—H2121.0C12—C13—C14120.6 (4)
C4—C3—C2122.8 (4)C12—C13—Br1120.6 (3)
C4—C3—F1118.3 (4)C14—C13—Br1118.8 (4)
C2—C3—F1118.9 (4)C13—C14—C15119.7 (4)
C3—C4—C5118.7 (4)C13—C14—H14120.2
C3—C4—H4120.7C15—C14—H14120.2
C5—C4—H4120.7C14—C15—C10121.7 (4)
C6—C5—C4120.9 (4)C14—C15—H15119.2
C6—C5—H5119.6C10—C15—H15119.2
C4—C5—H5119.6C17—C16—C21118.7 (4)
C1—C6—C5118.0 (4)C17—C16—N2121.0 (4)
C1—C6—C7119.4 (3)C21—C16—N2120.3 (4)
C5—C6—C7122.6 (3)C18—C17—C16120.0 (4)
N2—C7—C6112.4 (3)C18—C17—H17120.0
N2—C7—C8101.3 (3)C16—C17—H17120.0
C6—C7—C8113.4 (3)C17—C18—C19121.4 (4)
N2—C7—H7109.8C17—C18—H18119.3
C6—C7—H7109.8C19—C18—H18119.3
C8—C7—H7109.8C20—C19—C18118.9 (4)
C9—C8—C7102.6 (3)C20—C19—H19120.5
C9—C8—H8A111.2C18—C19—H19120.5
C7—C8—H8A111.2C19—C20—C21120.7 (4)
C9—C8—H8B111.2C19—C20—H20119.7
C7—C8—H8B111.2C21—C20—H20119.7
H8A—C8—H8B109.2C20—C21—C16120.2 (4)
N1—C9—C10120.2 (4)C20—C21—H21119.9
N1—C9—C8113.5 (3)C16—C21—H21119.9
C10—C9—C8126.2 (3)C9—N1—N2109.0 (3)
C15—C10—C11117.0 (4)N1—N2—C16119.4 (3)
C15—C10—C9120.7 (3)N1—N2—C7113.4 (3)
C11—C10—C9122.3 (4)C16—N2—C7126.1 (3)
C12—C11—C10121.5 (4)
C6—C1—C2—C30.5 (6)C11—C12—C13—Br1179.9 (3)
C1—C2—C3—C40.3 (6)C12—C13—C14—C150.2 (6)
C1—C2—C3—F1179.3 (3)Br1—C13—C14—C15179.6 (3)
C2—C3—C4—C50.4 (6)C13—C14—C15—C100.3 (6)
F1—C3—C4—C5179.3 (3)C11—C10—C15—C140.1 (6)
C3—C4—C5—C60.6 (6)C9—C10—C15—C14179.8 (4)
C2—C1—C6—C50.7 (6)C21—C16—C17—C181.1 (6)
C2—C1—C6—C7177.5 (3)N2—C16—C17—C18178.1 (4)
C4—C5—C6—C10.7 (6)C16—C17—C18—C190.5 (6)
C4—C5—C6—C7177.4 (4)C17—C18—C19—C201.4 (6)
C1—C6—C7—N2160.8 (3)C18—C19—C20—C210.7 (6)
C5—C6—C7—N221.1 (5)C19—C20—C21—C160.8 (6)
C1—C6—C7—C885.0 (4)C17—C16—C21—C201.7 (6)
C5—C6—C7—C893.0 (4)N2—C16—C21—C20177.4 (4)
N2—C7—C8—C94.5 (4)C10—C9—N1—N2178.1 (3)
C6—C7—C8—C9116.2 (3)C8—C9—N1—N21.9 (4)
C7—C8—C9—N14.2 (4)C9—N1—N2—C16167.0 (3)
C7—C8—C9—C10175.8 (3)C9—N1—N2—C71.5 (4)
N1—C9—C10—C157.4 (5)C17—C16—N2—N15.7 (5)
C8—C9—C10—C15172.7 (4)C21—C16—N2—N1173.4 (3)
N1—C9—C10—C11172.6 (3)C17—C16—N2—C7172.7 (3)
C8—C9—C10—C117.4 (6)C21—C16—N2—C76.5 (6)
C15—C10—C11—C120.1 (5)C6—C7—N2—N1117.4 (3)
C9—C10—C11—C12180.0 (3)C8—C7—N2—N13.9 (4)
C10—C11—C12—C130.2 (6)C6—C7—N2—C1675.0 (5)
C11—C12—C13—C140.0 (6)C8—C7—N2—C16163.7 (4)

Experimental details

Crystal data
Chemical formulaC21H16BrFN2
Mr395.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.271 (3), 11.245 (2), 10.727 (2)
β (°) 108.321 (3)
V3)1748.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.35 × 0.31 × 0.09
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.492, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
7203, 3096, 1957
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.107, 1.01
No. of reflections3096
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.63

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds